Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (4): 482-491    DOI: 10.11867/j.issn.1001-8166.2014.04.0482
综述与评述     
地球系统模式CESM及其在高性能计算机上的配置应用实例
万修全, 刘泽栋*, 沈飙, 林霄沛, 吴德星
中国海洋大学物理海洋教育部重点实验室, 中国海洋大学, 山东 青岛 266100
Introduction to the Community Earth System Model and Application to High Performance Computing
Wan Xiuquan, Liu Zedong, Shen Biao, Lin Xiaopei, Wu Dexing
(Physical Oceanography Laboratory of the Ministry of Education, Ocean University of China, Qingdao 266100, China
 全文: PDF(1298 KB)   HTML
摘要:

通用地球系统模式(CESM)是美国国家大气研究中心最新推出的地球系统耦合模式, 对解决气候(地球)系统建模中所涉及的新挑战和新问题具有很大的帮助。首先介绍CESM模式的结构框架以及最新版本的重要更新; 然后结合具体的应用实例和使用经验, 重点讨论如何在高性能计算机上对模式进行移植和合理的CPU配置, 并比较不同配置之间的优劣性, 从而确定模式最佳负载平衡和最优效率, 对模式新用户的使用具有极大的帮助; 最后对模式进行一系列的稳定性测试和验证, 结果表明模式具有较好的稳定性, 可以进行数值模拟和科学研究。同时对地球系统耦合模式的发展进行了总结, 并对模式发展中存在的问题提出了一些建议。

关键词: 最优化CPU配置高性能计算CESM稳定性    
Abstract:

The Community Earth System Model (CESM) is a fully-coupled global climate model, and is maintained by the National Center for Atmospheric Research (NCAR). Composed of several separate models simultaneously simulating the earth's atmosphere, ocean, land surface, sea-ice, land-ice, river transport and wave, and one central coupler component, the CESM allows researchers to conduct fundamental research into the earth's past, present and future climate states. CESM1 contains totally new infrastructure capabilities, the implementation of a coupling architecture, and model parameterization development. These permit new flexibility and extensibility to address the challenges involved in earth system modeling with ultra high resolution simulations on High Performance Computing (HPC) platforms using tens-of-thousands of cores. Firstly, the infrastructure of the model is introduced, and also the notable improvements. The CESM1 coupling architecture provides “plug and play” capability of data and active components and includes a user-friendly scripting system and informative timing utilities. Then, the processor (PE) layout is customized for the load balancing on high-performance computers to optimize the throughput or efficiency of a CESM experiment. At the end of the paper, the port validation and model verification are made for the ocean model—the Parallel Ocean Program version 2 (POP2) which has properly ported to the machine—Polaris at Ocean University of China. The POP2 model output is subsequently verified to be a successful port, and CESM1 POP2 ocean-model solutions are the same as solutions generated on a trusted machine—bluefire at NCAR. Together, it enables a user to create a wide variety of "out-of-the-box" experiments for different model configurations and resolutions and also to determine the optimal load balance for those experiments to ensure maximal throughput and efficiency. The results and experiments will provide useful experience and method to the new CESM users to make simulations and load balancing of the model.

Key words: The community Earth system model    CPU Processor layout    Stability    Optimization    High performance computing
收稿日期: 2013-11-28 出版日期: 2014-04-10
:  P731  
基金资助:

国家自然科学基金面上项目“天气噪声对大西洋经向翻转环流变异的作用”(编号:41276013); 留学归国人员科研启动基金“太平洋经向模态对ENSO影响的数值研究”(教外司留2012-1707号)资助.

通讯作者: 刘泽栋(1987-), 男, 山东潍坊人, 硕士研究生, 主要从事物理海洋学研究.      E-mail: zdliu@ouc. edu. cn
作者简介: 万修全(1977-), 男, 山东日照人, 副教授, 主要从事物理海洋学和气候变化研究.E-mail:xqwan@ouc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘泽栋
林霄沛
沈飙
万修全
吴德星

引用本文:

万修全, 刘泽栋, 沈飙, 林霄沛, 吴德星. 地球系统模式CESM及其在高性能计算机上的配置应用实例[J]. 地球科学进展, 2014, 29(4): 482-491.

Wan Xiuquan, Liu Zedong, Shen Biao, Lin Xiaopei, Wu Dexing. Introduction to the Community Earth System Model and Application to High Performance Computing. Advances in Earth Science, 2014, 29(4): 482-491.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.04.0482        http://www.adearth.ac.cn/CN/Y2014/V29/I4/482

