地球科学进展 ›› 2021, Vol. 36 ›› Issue (10): 1052 -1076. doi: 10.11867/j.issn.1001-8166.2021.015

矿产赋存进展 上一篇    下一篇

新元古代微生物成锰作用——来自扬子北缘城口地区陡山沱组锰质叠层石的证据
张懿 1( ), 陈龙 1, 李建 1, 黄治清 1, 王东歌 1, 韦轶 1, 史强 1, 吴庆铭 1, 旷红伟 2( ), 柳永清 2   
  1. 1.重庆市地质矿产勘查开发局205地质队,重庆 402160
    2.中国地质科学院地质研究所,北京 100037
  • 收稿日期:2020-11-17 修回日期:2021-02-28 出版日期:2021-10-10
  • 通讯作者: 旷红伟 E-mail:zhangyi20150621@163.com;kuanghw@126.com
  • 基金资助:
    北京市科技计划课题——国际创新资源合作项目“前寒武纪末次冰期与地球、环境和生命演化”(Z201100008320007);中国地质调查局发展研究中心“整装勘查区找矿预测与技术应用示范”二级子项目“重庆市城口县锰矿整装勘查区矿产调查与找矿预测”(121201004000150017-91)

Biomineralization of Manganese in Neoproterozoic Evidence from Manganese Stromatolites of the Sinian Doushantuo Formation in Chengkou Area Northern Margin of Yangtze Block

Yi ZHANG 1( ), Long CHEN 1, Jian LI 1, Zhiqing HUANG 1, Dongge WANG 1, Yi WEI 1, Qiang SHI 1, Qingming WU 1, Hongwei KUANG 2( ), Yongqing LIU 2   

  1. 1.No. 205 Geological Team,Chongqing Bureau of Geology and Minerals Exploration,Chongqing 402160,China
    2.Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China
  • Received:2020-11-17 Revised:2021-02-28 Online:2021-10-10 Published:2021-11-19
  • Contact: Hongwei KUANG E-mail:zhangyi20150621@163.com;kuanghw@126.com
  • About author:ZHANG Yi (1993-), male, Jiangjin City, Chongqing Municipality, Engineer. Research areas include sedimentology. E-mail: zhangyi20150621@163.com
  • Supported by:
    the International Innovation Resources Cooperation Project "The Precambrian last glaciation and the evolution of paleoenvironment and life on Earth" from Science and Technology committee of Beijing(Z201100008320007);The Second-level Sub-project of "prospecting prediction and technology application demonstration in integrated exploration area" of the China Geological Survey, the mineral investigation and prospecting prediction of integrated manganese exploration area in Chengkou, Chongqing(121201004000150017-91)

叠层石菱锰矿被认为是生物成锰的证据,但少见相关报道。扬子北缘城口地区陡山沱组菱锰矿层中叠层石十分发育,但研究程度较低,其生长机制不明确,其是否是叠层石或者是附枝藻(Epiphyton)仍具有争议。从岩心描述与薄片观察出发,详细描述了研究区锰质叠层石的宏观和微观特征,根据其发育规模及形态特征将其划分为6种类型:微型分叉柱状叠层石、微型指状叠层石、指状叠层石、层状叠层石、柱状叠层石及层—柱状叠层石。研究表明,研究区柱状锰质叠层石直径一般小于1 cm,具同步生长特征,与假裸枝叠层石(Pseudogymnosolenaceae)特征相似。研究区微小型、宏体型叠层石基本层常呈有立柱结构的板状,这种基本层由树形石及微型叠层石组成,而不是附枝藻。叠层石与核形石、鲕粒共生,形成于碳酸盐岩台地边缘礁滩及滩后泻湖环境。研究区锰质叠层石垂向演化从指状向层状演化为主,指示陡山沱组沉积末期水体逐渐变浅。锰质叠层石微观结构以凝块结构为主,具有丝状、球状和放射状等微生物岩显微结构。锰质叠层石记录了碳酸锰精美的原始沉积结构,暗示微生物参与了锰元素的沉积成矿作用。

