1 |
LEHMANN B, FREI R, XU L, et al. Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze platform, China: reconnaissance chromium isotope data and a refined metallogenic model[J]. Economic Geology, 2016, 111(1): 89-103.
|
2 |
SU W, HUFF W D, ETTENSOHN F R, et al. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, south China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze block and its implications for the evolution of Gondwana[J]. Gondwana Research, 2009, 15(1): 111-130.
|
3 |
JIANG S, YANG J, LING H, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in lower Cambrian black shales of south China: an Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 217-228.
|
4 |
ZHU J M, ZHENG B S. Modes of occurrence of selenium in the black Se-rich rocks of Yutangba and its impact on the local environment[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2002, 19(2): 219-221.
|
5 |
PETSCH S T, EDWARDS K J, EGLINTON T I. Microbial transformations of organic matter in black shales and implications for global biogeochemical cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 157-170.
|
6 |
KONTINEN A, HANSKI E. The Talvivaara Black Shale-Hosted Ni-Zn-Cu-Co deposit in eastern Finland[M]// Mineral deposits of Finland. Finland: Elsevier, 2015: 557-612.
|
7 |
TRABUCHO-ALEXANDRE J, HAY W W, De BOER P L. Phanerozoic environments of black shale deposition and the Wilson cycle[J]. Solid Earth, 2012, 3(1): 29-42.
|
8 |
HERBERT T D, FISCHER A G. Milankovitch climatic origin of mid-cretaceous black shale rhythms in Central Italy[J]. Nature, 1986, 321(6 072): 739-743.
|
9 |
GREGORY D D, LARGE R R, HALPIN J A, et al. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110(6): 1 389-1 410.
|
10 |
VÄSTI K. Chemical composition of metamorphosed black shale and carbonaceous metasedimentary rocks at selected targets in the vihanti area, Western Finland [M]. Finland: Geological Survey of Finland, 2008: 173.
|
11 |
ORBERGER B, VYMAZALOVA A, WAGNER C, et al. Biogenic origin of intergrown Mo-sulphide-and carbonaceous Matter in lower Cambrian black shales (Zunyi Formation, southern China)[J]. Chemical Geology, 2007, 238(3/4): 213-231.
|
12 |
VEARNCOMBE S, BARLEY M E, GROVES D I, et al. 3.26 Ga black smoker-type mineralization in the Strelley Belt, Pilbara Craton, Western Australia[J]. Journal of the Geological Society, 1995, 152(4): 587-590.
|
13 |
BRUMSACK H. The trace metal content of recent organic carbon-rich sediments: implications for cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/4): 344-361.
|
14 |
STOW D, HUC A, BERTRAND P. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology, 2001, 18(4): 491-498.
|
15 |
HUCKRIEDE H, MEISCHNER D. Origin and environment of manganese-rich sediments within black-shale basins[J]. Geochimica et Cosmochimica Acta, 1996, 60(8): 1 399-1 413.
|
16 |
VINE J D, TOURTELOT E B. Geochemistry of black shale deposits—a summary report[J]. Economic Geology, 1970, 65(3): 253-272.
|
17 |
WANG Yuman, DONG Dazhong, LI Jianzhong, et al. Characteristics of shale gas reservoirs in the Longmaxi Formation of lower Silurian in Southern Sichuan[J]. Acta Petroleum, 2012, 33(4): 551-561.
|
|
王玉满, 董大忠, 李建忠, 等. 川南下志留统龙马溪组页岩气储层特征[J]. 石油学报, 2012, 33(4): 551-561.
|
18 |
NIE Haikuan, ZHANG Jinchuan, LI Yuxi. Accumulation conditions of lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Acta Petroleum, 2011, 32(6): 959-967.
|
|
聂海宽, 张金川, 李玉喜. 四川盆地及其周缘下寒武统页岩气聚集条件[J]. 石油学报, 2011, 32(6): 959-967.
|
19 |
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. The formation mechanism, geological characteristics and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
|
|
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653.
|
20 |
ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Shale oil formation mechanism, geological characteristics and development countermeasures[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
|
|
邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26.
