地球科学进展 ›› 2021, Vol. 36 ›› Issue (10): 1077 -1091. doi: 10.11867/j.issn.1001-8166.2021.094

矿产赋存进展 上一篇    下一篇

浅论造山型金矿中碳质黑色页岩的来源及其在金成矿过程中的作用
邓腾 1 , 2( ), 丁正鹏 1 , 2 , 3( ), 许德如 1 , 2   
  1. 1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013
    2.东华理工大学地球科学学院,江西 南昌 330013
    3.中山大学地球科学与工程学院,广东 珠海 519082
  • 收稿日期:2021-03-29 修回日期:2021-08-25 出版日期:2021-10-10
  • 通讯作者: 丁正鹏 E-mail:dengteng2015@126.com;z1pangding@gmail.com
  • 基金资助:
    国家自然科学基金项目“江南古陆金(多金属)大规模成矿的机理研究”(41930428);“江南造山带万古金矿床成矿流体活动的精细研究”(42002090)

Review of Origin and Role of Carbonaceous Black Shale in the Formation of Orogenic Gold Deposit

Teng DENG 1 , 2( ), Zhengpeng DING 1 , 2 , 3( ), Deru XU 1 , 2   

  1. 1.State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,China
    2.School of Earth Sciences,East China University of Technology,Nanchang 330013,China
    3.School of Earth Science and Engineering,Sun Yat-sen University,Zhuhai Guangdong 519082,China
  • Received:2021-03-29 Revised:2021-08-25 Online:2021-10-10 Published:2021-11-19
  • Contact: Zhengpeng DING E-mail:dengteng2015@126.com;z1pangding@gmail.com
  • About author:DENG Teng (1990-), male, Huaihua City, Hunan Province, Lecturer. Research areas include geochemistry. E-mail: dengteng2015@126.com
  • Supported by:
    the National Natural Science Foundation of China "Study on the mechanism of large-scale gold (polymetallic) mineralization in Jiangnan ancient land"(41930428);"Study on ore-forming fluid activity of Wangu gold deposit in Jiangnan orogenic belt"(42002090)

碳质黑色页岩形成于各个不同地质历史时期的海洋缺氧水体中,通常可视作潜在的成矿物质来源,目前对于碳质黑色页岩的研究主要集中在传统能源矿产领域,其与金矿床相关成矿机制的关联尚缺乏系统性的深入研究。在总结近10年造山型金矿中碳质黑色页岩研究成果的基础上,归纳前人对碳质黑色页岩的来源、形成环境和过程、地球化学特征以及其与造山型金矿化的成矿物质来源、元素迁移—活化—沉淀机制关系的认识:①碳质黑色页岩主要形成于海洋静闭极度缺氧环境;②碳质黑色页岩比普通黑色页岩更富集金、银、钼、钒、镍和铬等稀有金属;③碳质黑色页岩能够通过地层的区域变质运动释放金元素进入深部变质成矿流体;④碳质黑色页岩通常相对其他岩层在构造活动中更易形成容矿构造并作为强力还原剂导致金的沉淀;⑤碳质黑色页岩能够作为显著的找矿标志指导找矿。然而,这些认识不仅与造山型金矿床的传统成因模式存在一定的差异,而且也将引起传统找矿勘查评价准则的改变。目前,我国对于造山型金矿床中碳质物的研究仍较为薄弱,亟待开展该领域的研究,为找矿勘察工作提供科学依据。

Carbonaceous black shale formed in oceanic anoxic water during different geological history, and it can be regarded as a potential source of metallogenic material. Based on the results of the research on carbonaceous black shale in orogenic gold deposits in the past ten years, it is controversial whether carbonaceous black shale has a positive or no effect on the mineralization event of orogenic gold. However, it is increasingly evident that carbonaceous black shale plays an integral role in gold formation events. In this paper, we summarize the previous knowledge on the origin, formation environment and process, geochemical characteristics of carbonaceous black shale, and its relationship with the source of ore-forming materials and elemental migration-activation-precipitation mechanism of orogenic gold mineralization. The conclusions are as follows: ① Carbonaceous black shale mainly forms from the oceanic static closed extremely anoxic environment. ② Carbonaceous black shale is richer in gold and mineralization than ordinary black shale. ③ Carbonaceous black shale is richer in gold, silver, molybdenum, vanadium, nickel, chromium and other rare metals than ordinary black shale. ④Carbonaceous black shale can release Au+ into deep metamorphic ore-bearing fluids through regional metamorphic events of strata. Carbonaceous black shale is commonly more likely to form ore-hosting structures and acts as powerful reducing agent to lead to gold precipitation during tectonic activities than other rock formations. ⑤Carbonaceous black shale can be used as significant mineralization markers to guide mineralization search. These phenomena are usually observed in most orogenic gold deposits, yet are not only different from the traditional genesis model of orogenic gold deposits, but also will cause the change of the traditional exploration and evaluation criteria. At present, the research on carbonaceous material in orogenic gold deposits in China is still weak. The role of carbonaceous black shale in gold mineralization events has been overlooked or grossly underestimated and it is urgent to carry out research in this field to provide scientific basis for the search and exploration work.