Stromatolite rhodochrosite is typical one of microbialites, which isconsideredas the evidence of biomineralization of manganese, but it is rarely reported around the world. Fortunately, manganese stromatolites develop well in the manganese deposit of the Sinian Doushantuo Formation in Chengkou area, northern margin of Yangtze block. These microbialites have been studied in a relatively low degree in this study area, and the growth mode and whether they belong to stromatolites or Epiphytonare still controversial. Based on core observation and microscopic thin section observation, the macros and microscopic characteristics of manganese stromatolites were described in detail. According to the scale and morphology, the manganese stromatolites can be divided into six types, including microbranched, microdigitate, minidigitate, stratiform, columnar, and stratiform - columnar stromatolites. The results showed that the diameter of the columnar manganese stromatolites are generally less than 1 cm with the characteristics of synchronic growth, which have the same features with Pseudogymnosolenaceae. The banded laminae (not Epiphyton) composed of dendrites and micro stromatolites is a common feature of mini and macro stromatolites. The stromatolites grew in the reef shoal and lagoon behind the shoal at the edge of a carbonate platform, coexisting with oolites and oncolites. The vertical evolution of stromatolites in this study area is dominant from minidigitate to stratiform, indicating that the water body gradually became shallower in the late Doushantuo period. The microbialite microstructures of manganese stromatolites aremainly clotted,in addition, they have tubular, spherical, fibrous forms which are related to microorganisms. Manganese stromatolites recorded the exquisite original sedimentary structures, suggesting that microorganisms are involved in the mineralization of manganese.

中图分类号: 

图1 扬子北缘大巴山地区地质简图及城口地区震旦系陡山沱组综合地层柱状图
(a)研究区地理位置图;(b)研究区钻孔位置及地质概况图;(c)研究区陡山沱组综合地层柱状图(根据参考文献[ 25 ]修改)。1:地名;2:整装勘查区域;3:主要断裂;4:钻孔位置;5:钻井对比剖面线;6:菱锰矿;7:白云岩;8:泥质白云岩;9:灰岩;10:细砂岩;11:粉砂岩;12:泥岩;13:碳质页岩;14:冰碛岩。F 1:白河—十堰断裂;F 2:安康—竹山断裂;F 3:瓦房店断裂;F 4:城口—房县断裂;F 5:镇巴断裂;F 6:乌坪断裂;F 7:坪坝—修齐断裂。注:钻孔名称不是真实的钻孔编号
Fig. 1 Geological map of the Dabashan area on the northern margin of Yangtze block and comprehensive stratigraphic histogram of the Sinian Doushantuo Formation in Chengkou area
(a) Location of Dabashan Thrust belt on the Yangtze block; (b) Structural geological map of the Dabashan Thrust belt and location of the well drillings;(c) Comprehensive stratigraphic histogram of the Sinian Doushantuo Formation in study area (modified after reference [ 25 ]). 1:City; 2:Exploration area; 3:Major thrust fault; 4:Drilling position; 5:Line of contrasting drilling profiles; 6:Manganese carbonate ore; 7: Dolostone; 8: Argillaceous dolostone; 9: Limestone; 10: Fine sandstone; 11: Siltstone; 12:Mudstone; 13: Carbonaceous shale; 14:Glacial conglomerate. F 1: Baihe-Shiyan fault; F 2: Ankang-Zhushan fault; F 3: Wafangdian fault; F 4: Chengkou-Fangxian fault; F 5: Zhenba fault; F 6: Wuping fault; F 7: Pingba-Xiuqi fault. Note: the names of the drilling wells on the map are not the real name
图2 ZK05-ZK01-ZK02含锰岩系对比图[井位位置见图1b)]
化学样为连续采样,用于测试MnO 2含量以计算Mn品位
Fig. 2 Comparison of manganese bearing rock series of drilling Well ZK05 ZK01 and ZK02 see Fig. 1b for locations
The chemical samples were continuously sampled, which is used to test MnO 2 content to calculate the Mn grade
表1 城口地区震旦系陡山沱组锰质叠层石分类命名方案表
Table 1 Classification and nomenclature of Chengkou manganese stromatolites in Sinian Doushantuo Formation
微生物岩种类 按大小划分 49 按形态划分 67 大小—形态综合命名(本文) 研究区叠层石特征
叠层石

微型

(柱体直径小于1 mm)

柱状 分叉柱状 微型分叉柱状 叠层石 肉眼不可见,柱状叠层构造,具主动分叉结构,宽30~150 μm,高60~400 μm。基本层由凝块组成,内部见微核形石
柱状 微型指状叠层石 肉眼呈米粒状,叠层构造,具被动分叉结构,宽20~1 100 μm,高50~3 300 μm。基本层由凝块组成,内部见微核形石