|
21 |
STEADMAN J A, LARGE R R, MEFFRE S, et al. Syn sedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile Deposit, Kalgoorlie, Western Australia[J]. Economic Geology, 2015, 110(5): 1 157-1 191.
|
22 |
YE Jie, FAN Delian. The formation of black rock series deposits and their production characteristics in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2000 (2): 95-102.
|
|
叶杰, 范德廉. 黑色岩系型矿床的形成作用及其在我国的产出特征[J]. 矿物岩石地球化学通报, 2000 (2): 95-102.
|
23 |
LOUKOLA-RUSKEENIEMI K, HEINO T. Geochemistry and genesis of the black shale-hosted Ni-Cu-Zn deposit at Talvivaara, Finland[J]. Economic Geology, 1996, 91(1): 80-110.
|
24 |
CHENG Yuqi, CHEN Yuchuan, ZHAO Yiming, et al. Re-discussion on the series of ore deposits[J]. Journal of Chinese Academy of Geological Sciences, 1983, 1(2): 1-64.
|
|
程裕淇, 陈毓川, 赵一鸣, 等. 再论矿床的成矿系列问题[J]. 中国地质科学院院报, 1983, 1(2): 1-64.
|
25 |
HU Ruizhong, WEN Hanjie, YE Lin, et al. Mineralization of key metal elements in the southwestern part of Yangtze Block[J]. Chinese Science Bulletin, 2020, 65(33): 3 700-3 714.
|
|
胡瑞忠, 温汉捷, 叶霖, 等. 扬子地块西南部关键金属元素成矿作用[J]. 科学通报, 2020, 65(33): 3 700-3 714.
|
26 |
WANG Jian. Uranium polymetallic geochemistry and mineralization of black rock series in northwestern Hunan[D]. Beijing: Beijing Geological Research Institute of Nuclear Industry, 2020.
|
|
王健. 湘西北黑色岩系铀多金属地球化学特征及成矿作用[D]. 北京:核工业北京地质研究院, 2020.
|
27 |
HU S, EVANS K, CRAW D, et al. Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks, New Zealand[J]. Ore Geology Reviews, 2015, 70: 80-95.
|
28 |
ROBERT A M, GROTHEER H, GREENWOOD P F, et al. The Hydropyrolysis (HyPy) release of hydrocarbon products from a high maturity kerogen associated with an orogenic au deposit and their relationship to the mineral matrix[J]. Chemical Geology, 2016, 425: 127-144.
|
29 |
DING Z, DENG T, XU D, et al. Genesis of two types of carbonaceous material associated with gold mineralization in the Bumo deposit, Hainan Province, South China[J]. Minerals, 2020, 10(8): 708.
|
30 |
WU Y, EVANS K, FISHER L A, et al. Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system[J]. Geochimica et Cosmochimica Acta, 2020, 276: 345-362.
|
31 |
XU D, WANG Z, WU C, et al. Mesozoic gold mineralization in Hainan Province of South China: genetic types, geological characteristics and geodynamic settings[J]. Journal of Asian Earth Sciences, 2017, 137: 80-108.
|
32 |
KŘÍBEK B, SÝKOROVÁ I, MACHOVIČ V, et al. The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa[J]. Precambrian Research, 2015, 270: 300-317.
|
33 |
WIGNALL P B, NEWTON R. Black shales on the basin margin: a model based on examples from the upper Jurassic of the Boulonnais, Northern France[J]. Sedimentary Geology, 2001, 144(3/4): 335-356.
|
34 |
MÄRZ C, POULTON S W, BECKMANN B, et al. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3 703-3 717.
|
35 |
CLARKE J M, LUTHER D D. Stratigraphic and Paleontologic map of Canandaigua and Naples Quadrangles[M]. New York:University of the State of New York, 1904.
|
36 |
LEVER M A, ALPERIN M, ENGELEN B, et al. Trends in basalt and sediment core contamination during IODP expedition 301[J]. Geomicrobiology Journal, 2006, 23(7): 517-530.
|
37 |
SCHLANGER S O, JENKYNS H C. Cretaceous oceanic anoxic events: causes and consequences [J]. Netherlands Journal of Geosciences, 2007, 55(3/4): 179-184.