中图分类号: 

图1 黑色页岩露头(来源自维基百科共享资源)
Fig. 1 Outcrop of black shale from Wikimedia Commons
图2 大洋缺氧事件沉积黑色页岩模式图(据参考文献[ 53 ]修改)
Fig. 2 Schematic diagram of the formation of black shale in the Oceanic Anoxic Events modified after reference 53 ])
图3 华南地区多金属碳质黑色页岩矿床分布图(据参考文献[ 63 ]修改)
Fig. 3 Distribution map of polymetallic carbonaceous black shale deposits in South China modified after reference 63 ])
图4 海洋洋底金属沉积模式图解(据参考文献[ 53 ]修改)
(a)深海热液贡献金属示意图;(b)海洋生物贡献金属示意图
Fig. 4 Metal sedimentary model diagram in seafloor modified after reference 53 ])
(a) Schematic diagram of contribution of deep-sea hydrothermal metals; (b) Schematic diagram of contribution of marine life metals
图5 金在沉积黄铁矿中的迁移模式图(据参考文献[ 85 ]修改)
Fig. 5 Schematic diagram of gold transform model via sediment pyrite modified after reference 85 ])
图6 变质流体迁移图解(据参考文献[ 67 ]修改)
Fig. 6 Schematic diagram of transport process of metamorphic fluid modified after reference 67 ])
图 7 造山型金矿成矿过程热力学模拟图解(据参考文献[ 75 ]修改)
Fig. 7 Simulation diagram of ore-forming process in orogenic gold deposit modified after reference 75 ])
图8 碳质黑色页岩形成及参与成矿过程示意图(据参考文献[ 29 ]修改)
Fig. 8 Schematic diagram of the formation and participation of carbonaceous black shale in the mineralization processmodified after reference 29 ])
1 LEHMANN B, FREI R, XU L, et al. Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze platform, China: reconnaissance chromium isotope data and a refined metallogenic model[J]. Economic Geology, 2016, 111(1): 89-103.
2 SU W, HUFF W D, ETTENSOHN F R, et al. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, south China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze block and its implications for the evolution of Gondwana[J]. Gondwana Research, 2009, 15(1): 111-130.
3 JIANG S, YANG J, LING H, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in lower Cambrian black shales of south China: an Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 217-228.
4 ZHU J M, ZHENG B S. Modes of occurrence of selenium in the black Se-rich rocks of Yutangba and its impact on the local environment[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2002, 19(2): 219-221.
5 PETSCH S T, EDWARDS K J, EGLINTON T I. Microbial transformations of organic matter in black shales and implications for global biogeochemical cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 157-170.
6 KONTINEN A, HANSKI E. The Talvivaara Black Shale-Hosted Ni-Zn-Cu-Co deposit in eastern Finland[M]// Mineral deposits of Finland. Finland: Elsevier, 2015: 557-612.
7 TRABUCHO-ALEXANDRE J, HAY W W, De BOER P L. Phanerozoic environments of black shale deposition and the Wilson cycle[J]. Solid Earth, 2012, 3(1): 29-42.
8 HERBERT T D, FISCHER A G. Milankovitch climatic origin of mid-cretaceous black shale rhythms in Central Italy[J]. Nature, 1986, 321(6 072): 739-743.
9 GREGORY D D, LARGE R R, HALPIN J A, et al. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110(6): 1 389-1 410.
10 VÄSTI K. Chemical composition of metamorphosed black shale and carbonaceous metasedimentary rocks at selected targets in the vihanti area, Western Finland [M]. Finland: Geological Survey of Finland, 2008: 173.
11 ORBERGER B, VYMAZALOVA A, WAGNER C, et al. Biogenic origin of intergrown Mo-sulphide-and carbonaceous Matter in lower Cambrian black shales (Zunyi Formation, southern China)[J]. Chemical Geology, 2007, 238(3/4): 213-231.