微小型

(柱体直径大于1 mm,小于1 cm)

柱状 指状叠层石 柱体指状,叠层构造,相邻柱体的层理具同步生长特征,属假裸枝叠层石,高0.4~2.5 cm,宽0.2~0.7 cm。基本层由凝块、树形石或微型分叉柱状叠层石组成,内部常黏结核形石

宏体型

(柱体直径大于1 cm;包括层状和层状状叠层石,本文不描述直径)

柱状 柱状叠层石 柱状,叠层构造,宽2~5 cm,高10 cm。基本层由凝块、树形石、微型分叉柱状叠层石以及微型指状叠层石组成
层状 层状叠层石 叠层构造,纹层侧向连接生长,局部波状。基本层由凝块、树形石或微型分叉柱状叠层石组成,内部常粘结核形石
层—柱状 层—柱状叠层石 叠层构造,纹层侧向连接生长,纹层常向上明显凸起,属层状至柱状叠层石过渡类型。基本层由凝块、树形石或微型分叉柱状叠层石组成,内部常见核形石
图3 微型分叉柱状叠层石微观特征
二分枝模式,柱体之间有显微核形石,ZK01-b18
Fig. 3 Microscopic characteristics of microbranched stromatolites
The branching style is dichotomous, and there are micro oncolite between the columns, ZK01-b18
图4 城口锰质叠层石基本层类型
Fig. 4 Classification of the laminar structures of Chengkou manganese stromatolites
图5 微型指状叠层石宏观和微观特征
(a) 微型指状叠层石礁,肉眼小米状,ZK01-b11;(b) 微型指状叠层石微观特征,柱体之间为球粒状藻类,ZK01-b11;(c) 图片5(b)微型指状叠层石素描,具被动分叉结构;(d) 微型指状叠层石横截面特征,柱体近圆形,柱体之间为球粒状藻类,ZK01-b11;(e) 微型指状叠层石微观特征,具有被动分叉结构,丛状基本层由微小的树形石组成,树形石局部有微叠层结构,微型指状叠层石组成了柱状叠层石基本层,顶部基本层侧向相连,ZK01-b20;(f) 图片5(e)微型指状叠层石素描图
Fig. 5 Macro and microscopic characteristics of microdigitate stromatolites
(a) Microdigitate stromatolites bioherm, grew closely like millet heads, ZK01-b11; (b) Microstructures of microdigitate stromatolites, there are spherical algaes between the columns, ZK01-b11; (c) Line drawing of microdigitate stromatolites in Fig. 5(b), passive branching structure; (d) Cross section characteristics of microdigitate stromatolites, the cross section of the column is nearly circular, there are spherical algaes between the columns, ZK01-b11; (e) Microstructures of microdigitate stromatolites, passive branching structure, the tussocky laminae are composed of small dendrites, some dendrites have the laminar texture; and microdigitate stromatolites composed the laminae of columnar stromatolites. The laminae on the head of microdigitate stromatolites is laterally connected, ZK01-b20; (f) Line drawing of Fig. 5(e)
图6 指状叠层石宏观和微观特征
(a) 指状叠层石礁,局部纹层侧向连接生长,ZK03-b1;(b) 指状叠层石微观特征,有立柱的带状基本层,基本层由树形石组成,ZK02-b4;(c) 指状叠层石横截面微观特征,柱体间为泥晶基质,ZK02-b06;(d) 指状叠层石微观特征,内部见核形石,ZK02-b6;(e) 指状叠层石微观特征,柱体冠部连接了微型指状叠层石柱体,ZK02-b8
Fig. 6 Macro and microscopic characteristics of minidigitate stromatolites
(a) Minidigitate stromatolites biostrome, local laminae are lateral connection, ZK03-b1; (b) Microstructures of minidigitate stromatolites, banded-pillared laminae, composed by dendrites, ZK02-b4;(c) Microstructure of cross section of minidigitate stromatolites, cemented by argillaceous matrix, ZK02-b06; (d) Microstructures of minidigitate stromatolites, oncolites occurred in the laminae, ZK02-b6; (e) Microstructure of microdigitate stromatolites, microdigitate stromatolites were connected to the head of the minidigitate stromatolites column, ZK02-b8
图7 层—柱状叠层石宏观和微观特征
(a) 层—柱状叠层石宏观特征,由指状叠层石基本层侧向连接形成,ZK05-b17;(b) 层柱状叠层石微观特征,由基本层强烈上拱形成,内部见丝状体,基本层上拱原因可能与藻类产生的氧气泡而引起上浮力有关,ZK01-b11;(c) 层—柱状叠层石微观特征,由基本层轻微上拱形成,基本层由树形石和微型分叉柱状叠层石组成,ZK01-b18;(d) 图7(c)红色方框区域放大图,有立柱的板状基本层;(e) 图7(b)绿色方框区域放大图,层—柱状叠层石中的条纹状基本层,基本层轻微上拱,ZK01-b11;(f) 层—柱状叠层石中的肺泡状基本层,ZK01-b11
Fig. 7 Macro and microscopic characteristics of stratiform-columnar stromatolites
