地球科学进展 ›› 2014, Vol. 29 ›› Issue (4): 475 -481. doi: 10.11867/j.issn.1001-8166.2014.04.0475

综述与评述 上一篇    下一篇

蒸发岩矿物单个流体包裹体成分测定方法研究进展
马黎春 1, 汤庆峰 2*, 张琪 1, 赵艳军 1, 孙小虹 3, 王鑫 1, 任彩霞 1   
  1. 1. 中国地质科学院矿产资源研究所, 国土资源部成矿作用与资源评价重点实验室, 北京 100037;
    2. 北京市理化分析测试中心, 北京 100089;
    3. 中化地质矿山总局化工地质调查总院, 北京 100013
  • 收稿日期:2014-01-28 出版日期:2014-04-10
  • 通讯作者: 汤庆峰(1976-), 男, 山东郓城人, 助理研究员, 主要从事仪器分析等相关研究. E-mail:bjtqf1009@126. com
  • 基金资助:

    国家自然科学基金青年科学基金项目“罗布泊盐湖原生石膏沉积与古湖水化学组分反演”(编号:41002028); 国家重点基础研究发展计划项目“成钾规律综合研究、资源预测指标体系与战略靶区预测”(编号:2011CB403007)资助.

Advances in Chemical Composition Determination of Individual Fluid Inclusions Trapped within Evaporite Minerals

Ma Lichun 1,Tang Qingfeng 2,Zhang Qi 1,Zhao Yanjun 1,#br# Sun Xiaohong 3,Wang Xin 1,Ren Caixia 1   

  1. 1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
    2. Beijing Centre for Physical &
    Chemical Analysis, Beijing 100089;
    3. Geological Prospecting Institute of China Chemical Geology and Mine Bureau, Beijing 100013
  • Received:2014-01-28 Online:2014-04-10 Published:2014-04-10

蒸发岩矿物流体包裹体, 作为古卤水地球化学信息的有效载体, 在反演古海洋、古湖泊成矿物质来源、水文地球化学演化过程中都具有十分重要的作用, 其提取和分析技术一直备受盐矿学者重视。综述了近年来盐类矿物单个流体包裹体成分测定的主要方法, 包括微钻—超微分析法、激光剥蚀电感耦合等离子体质谱法、扫描电镜—能谱法及激光拉曼光谱法, 对其测试流程、应用范围、分析精度及优缺点进行了对比和总结; 提出了多种方法交叉结合的应用思路, 以满足包裹体多元素定量分析的要求, 并对其应用前景提出了建议。

Fluid inclusions preserved within evaporite minerals, the reliable recorder of geochemical information of paleo-brines, play an important role in tracing the source of ore-formation material and reconstructing the hydro-geochemical evolution history of paleo-sea/lake. Salt-mine geologists have paid more attention to extractive and determinative techniques. In this paper, the authors summarized recent progresses in the chemical analysis techniques of individual fluid inclusions, including Ultra-micro-chemical Analysis(UMCA),Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS),Scanning Electron Microscopy with an Attached Energy Dispersive Spectrometer(SEM-EDS)and Laser Raman Microspectroscopy (LRM), and their determinative procedure,application area,analysis accuracy,advances and disadvances. The traditional Ultra-micro-chemical Analysis can be used to determine the concentration of K, Mg, Ca, and SO4, but not the concentration of sodium or chloride in the fluid inclusions. Futhermore, this fluid inclusion extraction requires relatively large inclusions which likely formed during recrystallization.The uncertainty of the UMCA method is typically 10%~17% with 2~3 parallel test. The LA- ICP-MS method is able to analyse small individual inclusions (>10 μm) successfully with a wide range of ions, including major elements, low concentrations of minor and trace irons. The analytical error of this technique is 4%~20%.However the test results can only be reported as ionic ratios because the volume of an inclusion is unknown prior to analysis. The SEM-EDS technique can produce precise measurements of much smaller individual fluid inclusions (>15 μm) with precision of <10%. The detection limits for the SEM-EDS are typically on the order of 0.1 wt% to 1.0 wt%.The ESEM-EDS method is similar to SEM-EDS method, and the major difference is the instrument used for analysis. The precision of ESEM-EDS analysis is between 3% and 6% and the detection limits are 0.1 wt% for all the major irons except Na, which is 0.5 wt%. The Laser Raman Microspectroscopy method is unique nondestructive among all the techniques. It can be used to determine what covalent bonded complexes such as sulfate and bicarbonate. In order to obtain quantitative multi-element analysis data of fluid inclusions, the cross-comparison method of diverse measuring techniques was proposed in the future application.