|
38 |
JSCHOUTEN S, WOLTERING M, RIJPSTRA W I C, et al. The Paleocene-Eocene carbon isotope excursion in higher plant organic matter: differential fractionation of angiosperms and conifers in the Arctic[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 581-592.
|
39 |
CARR S A, MILLS C T, MANDERNACK K W. The use of amino acid indices for assessing organic matter quality and microbial abundance in deep-sea Antarctic sediments of IODP expedition 318[J]. Marine Chemistry, 2016, 186: 72-82.
|
40 |
BIDDLE J F, WHITE J R, TESKE A P, et al. Metagenomics of the subsurface Brazos-trinity basin (IODP Site 1320): comparison with other sediment and pyro sequenced metagenomes[J]. The ISME Journal, 2011, 5(6): 1 038-1 047.
|
41 |
WEHRMANN L M, RISGAARD-PETERSEN N, SCHRUM H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the Northeastern Bering Sea Slope (IODP Exp. 323)[J]. Chemical Geology, 2011, 284(3/4): 251-261.
|
42 |
JARVIS I, LIGNUM S, GROCKE R, et al. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian oceanic anoxic event [J]. Palaeoceanography, 2011, 26(3). DOI:10.1029/2010PA002081.
|
43 |
SCHWARK L, FRIMMEL A. chemo stratigraphy of the Posidonia black shale, SW-Germany: II. assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distributions[J]. Chemical Geology, 2004, 206(3/4): 231-248.
|
44 |
WILKIN R T, ARTHUR M A, DEAN W E. History of water-column anoxia in the black sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 517-525.
|
45 |
LYONS T W, SEVERMANN S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5 698-5 722.
|
46 |
SCOTT C, WING B A, BEKKER A, et al. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir[J]. Earth and Planetary Science Letters, 2014, 389: 95-104.
|
47 |
MÄND K, LALONDE S V, ROBBINS L J, et al. Palaeoproterozoic oxygenated oceans following the Lomagundi-Jatuli Event[J]. Nature Geoscience, 2020, 13(4): 302-306.
|
48 |
ANBAR A D, DUAN Y, LYONS T W, et al. A whiff of oxygen before the Great Oxidation Event?[J]. Science, 2007, 317(5 846): 1 903-1 906.
|
49 |
KENDALL B S, CREASER R A, ROSS G M, et al. Constraints on the timing of marinoan "Snowball Earth" glaciation by 187Re-187Os Dating of a Neoproterozoic, post-glacial black shale in Western Canada[J]. Earth and Planetary Science Letters, 2004, 222(3/4): 729-740.
|
50 |
ZHANG S, ZHAO Y, YANG Z, et al. The 1.35 Ga diabase sills from the northern North China Craton: implications for breakup of the Columbia (Nuna) supercontinent[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 588-600.
|
51 |
GREENTREE M R, LI Z, LI X, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the sibao orogenesis in Western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2006, 151(1/2): 79-100.
|
52 |
LECKIE R M, BRALOWER T J, CASHMAN R. Oceanic Anoxic Events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 2002, 17(3): 11-13.
|
53 |
ARMSTRONG J G, PARNELL J, BULLOCK L A, et al. Tellurium, selenium and cobalt enrichment in Neoproterozoic black shales, Gwna Group, UK: deep marine trace element enrichment during the second Great Oxygenation Event[J]. Terra Nova, 2018, 30(3): 244-253.
|
54 |
JENKYNS H C. Geochemistry of oceanic anoxic events [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3). DOI: 10.1029/2009GC002788.
|
55 |
CONDIE K C, Des MARAIS D J, ABBOTT D. Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates?[J]. Precambrian Research, 2001, 106(3/4): 239-260.
|
56 |
KORTE C, HESSELBO S P, ULLMANN C V, et al. Jurassic climate mode governed by ocean gateway[J]. Nature Communications, 2015, 6(1): 1-7.
|
57 |
COVENEY R, PASAVA J. Origins of Au-Pt-Pd-bearing Ni-Mo-As-(Zn) deposits hosted by Chinese black shales[C]// Mineral deposit research: meeting the global challenge. Springer, 2005: 101-102.