12 VEARNCOMBE S, BARLEY M E, GROVES D I, et al. 3.26 Ga black smoker-type mineralization in the Strelley Belt, Pilbara Craton, Western Australia[J]. Journal of the Geological Society, 1995, 152(4): 587-590.
13 BRUMSACK H. The trace metal content of recent organic carbon-rich sediments: implications for cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/4): 344-361.
14 STOW D, HUC A, BERTRAND P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4): 491-498.
15 HUCKRIEDE H, MEISCHNER D. Origin and environment of manganese-rich sediments within black-shale basins[J]. Geochimica et Cosmochimica Acta, 1996, 60(8): 1 399-1 413.
16 VINE J D, TOURTELOT E B. Geochemistry of black shale deposits—a summary report[J]. Economic Geology, 1970, 65(3): 253-272.
17 WANG Yuman, DONG Dazhong, LI Jianzhong, et al. Characteristics of shale gas reservoirs in the Longmaxi Formation of lower Silurian in Southern Sichuan[J]. Acta Petroleum, 2012, 33(4): 551-561.
王玉满, 董大忠, 李建忠, 等. 川南下志留统龙马溪组页岩气储层特征[J]. 石油学报, 2012, 33(4): 551-561.
18 NIE Haikuan, ZHANG Jinchuan, LI Yuxi. Accumulation conditions of lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Acta Petroleum, 2011, 32(6): 959-967.
聂海宽, 张金川, 李玉喜. 四川盆地及其周缘下寒武统页岩气聚集条件[J]. 石油学报, 2011, 32(6): 959-967.
19 ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. The formation mechanism, geological characteristics and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
20 ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Shale oil formation mechanism, geological characteristics and development countermeasures[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26.
21 STEADMAN J A, LARGE R R, MEFFRE S, et al. Syn sedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile Deposit, Kalgoorlie, Western Australia[J]. Economic Geology, 2015, 110(5): 1 157-1 191.
22 YE Jie, FAN Delian. The formation of black rock series deposits and their production characteristics in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2000 (2): 95-102.
叶杰, 范德廉. 黑色岩系型矿床的形成作用及其在我国的产出特征[J]. 矿物岩石地球化学通报, 2000 (2): 95-102.
23 LOUKOLA-RUSKEENIEMI K, HEINO T. Geochemistry and genesis of the black shale-hosted Ni-Cu-Zn deposit at Talvivaara, Finland[J]. Economic Geology, 1996, 91(1): 80-110.
24 CHENG Yuqi, CHEN Yuchuan, ZHAO Yiming, et al. Re-discussion on the series of ore deposits[J]. Journal of Chinese Academy of Geological Sciences, 1983, 1(2): 1-64.
程裕淇, 陈毓川, 赵一鸣, 等. 再论矿床的成矿系列问题[J]. 中国地质科学院院报, 1983, 1(2): 1-64.
25 HU Ruizhong, WEN Hanjie, YE Lin, et al. Mineralization of key metal elements in the southwestern part of Yangtze Block[J]. Chinese Science Bulletin, 2020, 65(33): 3 700-3 714.
胡瑞忠, 温汉捷, 叶霖, 等. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报, 2020, 65(33): 3 700-3 714.
26 WANG Jian. Uranium polymetallic geochemistry and mineralization of black rock series in northwestern Hunan[D]. Beijing: Beijing Geological Research Institute of Nuclear Industry, 2020.
王健. 湘西北黑色岩系铀多金属地球化学特征及成矿作用[D]. 北京:核工业北京地质研究院, 2020.
27 HU S, EVANS K, CRAW D, et al. Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks, New Zealand[J]. Ore Geology Reviews, 2015, 70: 80-95.
28 ROBERT A M, GROTHEER H, GREENWOOD P F, et al. The Hydropyrolysis (HyPy) release of hydrocarbon products from a high maturity kerogen associated with an orogenic au deposit and their relationship to the mineral matrix[J]. Chemical Geology, 2016, 425: 127-144.
29 DING Z, DENG T, XU D, et al. Genesis of two types of carbonaceous material associated with gold mineralization in the Bumo deposit, Hainan Province, South China[J]. Minerals, 2020, 10(8): 708.
30 WU Y, EVANS K, FISHER L A, et al. Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system[J]. Geochimica et Cosmochimica Acta, 2020, 276: 345-362.
