地球科学进展 ›› 2016, Vol. 31 ›› Issue (7): 751 -763. doi: 10.11867/j.issn.1001-8166.2016.07.0751.

研究论文 上一篇    下一篇

孙寅森 1, 2, 3, 郭少斌 1, 2   
  1. 1. 中国地质大学能源学院, 北京 100083;
    2.页岩气勘查与评价国土资源部重点实验室, 北京 100083;
    3.中石油长城钻探工程有限公司解释研究中心, 北京 100083
  • 收稿日期:2016-05-13 修回日期:2016-06-20 出版日期:2016-07-10
  • 基金资助:

Qualitative and Quantitative Characterization of Shale Microscopic Pore Characteristics Based on Image Analysis Technology

Sun Yinsen 1, 2, 3, Guo Shaobin 1, 2   

  1. 1.School of Energy Resources, China University of Geosciences, Beijing 100083, China;
    2.Key Laboratory of Shale Gas Exploration and Evaluation,Ministry of Land and Resources,Beijing 100083,China;
    3.Geoscience Center of CNPC Greatwall Drilling Company, Beijing 100083, China
  • Received:2016-05-13 Revised:2016-06-20 Online:2016-07-10 Published:2016-07-10
  • Supported by:
    Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China “Different types of shale gas generation mechanism and the enrichment regularity of research”(No.2016ZX05034-001)
在有限的条件下,为了更经济有效地评价页岩微观孔隙特征,同时利用扫描电镜(SEM)、氩离子抛光场发射扫描电镜(FESEM)方法对四川盆地彭水地区龙马溪组页岩孔隙特征进行了定性观察,并借助专业的图像分析软件IamgeJ2x 提取页岩SEM和FESEM图像蕴含的孔隙定量信息,结合统计学方法分析页岩全孔径分布特征,计算页岩孔隙分形维数,探讨孔隙结构特征以及分析维数与有机碳含量、矿物成分、孔隙吸附能力等的相关性,研究发现:扫描电镜下,彭水地区龙马溪组页岩微米级孔隙发育,主要孔隙类型有粒间孔、黏土矿物层间孔、粒内孔以及微裂缝等;氩离子抛光场发射扫描电镜下,可见大量纳米级孔隙,主要发育有机质孔、无机矿物孔(黄铁矿晶间孔、粒内孔、黏土矿物层间孔、粒间孔等)和微裂缝,两者综合分析更有利于页岩孔隙定性表征;页岩孔隙全孔径分布特征呈4个主峰,主要分布区间为3~9 nm,10~40 nm,100~400 nm,1~4 μm;页岩有机质孔隙形状系数分布区间为0.9~1,孔隙呈圆形、近圆形,无机矿物孔形状系数分布在0.5~0.7,多呈三角形、多边形、狭缝形等,孔隙形状较有机质孔复杂,主要受页岩孔隙成因不同所致;彭水地区龙马溪组页岩孔隙符合分形特征,有机质孔隙分形维数较无机矿物孔分形维数小,孔隙结构相对简单;分形维数与有机质含量、矿物成分、孔隙度及吸附气含量都有一定的相关性,随有机质含量的增加,孔隙分形维数增加,孔隙结构复杂化,随分形维数增加,页岩孔隙的最大吸附气含量也随之增加,孔隙吸附能力增强。
In order to evaluate the shale microscopic pore characteristics more economically and effectively in limited circumstances, the pore characteristics of Longmaxi Formation in Pengshui area, Sichuan Basin, were qualitatively observed and analyzed with Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) with argon ion polishing method at the same time. Pore quantitative information were extracted from shale SEM and FESEM images with the help of a professional image analysis software IamgeJ2x, and combined with statistical methods, the whole pore size distribution as well as shale pore fractal dimension and the relevance between fractal dimension and organic matter content, mineral composition and pore adsorption capacity and the corresponding pore structure characteristics of Longmaxi Formation in Pengshui area were analyzed. The study shows that under SEM, there are mostly micro pores of Longmaxi Formation in Pengshui area. The main pore types include intergranular pore, clay mineral layer pore, intragranular pore and micro cracks, etc. Through argon ion polishing FESEM, there mainly develop nanoscale pores. The main pore types contain organic pore, inorganic mineral pore (pyrite intergranular pore, intragranular pore, clay mineral layer pore and intergranular pore, etc.) and micro cracks. The use of both of the two methords is more advantageous to qualitatively analyze shale pore. The whole pore size distribution of shale pore has four main peaks and the main distribution range is 3~10 nm, 10~40 nm, 100~400 nm, 1~4 μm, respectively. The shape factor of shale organic matter pore is distributed between 0.9~1 and inorganic mineral pore is distributed between 0.5~0.7. It shows that the organic matter pore is circular, nearly circular and inorganic mineral pore shape is triangle, polygon, slit shape and so on. The inorganic mineral pore shape is relativly complex because of the different pore causes. The shale pore of Longmaxi Formation in Pengshui area conforms to the fractal features, and the organic pore fractal dimension is smaller than that of inorganic mineral pore, showing that the organic matter pore structure is relatively simple. There is a certain relevance between fractal dimension and organic matter content, mineral composition, porosity, and adsorbed gas content. With the increase of the organic matter content, the shale pore fractal dimension increase, the pore structure characteristics become complicated. With the shale pore fractal dimension increasing, the biggest gas adsorption quantity increases and the ability of pore adsorption strengthens.