(a) Macrostructure of stratiform-columnar stromatolites, it is formed by lateral connection of microdigitate stromatolites laminae, ZK05-b17; (b) Microstructures of stratiform-columnar stromatolites, formed by steeply up arching of the laminae, there is filamentous in the column which indicates that the arching of the laminae may be related to the buoyancy caused by oxygen bubbles produced by filamentous cyanobacteria ZK05-b11; (c) Microstructures of stratiform- columnar stromatolites, formed by local up arching of the laminae, the laminae was consists of microbranched stromatolites and dendrites, ZK01-b18; (d) Amplification characteristics of laminae inside the red square in Fig. 7(c), banded-pillared laminae; (e) Amplification characteristics of laminae inside the green square in Fig. 7(b), striated laminae in the stratiform- columnar stromatolites, the laminae is slight up arching, ZK01-b11; (f) Alveolar laminae in the stratiform- columnar stromatolites, ZK01-b11
图8 层状叠层石宏观和微观特征
(a) 层状叠层石,由微型分叉柱状叠层石组成的礁,ZK01-b11;(b)、(c) 层状叠层石微观特征,有立柱的带状基本层,由微型分叉柱状叠层石和树形石组成,ZK01-b18;(d) 图8(c)绿色方框区域基本层放大特征,由微型分叉柱状叠层石和树形石组成的有立柱的带状基本层,内有少量石英粉砂
Fig. 8 Macro and microscopic characteristics of stratiform stromatolites
(a) Macrostructure of stratiform stromatolites, the microbranched stromatolites biostrome, ZK01-b11; (b), (c) Microstructures of stratiform stromatolites, banded-pillared laminae, composed by microbranched stromatolites and dendrites, ZK01-b18; (d) Magnified image of a lamina inside the green square in Fig. 8(c), the banded-pillared laminae consist of microbranched stromatolites and dendrites, there are a small mount of quartz clasts in the laminae
图9 柱状叠层石(ZK01-b20)宏观—微观分解特征
(a)岩芯尺度下柱状叠层石宏观特征,向上基本层上拱程度变缓,基本层厚度变薄且交替频率变大;(b) 柱状叠层石微观特征;(c)有立柱的带状基本层,由树形石和微型分叉柱状叠层石组成,微型叠层石生长密度变低形成了相对亮纹层;(d) 有立柱的带状基本层,由微型指状叠层石组成;(e) 有立柱的带状基本层,由树形石和微型分叉柱状叠层石组成;(f)柱状叠层石基本层内微型分叉柱状叠层石微观特征,丛状基本层;(g),(h)柱状叠层石基本层内微型指状叠层石微观特征,丛状基本层;(i)柱状叠层石基本层内部微型分叉柱状叠层石微观特征,具凝块结构;(j)~(l)微型叠层石柱体之间的显微核形石
Fig. 9 Characteristics of columnar stromatolitesZK01-b20 in macro-micro scales
(a) Macrostructure characteristics of columnar stromatolites on the core surface, down towards the top, a decrease in their arching degree and the thickness of the laminae, and an increase in the alternation frequency; (b) Microstructures characteristics of columnar stromatolites; (c) Pillared-banded laminae composed of dendrites and microbranched stromatolites, the brighter laminae formed when microstromatolite growth density decreased; (d) Pillared-banded laminae composed of microdigitate stromatolites; (e) Pillared-banded laminae composed of dendrites and microbranched stromatolites;(f) Microstructure of microbranched stromatolites in the columnar stromatolites laminae, the tussocky laminae; (g),(h) Microstructure of microdigitate stromatolites in the columnar stromatolites laminae, the tussocky laminae; (i) Microstructure of microbranched stromatolites in the columnar stromatolites laminae, that composed of clots; (j)~(l) Micro oncolites between the micro stromatolites columns
图10 ZK01ZK02以及ZK05指状叠层石基本层对比特征