|
58 |
Huyck H L. When is a metalliferous black shale, not a black shale? [M]. Virginia: U.S. Geological Survey,1990: 42-56.
|
59 |
YANG Jian. Research on the formation environment and geochemistry of the lower Cambrian black rock series in northern Guizhou[D]. Xi'an: Changan University, 2009.
|
|
杨剑. 黔北地区下寒武统黑色岩系形成环境与地球化学研究[D]. 西安:长安大学, 2009.
|
60 |
BOYONG Y, BIN H U, ZHENGYU B, et al. REE Geochemical characteristics and depositional environment of the black shale-hosted Baiguoyuan Ag-V Deposit in Xingshan, Hubei Province, China[J]. Journal of Rare Earths, 2011, 29(5): 499-506.
|
61 |
QINGFEI W, JUN D, LI W, et al. Multifractal analysis of element distribution in skarn‐type deposits in the Shizishan ore field, Tongling area, Anhui Province, China[J]. Acta Geologica Sinica‐English Edition, 2008, 82(4): 896-905.
|
62 |
LONG H, LONG H, NEKVASIL H, et al. Mineralogy and geochemistry of vanadium-bearing black shales at Zhangcun and Zhengfang, eastern Jiangxi Province, China[C]//AGU Fall Meeting Abstracts, 2001: V12D-V1017D.
|
63 |
FREI R, LEHMANN B, XU L, et al. Surface water oxygenation and bioproductivity-a link provided by combined chromium and cadmium isotopes in early Cambrian metalliferous black shales (Nanhua Basin, South China)[J]. Chemical Geology, 2020, 552: 119785.
|
64 |
ORBERGER B, PASAVA J, GALLIEN J P, et al. Se, As, Mo, Ag, Cd, in, Sb, Pt, Au, Tl, Re traces in biogenic and abiogenic sulfides from black shales (Selwyn Basin, Yukon Territories, Canada): a nuclear microprobe study[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 210: 441-448.
|
65 |
BOTTOMS B, POTRA A, SAMUELSEN J R, et al. Geochemical investigations of the wood ford-Chattanooga and Fayetteville shales: implications for genesis of the Mississippi Valley-Type zinc-lead ores in the southern Ozark Region and hydrocarbon exploration[J]. AAPG Bulletin, 2019, 103(7): 1 745-1 768.
|
66 |
MCCREADY A J, STUMPFL E F, LALLY J H, et al. Polymetallic mineralization at the browns deposit, Rum Jungle mineral field, Northern Territory, Australia[J]. Economic Geology, 2004, 99(2): 257-277.
|
67 |
LARGE R, THOMAS H, CRAW D, et al. Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2012, 55(2): 137-149.
|
68 |
THOMAS H V, LARGE R R, BULL S W, et al. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo Gold Mine, Australia: insights for ore genesis[J]. Economic Geology, 2011, 106(1): 1-31.
|
69 |
LARGE R R, DANYUSHEVSKY L, HOLLIT C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style Sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668.
|
70 |
MOSSMAN D J, GAUTHIER-LAFAYE F, JACKSON S E. Black Shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon[J]. Precambrian Research, 2005, 137(3/4): 253-272.
|
71 |
BIERLEIN F P, CARTWRIGHT I, MCKNIGHT S. The role of carbonaceous "indicator" slates in the genesis of lode gold mineralization in the western Lachlan Orogen, Victoria, Southeastern Australia[J]. Economic Geology, 2001, 96(3): 431-451.
|
72 |
ARTHUR M A, SAGEMAN B B. Marine black shales: depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 499-551.
|
73 |
PERKINS R B, MASON C E. The relative mobility of trace elements from short-term weathering of a black Shale[J]. Applied Geochemistry, 2015, 56: 67-79.
|
74 |
HU S, BARNES S J, PAGES A, et al. Life on the edge: microbial biomineralization in an arsenic-and lead-rich deep-sea hydrothermal vent[J]. Chemical Geology, 2020, 533: 119438.
|
75 |
HU S, EVANS K, CRAW D, et al. Resolving the role of carbonaceous material in gold precipitation in metasediment-hosted orogenic gold deposits[J]. Geology, 2017, 45(2): 167-170.