[1] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin ,2002, 86(11):1 921-1 938.
[2] Montgomery S L, Jarvie D M, Bowker K A, et al . Mississippian Barnett Shale, Fort Worth Basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potential[J]. AAPG Bulletin ,2005, 89(2):155-175.
[3] Jarvie D M, Hill R J, Ruble T E, et al . Unconventional shale gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermo genic shale-gas assessment[J]. AAPG Bulletin , 2007,91(4):475-499.
[4] Zhang Jinchuan, Nie Haikuan, Xu Bo, et al . Geological condition of shale gas accumulation in Sichuan Basin[J]. Natural Gas Industry , 2008,28(2):151-156.
. 天然气工业,2008,28(2):151-156.]
[5] Zhang Xuefen, Lu Xiancai, Zhang Linye, et al . Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science , 2010, 25(6): 597-604.
. 地球科学进展,2010,25(6):597-604.]
[6] Jiao Kun, Yao Suping, Wu Hao, et al .Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities , 2014,20(1):151-161.
[7] Zhang Linye, Li Juyuan, Li Zheng, et al . Advance in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science ,2014, 29(6):700-711.
[8] Zhang Panpan,Liu Xiaoping,Wang Yajie, et al .Research progress in shale nanopores[J]. Advances in Earth Science ,2014,29(11): 1 242-1 249.
.地球科学进展,2014,29(11):1 242-1 249.]
[9] Ju Yiwen, Bu Hongling, Wang Guochang. Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J]. Advances in Earth Science , 2014, 29(4):492-506.
.地球科学进展,2014, 29(4):492-506.]
[10] Xu Zuxin, Guo Shaobin. Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J]. Advances in Earth Science , 2014, 29(5):624-631.
.地球科学进展,2014, 29(5):624-631.]
[11] Fredrich J T, Menendez B, Wong T F.Imaging the pore structure of geomaterials[J]. Science , 1995,268(5 208): 276-279.
[12] Chen Huanqing, Cao Chen, Liang Shuxian, et al . Research advances on reservoir pores[J]. Natural Gas Geoscience , 2013,24(2):227-237.
[13] Peng Pan,Ning Zhengfu,Qi Lisha, et al .Research method of pore structure in tight reservoir[J]. Reservoir Evaluation and Development ,2014,4(1): 26-32.
[14] Sondergeld C H. Micro-structural Studies of Gas Shales[C]. SPE137693, 2010.
[15] Pu Boling,Dong Dazhong,Niu Jiayu, et al .Principal progresses in shale gas reservoir research[J]. Geological Science and Technology Information ,2014,33(2): 98-104.
[16] Ambrose R J,Hartman R C,Diaz-Campos M, et al .New pore-scale considerations for shale gas in place calculations[C]∥SPE Unconventional Gas Conference.Pittsburgh,Pennsylvania,USA,2010.
[17] Chalmers G R,Bustin R M,Power I M. Characterization of gas shale pore systems by porosimetry, pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J]. AAPG Bulletin ,2012,96(6):1 099-1 119.
[18] Curtis M E,Ambrose R J,Sondergeld C H, et al .Structural characterization of gas shales on the micro- and nano-scales[C]∥SPE Canadian Unconventional Resources and International Petroleum Conference.Calgary,Alberta,Canada,2010.
[19] Sondergeld C H, Ambrose R J,Rai C S, et al .Microstructural studies of gas shales[C]∥SPE Unconventional Gas Conference.Pittsburgh,Pennsylvania,USA,2010.
[20] Bai Bin,Zhu Rukai,Wu Songtao, et al . New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir[J]. China Petroleum Exploration ,2014,19(3):78-86.