中图分类号: 

[1] Melvin J L. Evaporites, Petroleum and Mineral Resources. Dev. in Sedimentology. Vol. 50[M]. Amsterdam:Elsevier Science Publishers, 1991.
[2] Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fluid Inclusions[M]. Beijing:Science Press, 2004. [卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京:地质出版社, 2004. ]
[3] Last W M, Smol J P, Birks H J. Tracking Environmental Change Using Lake Sediments: Volume 2: Physical and Geochemical Methods[M]. Dordrecht: Kluwer Academic Publisers, 2001.
[4] Roedder E. Fluid inclusions[C]∥Ribhe P H, ed. Reviews in Mineralogy, Vol. 12. Washington DC:Mineralogical Society of America, 1984.
[5] Goldstein R H, Reynolds T J. Systematics of fuid inclusions in diagenetic minerals[J]. SEPM Short Course, 1994, 31:199.
[6] Sun Xiaohong, Hu Mingyue, Liu Chenglin, et al. Composition determination of single fluid inclusions in salt minerals by Laser Ablation ICP-MS[J]. Chinese Journal of Analytical Chemistry, 2013, 41(2): 235-241.
[7] He Faming, Liu Shichang, Bai Chongqing, et al. Manual of Mineral Identification Method[M]. Beijing:Chemical Industry Press, 1988. [何法明, 刘世昌, 白崇庆, 等. 盐类矿物鉴定工作方法手册[M]. 北京:化学工业出版社, 1988. ]
[8] Brewster D. On the existence of two new fluids in the cavities of minerals, which are immiscible, and possess remarkable physical properties[J]. Edinburgh Philosophical Journal, 1823, 9:94-107.
[9] Nicol W. Observations on the fluids contained in crystallized minerals[J]. Edinburgh New Philosophical Journal, 1828, 5:94-96.
[10] Petrichenko I O. Methods of study of inclusions in minerals in saline deposits[J]. Fluid Inclusion Research, 1979, 12:114-274.
[11] Lazar B, Holland H D. The analysis of fluid inclusions in halite[J]. Geochimica et Cosmochimica Acta, 1988, 52:485-490.
[12] Shepherd T J, Chenery S R. Laser ablatiom ICP-MS elemental analysis of individual fluid inclusions: An evaluation study[J]. Geochimica et Cosmochimica Acta, 1995, 59:3 997-4 007.
[13] Ayora C, Fontarnau R. X-ray microanalysis of frozen fluid inclusion[J]. Chemical Geology, 1990, 89:135-148.
[14] Timofeeff M N, Lowenstein T K, Blackburn W H. ESEM-EDS:An improved technique for major chemical analysis of fluid inclusion[J]. Chemical Geology, 2000, 1 164:171-182.
[15] Rosasco G J, Roedder E. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals[J]. Geochimica et Cosmochimica Acta, 1979, 43:1 907-1 915.
[16] Pasteris J D, Wopenka B, Seitz J C. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1988, 52:979-988.
[17] Baumgartner M, Bakker R J. Raman spectra of ice and salt hydrates in synthetic fluid inclusions[J]. Chemical Geology, 2010, 275:58-66.
[18] Holser W T. Chemistry of brine inclusions in Permian salt from Hutchinson, Kansas[C]∥Bersticker A C, ed. Symposium on Salt. Ohia:Northern Ohio Geological Society, 1963:86-95.
[19] Holser W T. Trace elements and isotopes in evaporates[C]∥Burns R G, ed. Marine Minerals, Reviews in Mineralogy, V6. Washington DC:Mineralogical Society of America, 1979:295- 346.
[20] Lowenstin T K, Hardie L A. Criteria for the recognition of salt-pan evaporates[J]. Sedimentology, 1985, 32:627-644.