[1] Wang Bin, Zhou Tianjun, Yu Yongqiang. A perspective on Earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6): 857-869. [王斌, 周天军, 俞永强. 地球系统模式发展展望[J]. 气象学报, 2008, 66(6): 857-869. ]
[2] Zheng Peinan, Song Jun, Zhang Fangran, et al. Common instruction of some OGCM[J]. Marine Forecasts, 2008, 25(4): 108-120. [郑沛楠, 宋军, 张芳苒, 等. 常用海洋数值模式简介[J]. 海洋预报, 2008, 25(4): 108-120. ]
[3] Zhou Tianjun, Yu Yongqiang, Liu Hailong, et al. Progress in the development and application of climate ocean models and ocean-atmosphere coupled models in China[J]. Advances in Atmospheric Sciences, 2007, 24(6):729-738.
[4] Zou Liwei, Zhou Tianjun. A review of development and application of regional ocean-atmosphere coupled model[J]. Advances in Earth Science, 2012, 27(8):857-865. [邹立维, 周天军. 区域海气耦合模式研究进展[J]. 地球科学进展, 2012, 27(8):857-865. ]
[5] Vertenstein M, Craig T, Middleton A, et al. CESM-1. 0. 4 User’s guide[R/OL]. Boulder: National Center for Atmospheric Research, 2012. [2013-12-22]. http:∥www. cesm. ucar. edu/models/cesm1. 0/cesm/cesm_doc_1_0_4/book1. Html.
[6] Lawrence D M, Oleson K W, Flanner M G, et al. Parameterization improvements and functional and structural advances in version 4 of the community land model[J]. Journal of Advances in Modeling Earth Systems, 2011, 3(1):1-27, doi:10. 1029/2011MS00045.
[7] Lipscomb W H, Hunke E C, Maslowski W, et al. Ridging, strength, and stability in high-resolution sea ice models[J]. Journal of Geophysical Research: Oceans(1978-2012), 2007, 112(C3), doi:10. 1029/2005JC003355.
[8] Smith R, Gent P, Briegleb B, et al. The Parallel Ocean Program (POP) reference manual[R]∥Technical Report LAUR-10-01853. Los Alamos: Los Alamos National Laboratory, 2010.
[9] Zhou Tianjun, Yu Yongqiang, Yu Rucong, et al. Coupled climate system model coupler review[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(6):993-1 008, doi:10. 3878/j. issn. 1006-9895. 2004. 06. 16. [周天军, 俞永强, 宇如聪, 等. 气候系统模式发展中的耦合器研制问题[J]. 大气科学, 2004, 28(6):993-1 008, doi:10. 3878/j. issn. 1006-9895. 2004. 06. 16. ]
[10] Dowd K, Severance C R, Loukides M K. High Performance Computing[M]. California: O’Reilly, 1998.
[11] Danabasoglu G, Bates S C, Briegleb B P, et al. The CCSM4 ocean component[J]. Journal of Climate, 2012, 25(5): 1 361-1 389.
[12] Zeng Qingcun, Lin Zhaohui. Recent progress on the Earth system dynamical model and its numerical simulations[J]. Advances in Earth Science, 2010, 25(1): 1-6. [曾庆存, 林朝晖. 地球系统动力学模式和模拟研究的进展[J]. 地球科学进展, 2010, 25(1): 1-6. ]
[13] Pu Ye, Li Lijuan. The application of thousands of CPU cores in high resolution Earth system model[J]. e-Science Technology & Application, 2010, 1(4): 69-75. [普业, 李立娟. 高分辨地球系统模式的千核应用[J]. 科研信息化技术与应用, 2010, 1(4): 69-75. ]
[14] Wang Bin. A typical type of high-performance computation: Earth system modeling[J]. Physics, 2009, 38(8):569-574. [王斌. 一种典型的高性能计算: 地球系统模拟[J]. 物理, 2009, 38(8):569-574. ]
[15] Wu Lixin, Chen Zhaohui. Progresses and challenges in observational studies of physical oceanography[J]. Advances in Earth Science, 2013, 28(5):542-551. [吴立新, 陈朝晖. 物理海洋观测研究的进展与挑战[J]. 地球科学进展, 2013, 28(5):542-551. ]
[1] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[2] 尹帅, 丁文龙, 杨文娜, 赵威, 张敏, 丛森. 考虑地层各向异性井壁稳定性研究进展[J]. 地球科学进展, 2015, 30(11): 1218-1230.
[3] 范留明, 耿鹏超. 突变理论在边坡工程应用的研究进展[J]. 地球科学进展, 2015, 30(11): 1268-1277.
[4] 刘首华,牟林,刘克修,王兴,李欢,高佳. 畸形波研究的进展及存在问题[J]. 地球科学进展, 2013, 28(6): 665-673.
[5] 马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.
[6] 宋到福,何登发. 断层相的概念及应用[J]. 地球科学进展, 2010, 25(9): 907-914.
[7] 蒋德明,董超华. 大气廓线物理反演的最优化方法进展[J]. 地球科学进展, 2010, 25(2): 133-139.
[8] 冉有华,李新,王维真,晋 锐. 黑河流域临泽盐碱化草地网格尺度多层土壤水分时空稳定性分析[J]. 地球科学进展, 2009, 24(7): 817-824.
[9] 王澄海,崔洋. 西北地区近50年降水周期的稳定性分析[J]. 地球科学进展, 2006, 21(6): 576-584.
[10] 孙波;解宪丽. 全球变化下土壤功能演变的响应和反馈[J]. 地球科学进展, 2005, 20(8): 903-909.
[11] 于贵瑞;王绍强;陈泮勤;李庆康. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577.
[12] 林万涛;董文杰. 计算地球流体力学的回顾、进展及展望[J]. 地球科学进展, 2004, 19(4): 599-604.
[13] 妥进才. 深层油气研究现状及进展[J]. 地球科学进展, 2002, 17(4): 565-571.
[14] 刘妙龙,李 乔,罗 敏. 地理计算——数量地理学的新发展[J]. 地球科学进展, 2000, 15(6): 679-683.
[15] 熊尚发,丁仲礼,刘东生. 第四纪气候变化机制研究的进展与问题[J]. 地球科学进展, 1998, 13(3): 265-272.