31 XU D, WANG Z, WU C, et al. Mesozoic gold mineralization in Hainan Province of South China: genetic types, geological characteristics and geodynamic settings[J]. Journal of Asian Earth Sciences, 2017, 137: 80-108.
32 KŘÍBEK B, SÝKOROVÁ I, MACHOVIČ V, et al. The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa[J]. Precambrian Research, 2015, 270: 300-317.
33 WIGNALL P B, NEWTON R. Black shales on the basin margin: a model based on examples from the upper Jurassic of the Boulonnais, Northern France[J]. Sedimentary Geology, 2001, 144(3/4): 335-356.
34 MÄRZ C, POULTON S W, BECKMANN B, et al. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3 703-3 717.
35 CLARKE J M, LUTHER D D. Stratigraphic and Paleontologic map of Canandaigua and Naples Quadrangles[M]. New York:University of the State of New York, 1904.
36 LEVER M A, ALPERIN M, ENGELEN B, et al. Trends in basalt and sediment core contamination during IODP expedition 301[J]. Geomicrobiology Journal, 2006, 23(7): 517-530.
37 SCHLANGER S O, JENKYNS H C. Cretaceous oceanic anoxic events: causes and consequences [J]. Netherlands Journal of Geosciences, 2007, 55(3/4): 179-184.
38 JSCHOUTEN S, WOLTERING M, RIJPSTRA W I C, et al. The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: differential fractionation of angiosperms and conifers in the Arctic[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 581-592.
39 CARR S A, MILLS C T, MANDERNACK K W. The use of amino acid indices for assessing organic matter quality and microbial abundance in deep-sea Antarctic sediments of IODP expedition 318[J]. Marine Chemistry, 2016, 186: 72-82.
40 BIDDLE J F, WHITE J R, TESKE A P, et al. Metagenomics of the subsurface Brazos-trinity basin (IODP Site 1320): comparison with other sediment and pyro sequenced metagenomes[J]. The ISME Journal, 2011, 5(6): 1 038-1 047.
41 WEHRMANN L M, RISGAARD-PETERSEN N, SCHRUM H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the Northeastern Bering Sea Slope (IODP Exp. 323)[J]. Chemical Geology, 2011, 284(3/4): 251-261.
42 JARVIS I, LIGNUM S, GROCKE R, et al. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian oceanic anoxic event [J]. Palaeoceanography, 2011, 26(3). DOI:10.1029/2010PA002081.
43 SCHWARK L, FRIMMEL A. chemo stratigraphy of the Posidonia black shale, SW-Germany: II. assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distributions[J]. Chemical Geology, 2004, 206(3/4): 231-248.
44 WILKIN R T, ARTHUR M A, DEAN W E. History of water-column anoxia in the black sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 517-525.
45 LYONS T W, SEVERMANN S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5 698-5 722.
46 SCOTT C, WING B A, BEKKER A, et al. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir[J]. Earth and Planetary Science Letters, 2014, 389: 95-104.
47 MÄND K, LALONDE S V, ROBBINS L J, et al. Palaeoproterozoic oxygenated oceans following the Lomagundi-Jatuli Event[J]. Nature Geoscience, 2020, 13(4): 302-306.
48 ANBAR A D, DUAN Y, LYONS T W, et al. A whiff of oxygen before the Great Oxidation Event?[J]. Science, 2007, 317(5 846): 1 903-1 906.
49 KENDALL B S, CREASER R A, ROSS G M, et al. Constraints on the timing of marinoan "Snowball Earth" glaciation by 187Re-187Os Dating of a Neoproterozoic, post-glacial black shale in Western Canada[J]. Earth and Planetary Science Letters, 2004, 222(3/4): 729-740.
50 ZHANG S, ZHAO Y, YANG Z, et al. The 1.35 Ga diabase sills from the northern North China Craton: implications for breakup of the Columbia (Nuna) supercontinent[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 588-600.
51 GREENTREE M R, LI Z, LI X, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the sibao orogenesis in Western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151(1/2): 79-100.
52 LECKIE R M, BRALOWER T J, CASHMAN R. Oceanic Anoxic Events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 2002, 17(3): 11-13.
53 ARMSTRONG J G, PARNELL J, BULLOCK L A, et al. Tellurium, selenium and cobalt enrichment in Neoproterozoic black shales, Gwna Group, UK: deep marine trace element enrichment during the second Great Oxygenation Event[J]. Terra Nova, 2018, 30(3): 244-253.