[21] Kovalevych V M, Marshall T, Peryt T M, et al. Chemical composition of seawater in Neoproterozoic:Results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia)[J]. Precambrian Research, 2006, 144(1):39-51.
[22] Oleh Y, Petrychenko, Peryt T M, et al. Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites[J]. Chemical Geology, 2005, 219:149-161.
[23] Das N J, Horita J, Holland H D. Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin: Implications for Late Silurian seawater and the origin of sedimentary brines[J]. Geochimica et Cosmochimica Acta, 1990, 54:319-327.
[24] Horita J, Weinberg A, Das N, et al. Brine inclusion in halite and the origin of the Middle Devonian Prairie evaporites of Western Canada[J]. Journal of Sedimentary Research, 1996, 66:956-964.
[25] Horita J, Friedman T J, Lazar B, et al. The compositon of Permian seawater[J]. Geochimica et Cosmochimica Acta, 1991, 55:417-432.
[26] Shepherd T J, Ayora C, Cendon D I, et al. Quantitative solute analysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS: Complementary microbeam techniques[J]. European Journal of Mineralogy, 1998, 10:1 097-1 108.
[27] Ghazi A M, Shuttleworth S. Trace element determination of single fluid inclusions by laser ablation ICP-MS: Applications for halite from sedimentary basins[J]. The Analyst, 2000, 125(1):205-210.
[28] Kelly W C, Burgio P A. Cryogenic scanning electron microscopy of fluid inclusions in ore and gangue minerals[J]. Economic Geology, 1983, 78:1 262-1 267.
[29] Ayora C, Garcia-Veigas J, Pueyo J J. The chemical and hydrological evolution of an ancient potash-forming evaporite basin in Spain as constrained by mineral sequence, fluid inclusion composition, and numerical simulation)[J]. Geochimica et Cosmochimica Acta, 1994, 58: 3 379-3 394.
[30] Ayora C, Garcia-Veigas J, Pueyo J J. X-ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins[J]. Geochimica et Cosmochimica Acta, 1994, 58:43-55.
[31] Fanlo I, Ayora C. The evolution of the Lorraine evaporite basin: Implications for the chemical and isotope composition of the Triassic ocean[J]. Chemical Geology, 1998, 146:135-154.
[32] Cendon D I, Ayora C, Pueyo J, et al. The chemical and hydrological evolution of the Mulhouse potash basin (France): Are“marine” ancient evaporites always representative of synchronous seawater chemistry?[J]. Chemical Geology, 2008, 252:109-124.
[33] Frezzottia M L, Tecceb F, Casagli A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 2012, 112:1-20.
[34] Mernagh T P, Wilde A R. The use of the Laser Raman microprobe for the determination of salinity in fluid inclusion[J]. Geochimica et Cosmochimica Acta, 1989, 53:765-771.
[35] Ding Junying, Ni Pei, Rao Bing, et al. Evaluation of the Laser Raman microprobe method for the determination of salinity in a single fluid inclusion by using synthetic fluid inclusions[J]. Geological Riview, 2004, 50(2):203-209. [丁俊英, 倪培, 饶冰, 等. 显微激光拉曼光谱测定单个包裹体盐度的实验研究[J]. 地质论评, 2004, 50(2):203-209. ]
[36] Ye Meifang, Wang Zhihai, Tang Nan’an. Quantitative analysis of several common anions in salt solutions using Laser Raman spectrometer[J]. Northwestern Geology, 2009, 42(3):120-126. [叶美芳, 王志海, 唐南安. 盐水溶液中常见阴离子团的激光拉曼光谱定量分析研究[J]. 西北地质, 2009, 42(3):120-126. ]