|
76 |
GOLDFARB R J, GROVES D I. Orogenic gold: common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233: 2-26.
|
77 |
FU B, KENDRICK M A, FAIRMAID A M, et al. New constraints on fluid sources in orogenic gold deposits, Victoria, Australia[J]. Contributions to Mineralogy and Petrology, 2012, 163(3): 427-447.
|
78 |
GREGORY D D, LARGE R R, BATH A B, et al. Trace element content of pyrite from the kapai slate, St. Ives Gold district, Western Australia[J]. Economic Geology, 2016, 111(6): 1 297-1 320.
|
79 |
LARGE R R, BULL S W, MASLENNIKOV V V. A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits[J]. Economic Geology, 2011, 106(3): 331-358.
|
80 |
GROVES D I, SANTOSH M. The giant Jiaodong Gold Province: the key to a unified model for orogenic gold deposits?[J]. Geoscience Frontiers, 2016, 7(3): 409-417.
|
81 |
GROSOVSKY B D. Microbial role in Witwatersrand gold deposition [M]. Netherlands: Springer, 1983: 495-498.
|
82 |
ZHANG Jingrong, LU Jianjun, YANG Fan. Bacteria enrichment of gold experiment and its geochemical significance[J]. Geological Review, 1996 (5): 434-438.
|
|
张景荣, 陆建军, 杨帆. 细菌富集金的实验及其地球化学意义[J]. 地质论评, 1996 (5): 434-438.
|
83 |
VARSHAL G M, VELYUKHANOVA T K, CHKHETIYA D N, et al. Sorption on humic acids as a basis for the mechanism of primary accumulation of gold and platinum group elements in black shales[J]. Lithology and Mineral Resources, 2000, 35(6): 538-545.
|
84 |
ZHU Xiaoqing, HUANG Yan, ZHANG Qian, et al. Experimental research and significance of selective adsorption of silver and gold[J]. Mineral Deposits, 2005 (4): 445-450.
|
|
朱笑青, 黄艳, 张乾, 等. 银和金的选择吸附实验研究及意义[J]. 矿床地质, 2005 (4): 445-450.
|
85 |
HU S. The role of carbonaceous materi in the formation of Macraes orogenic gold deposit, New Zealand[D]. Perth Curtin University, 2016.
|
86 |
LU Huangzhang, CHI Guoxiang, ZHU Xiaoqing, et al. Geological characteristics and ore-forming fluids of orogenic gold deposits[J]. Geotectonica et Metallogenia, 2018, 42(2): 244-265.
|
|
卢焕章, 池国祥, 朱笑青, 等. 造山型金矿的地质特征和成矿流体[J]. 大地构造与成矿学, 2018, 42(2): 244-265.
|
87 |
ZHOU Y, XU D, DONG G, et al. The role of structural reactivation for gold mineralization in northeastern Hunan Province, South China[J]. Journal of Structural Geology, 2021, 145: 104306.
|
88 |
QIU Zhengjie, FAN Hongrui, CONG Peizhang, et al. Research progress on the metallogenic process of orogenic gold deposits[J]. Mineral Deposit Geology Exhibition, 2015, 34(1): 21-38.
|
|
邱正杰, 范宏瑞, 丛培章, 等. 造山型金矿床成矿过程研究进展[J]. 矿床地质, 2015, 34(1): 21-38.
|
89 |
TOMKINS A G. On the source of orogenic gold[J]. Geology, 2013, 41(12): 1 255-1 256.
|
90 |
CRAW D, BURRIDGE C P, UPTON P, et al. Evolution of biological dispersal corridors through a tectonically active mountain range in New Zealand[J]. Journal of Biogeography, 2008, 35(10): 1 790-1 802.
|
91 |
SHVAROV Y V. HCH: new potentialities for the thermodynamic simulation of geochemical systems offered by windows[J]. Geochemistry International, 2008, 46(8): 834.
|
92 |
OHMOTO H, GOLDHABER MB. Sulfur and carbon isotopes, geochemistry of hydrothermal ore deposits [M]. New York: Wiley, 1997: 517-611.
|