54 JENKYNS H C. Geochemistry of oceanic anoxic events [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3). DOI: 10.1029/2009GC002788.
55 CONDIE K C, Des MARAIS D J, ABBOTT D. Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates?[J]. Precambrian Research, 2001, 106(3/4): 239-260.
56 KORTE C, HESSELBO S P, ULLMANN C V, et al. Jurassic climate mode governed by ocean gateway[J]. Nature Communications, 2015, 6(1): 1-7.
57 COVENEY R, PASAVA J. Origins of Au-Pt-Pd-bearing Ni-Mo-As-(Zn) deposits hosted by Chinese black shales[C]// Mineral deposit research: meeting the global challenge. Springer, 2005: 101-102.
58 Huyck H L. When is a metalliferous black shale, not a black shale? [M]. Virginia: U.S. Geological Survey,1990: 42-56.
59 YANG Jian. Research on the formation environment and geochemistry of the lower Cambrian black rock series in northern Guizhou[D]. Xi'an: Changan University, 2009.
杨剑. 黔北地区下寒武统黑色岩系形成环境与地球化学研究[D]. 西安:长安大学, 2009.
60 BOYONG Y, BIN H U, ZHENGYU B, et al. REE Geochemical characteristics and depositional environment of the black shale-hosted Baiguoyuan Ag-V Deposit in Xingshan, Hubei Province, China[J]. Journal of Rare Earths, 2011, 29(5): 499-506.
61 QINGFEI W, JUN D, LI W, et al. Multifractal analysis of element distribution in skarn‐type deposits in the Shizishan ore field, Tongling area, Anhui Province, China[J]. Acta Geologica Sinica‐English Edition, 2008, 82(4): 896-905.
62 LONG H, LONG H, NEKVASIL H, et al. Mineralogy and geochemistry of vanadium-bearing black shales at Zhangcun and Zhengfang, eastern Jiangxi Province, China[C]//AGU Fall Meeting Abstracts, 2001: V12D-V1017D.
63 FREI R, LEHMANN B, XU L, et al. Surface water oxygenation and bioproductivity-a link provided by combined chromium and cadmium isotopes in early Cambrian metalliferous black shales (Nanhua Basin, South China)[J]. Chemical Geology, 2020, 552: 119785.
64 ORBERGER B, PASAVA J, GALLIEN J P, et al. Se, As, Mo, Ag, Cd, in, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulfides from black shales (Selwyn Basin, Yukon Territories, Canada): a nuclear microprobe study[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 210: 441-448.
65 BOTTOMS B, POTRA A, SAMUELSEN J R, et al. Geochemical investigations of the wood ford-Chattanooga and Fayetteville shales: implications for genesis of the Mississippi Valley-Type zinc-lead ores in the southern Ozark Region and hydrocarbon exploration[J]. AAPG Bulletin, 2019, 103(7): 1 745-1 768.
66 MCCREADY A J, STUMPFL E F, LALLY J H, et al. Polymetallic mineralization at the browns deposit, Rum Jungle mineral field, Northern Territory, Australia[J]. Economic Geology, 2004, 99(2): 257-277.
67 LARGE R, THOMAS H, CRAW D, et al. Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2012, 55(2): 137-149.
68 THOMAS H V, LARGE R R, BULL S W, et al. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: insights for ore genesis[J]. Economic Geology, 2011, 106(1): 1-31.
69 LARGE R R, DANYUSHEVSKY L, HOLLIT C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style Sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668.
70 MOSSMAN D J, GAUTHIER-LAFAYE F, JACKSON S E. Black Shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon[J]. Precambrian Research, 2005, 137(3/4): 253-272.
71 BIERLEIN F P, CARTWRIGHT I, MCKNIGHT S. The role of carbonaceous "indicator" slates in the genesis of lode gold mineralization in the western Lachlan Orogen, Victoria, Southeastern Australia[J]. Economic Geology, 2001, 96(3): 431-451.
72 ARTHUR M A, SAGEMAN B B. Marine black shales: depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 499-551.
73 PERKINS R B, MASON C E. The relative mobility of trace elements from short-term weathering of a black Shale[J]. Applied Geochemistry, 2015, 56: 67-79.
74 HU S, BARNES S J, PAGES A, et al. Life on the edge: microbial biomineralization in an arsenic-and lead-rich deep-sea hydrothermal vent[J]. Chemical Geology, 2020, 533: 119438.