[37] Thomas R. Determination of the H 3BO 3 concentration in fluid and melt inclusions in granite pegmatites by Laser Raman microprobe spectroscopy[J]. American Mineralogist, 2002, 87:56-68.
[38] Dubessy J, Geisler D, Kosztolany C, et al. The determination of sulphate in fluid inclusions using the MOLE Raman microprobe—Application to a Keuper halite and geochemical consequences[J]. Geochimica et Cosmochimica Acta, 1983, 47:1-10.
[39] Bakker R J. Raman spectra of fluid and crystal mixtures in the system H 2O, H 2O-NaCl and H 2O-MgCl 2 at low temperatures: Applications to fluid inclusion research[J]. The Canadian Mineralogist, 2004, 42:1 283-1 314.
[40] Baumgartner M, Bakker R J. Raman spectroscopy of pure H 2O and NaCl-H 2O containing synthetic fluid inclusions in quartz—A study of polarization effects[J]. Mineralogy and Petrology, 2009, 95:1-15.
[41] Baumgartner M, Bakker R J. Raman spectroscopy of ice and salt hydrates in synthetic fluid inclusions[J]. Chemical Geology, 2010, 275:58-66.
[42] Derome D, Cathelineau M, Fabre C. Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: Application to mid-proterozoic evaporitic Na-Ca brines(Alligator Rivers Uranium Field, northern territories Australia)[J]. Chemical Geology, 2007, 237:240-254.
[43] Dubessy J, Audeoud D, Wilkins R, et al. The use of the Raman microprobe Mole in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions[J]. Chemical Geology, 1982, 37:137-150.
[44] Dubessy J, Boiron M C, Moissette A, et al. Determination of water, hydrate and pH in fluid inclusions by micro-Raman spectrometry[J]. European Journal of Mineralogy, 1992, 4:885-894.
[45] Sanmson I M, Walker R T. Cryogenic Raman spectroscopic studies in the system Na-CaCl 2-H 2O and implications for low-temperature phase behaviour in aqueous fluid inclusions[J]. Canadian Mineralogist, 2000, 38:35-43.
[46] Cao Qing, Zhao Jingzhou, Zhao Xiaohui, et al. Characteristics and significance of fluid inclusions from Majiagou Formation, Yichuan-Huangling area, Ordos Basin[J]. Advances in Earth Science, 2013, 28(7):819-828. [曹青, 赵靖舟, 赵小会, 等. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7):819-828. ]
[47] Kovalevych V M, Carmona V, Pueyo J J, et al, Ultramicrochemical Analyses (UMCA) and Cryogenic Scanning Electron Microscopy (Cryo-SEM-EDS) of brines in halite-hosted fluid inclusions: A comparative study of analytical data[J]. Geochemistry International, 2005, 43:268-276.
[48] Zhang Chengjiang, Xu Zhengqi, Ni Shijun, et al. Genesis of potassium bearing brine in Pingluoba structure region, Western Sichun Depression[J]. Advances in Earch Science, 2012, 27(10):1 054-1 060. [张成江, 徐争启, 倪师军, 等. 川西坳陷平落坝构造富钾卤水成因探讨[J]. 地球科学进展, 2012, 27(10):1 054-1 060. ]
[1] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[2] 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
[3] 潘安阳, 杨群慧, 周怀阳, 王虎, 季福武. 深海溶解态锰和铁的原位分析技术研究进展[J]. 地球科学进展, 2013, 28(4): 420-428.
[4] 周爱国,李小倩,刘存富,周建伟,蔡鹤生,余婷婷. 氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J]. 地球科学进展, 2008, 23(4): 342-349.
[5] 王毅民,王晓红,高玉淑. 地球科学中的现代分析技术[J]. 地球科学进展, 2003, 18(3): 476-482.
[6] 赵德华,李建龙,宋子键. 高光谱技术提取植被生化参数机理与方法研究进展[J]. 地球科学进展, 2003, 18(1): 94-099.
[7] 叶宗怀 邓仁达 徐兴新. 地物光谱的颜色分析技术及其在颜色装饰生产中的开发应用[J]. 地球科学进展, 1992, 7(3): 80-.
阅读次数
全文


摘要