.中国石油勘探,2014,19(3): 78-86.]
[21] Loucks R G,Reed R M,Ruppel S C, et al .Spectrum of pore types for matrix-related mud pores[J]. AAPG Bulletin ,2012,96(6):1 071-1 098.
[22] Loucks R G, Reed R M, Ruppel S C, et al . Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the mississippian barnett shale[J]. Journal of Sedimentary Research ,2009,79(12):848-861.
[23] Wang Yu,Jin Chan,Wang Lihua, et al .Characterization of pore structures of Jiulaodong Formation Shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis , 2015,34(3):278-285.
. 岩矿测试,2015,34(3):278-285.]
[24] Xue Bing, Zhang Jinchuan, Tang Xuan, et al .Characteristics of microscopic pore and gas accumulation on shale in Long Maxi Formation northwest Guizhou[J]. Acta Petrolei Sinica , 2015,36(2):138-149.
[25] Jin Yaxi, Cai Xiao,Yuan Yi, et al .Clay mineral characteristics and geological significance in Silurian Longmaxi Formation Shale, Southeastern Chongqing[J]. Coal Geology of China , 2015,27(2):21-35.
. 中国煤炭地质,2015,27(2):21-35.]
[26] Huang Lei,Shen Wei.Characteristics and controlling factors of the formation of pores of a shale gas reservoir: A case study from Longmaxi Formation of the Upper Yangtze region,China[J]. Earth Science Frontiers ,2015,22(1): 374-385.
.地学前缘,2015,22(1): 374-385.]
[27] Zhao Keying,Guo Shaobin. Characteristics and main controlling factors of shale gas reservoirs in transitional facies:A case study of Upper Paleozoic in Ordos Basin[J]. Petroleum Geology and Experiment , 2015,37(2):141-149.
.石油实验地质, 2015,37(2):141-149.]
[28] Dathe A, Eins S, Niemeyer J, et al . The surface fractal dimension of the soil-pore interface as measured by image analysis[J]. Geoderma ,2001,103(1/2): 203-229.
[29] Yang Feng, Ning Zhengfu, Wang Qing, et al . Fractal characteristics of Nanopore in shale[J]. Natural Gas Geoscience , 2014,25(4):618-623.
. 天然气地球科学,2014,25(4):618-623.]
[30] Voss R F,Laibowitz R B,Allesandrin E I. Fractal geometry of percolation in thin gold films[M]∥Pynn R: Skjeltorp A. Scaling phenomena in disordered systems. New York: Plenum Press,1985:279-288.
[31] Wang Xin, Qi Mei, Li Wuguang, et al . Micro-structure evaluation of shale gas reservoir based on fractal theory[J]. Natural Gas Geoscience , 2015,26(4):754-758.
[1] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[2] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[3] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[4] 琚宜文,戚宇,房立志,朱洪建,王国昌,王桂梁. 中国页岩气的储层类型及其制约因素[J]. 地球科学进展, 2016, 31(8): 782-799.
[5] 徐祖新, 郭少斌. 基于NMR和X-CT的页岩储层孔隙结构研究[J]. 地球科学进展, 2014, 29(5): 624-631.
[6] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
[7] 张盼盼, 刘小平, 王雅杰, 孙雪娇. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 2014, 29(11): 1242-1249.
[8] 崔景伟,邹才能,朱如凯,白斌,吴松涛,王拓. 页岩孔隙研究新进展[J]. 地球科学进展, 2012, 27(12): 1319-1325.
[9] 李艳青,佘振兵,马昌前. 石英SEM-CL微结构及其在岩石学中的应用[J]. 地球科学进展, 2011, 26(3): 325-331.
[10] 丁文龙,许长春,久凯,李超,曾维特,吴礼明. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.
[11] 张雪芬,陆现彩,张林晔,刘庆. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6): 597-604.
[12] 汪秉宏,郑兆苾,李东升,张军. 地震的多重分形统计特征研究[J]. 地球科学进展, 1997, 12(6): 535-540.