75 HU S, EVANS K, CRAW D, et al. Resolving the role of carbonaceous material in gold precipitation in metasediment-hosted orogenic gold deposits[J]. Geology, 2017, 45(2): 167-170.
76 GOLDFARB R J, GROVES D I. Orogenic gold: common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26.
77 FU B, KENDRICK M A, FAIRMAID A M, et al. New constraints on fluid sources in orogenic gold deposits, Victoria, Australia[J]. Contributions to Mineralogy and Petrology, 2012, 163(3): 427-447.
78 GREGORY D D, LARGE R R, BATH A B, et al. Trace element content of pyrite from the kapai slate, St. Ives Gold district, Western Australia[J]. Economic Geology, 2016, 111(6): 1 297-1 320.
79 LARGE R R, BULL S W, MASLENNIKOV V V. A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits[J]. Economic Geology, 2011, 106(3): 331-358.
80 GROVES D I, SANTOSH M. The giant Jiaodong Gold Province: the key to a unified model for orogenic gold deposits?[J]. Geoscience Frontiers, 2016, 7(3): 409-417.
81 GROSOVSKY B D. Microbial role in Witwatersrand gold deposition [M]. Netherlands: Springer, 1983: 495-498.
82 ZHANG Jingrong, LU Jianjun, YANG Fan. Bacteria enrichment of gold experiment and its geochemical significance[J]. Geological Review, 1996 (5): 434-438.
张景荣, 陆建军, 杨帆. 细菌富集金的实验及其地球化学意义[J]. 地质论评, 1996 (5): 434-438.
83 VARSHAL G M, VELYUKHANOVA T K, CHKHETIYA D N, et al. Sorption on humic acids as a basis for the mechanism of primary accumulation of gold and platinum group elements in black shales[J]. Lithology and Mineral Resources, 2000, 35(6): 538-545.
84 ZHU Xiaoqing, HUANG Yan, ZHANG Qian, et al. Experimental research and significance of selective adsorption of silver and gold[J]. Mineral Deposits, 2005 (4): 445-450.
朱笑青, 黄艳, 张乾, 等. 银和金的选择吸附实验研究及意义[J]. 矿床地质, 2005 (4): 445-450.
85 HU S. The role of carbonaceous materi in the formation of Macraes orogenic gold deposit, New Zealand[D]. Perth Curtin University, 2016.
86 LU Huangzhang, CHI Guoxiang, ZHU Xiaoqing, et al. Geological characteristics and ore-forming fluids of orogenic gold deposits[J]. Geotectonica et Metallogenia, 2018, 42(2): 244-265.
卢焕章, 池国祥, 朱笑青, 等. 造山型金矿的地质特征和成矿流体[J]. 大地构造与成矿学, 2018, 42(2): 244-265.
87 ZHOU Y, XU D, DONG G, et al. The role of structural reactivation for gold mineralization in northeastern Hunan Province, South China[J]. Journal of Structural Geology, 2021, 145: 104306.
88 QIU Zhengjie, FAN Hongrui, CONG Peizhang, et al. Research progress on the metallogenic process of orogenic gold deposits[J]. Mineral Deposit Geology Exhibition, 2015, 34(1): 21-38.
邱正杰, 范宏瑞, 丛培章, 等. 造山型金矿床成矿过程研究进展[J]. 矿床地质, 2015, 34(1): 21-38.
89 TOMKINS A G. On the source of orogenic gold[J]. Geology, 2013, 41(12): 1 255-1 256.
90 CRAW D, BURRIDGE C P, UPTON P, et al. Evolution of biological dispersal corridors through a tectonically active mountain range in New Zealand[J]. Journal of Biogeography, 2008, 35(10): 1 790-1 802.
91 SHVAROV Y V. HCH: new potentialities for the thermodynamic simulation of geochemical systems offered by windows[J]. Geochemistry International, 2008, 46(8): 834.
92 OHMOTO H, GOLDHABER MB. Sulfur and carbon isotopes, geochemistry of hydrothermal ore deposits [M]. New York: Wiley, 1997: 517-611.
[1] 孙华山,杨辉. 远喷口型 SEDEX铅锌矿床最新研究进展及发展趋势[J]. 地球科学进展, 2021, 36(7): 663-670.
[2] 李荣西, 毛景文, 赵帮胜, 陈宝赟, 刘淑文. 烃类流体在 MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.
[3] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[4] 冯军;李江海;牛向龙. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展, 2005, 20(7): 732-739.
阅读次数
全文


摘要