Fig. 10 Comparison of the characteristics of minidigitate stromatolites laminae in ZK01 ZK02 and ZK05
图11 城口锰质叠层石沉积特征
(a) 微型指状叠层石,局部斜歪生长,由波浪作用改造形成,ZK01-b2;(b) 指状叠层石微观特征,柱体被波浪打碎,ZK02-b8;(c) 指状叠层石微观特征,基本层内部粘结了鲕粒,ZK02-b6;(d) 内碎屑型菱锰矿,见叠层石内碎屑,泥晶基质胶结,ZK02-b04;(e) 指状叠层石,下部为微晶菱锰矿,上部为内碎屑菱锰矿,发育冲刷面,ZK02-b4
Fig. 11 Sedimentary characteristics of Chengkou manganese stromatolites
(a) Minidigitate stromatolites, some stromatolites skewed growth due to waves, ZK01-b2; (b) Microstructure of minidigitate stromatolites, the column was broken by wave, ZK02-b8; (c) Microstructure of minidigitate stromatolites, oolites are bound with the laminae, ZK02-b6; (d) Intraclast rhodochrosite, including stromatolites intraclast, that cemented by argillaceous matrix, ZK02-b04; (e) Minidigitate stromatolites, microcrystalline rhodochrosite is underlying the minidigitate stromatolites and the intraclastic rhodochrosite is overlying, scour surface developed, ZK02-b4
图12 城口锰质叠层石微生物岩微结构
(a)球粒状结构,发育于微型指状叠层石柱体内部及柱体间,ZK01:b11;(b)球粒状结构,具有亮核心,疑似藻类,ZK01:b11;(c)丝状微生物岩显微结构,发育于层:柱状叠层石内部,ZK01:b11;(d)核形石与疑似丝状结构,发育于层:柱状叠层石内部,ZK01:b11;(e)放射状纤维结构,发育于层状叠层石内部,ZK06:b12;(f)黏结结构,核形石参与形成了层状叠层石基本层,ZK06:b12
Fig. 12 Microbialite microstructures in Chengkou manganese stromatolites
(a) Spherical microbialite microstructures, inside and between the columns of microdigitate stromatolites, ZK01:b11; (b) Spherical microbialite microstructures, with a feature of bright core, possible be cyanobacteria fossils, ZK01:b11; (c) Tubular microbialite microstructures, in the lamina of stratiform, columnar stromatolites, ZK01:b11;(d) Oncolite and suspected filament microbialite microstructures, in the lamina of stratiform, columnar stromatolites, ZK01:b11; (e) Fibrous microbialite microstructures, in the lamina of stratiform stromatolites, ZK06:b12; (f) Bonding microbialite microstructures, the oncolites are involved in the formation of laminae, ZK06:b12
1 XIANG Jie, CHEN Jianping, BAGAS L, et al. Southern China's manganese resource assessment: an overview of resource status, mineral system, and prediction model[J]. Ore Geology Reviews, 2020, 116: 103260. DOI:10.1016/j.oregeorev.2019.103261.
2 HOU Zonglin, XUE Youzhi, HUANG Jinshui, et al. Manganese ore deposits around Yangtze Platform[M]. Beijing: Metallurgical Industry Press, 1997.
侯宗林, 薛友智, 黄金水, 等. 扬子地台周边锰矿[M]. 北京:冶金工业出版社, 1997.
3 FAN Delian, YANG Peiji. Introduction to and classification of manganese deposits of China[J]. Ore Geology Reviews, 1999, 15(1/3): 1-13.
4 CHEN Fangge, WANG Qingfei, YANG Shujuan, et al. Space-time distribution of manganese ore deposits along the southern margin of the South China Block, in the context of Palaeo-Tethyan evolution[J]. International Geology Review, 2017, 60(1): 72-86.
5 ZHOU Qi, DU Yuansheng, YUAN Liangjun, et al. The structure of the Wuling Rift Basin and its control on the manganese deposit during the Nanhua period in Guizhou-Hunan-Chongqing Border area,South China[J]. Earth Science, 2016, 41(2): 177-188.
周琦, 杜远生, 袁良军, 等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学, 2016, 41(2): 177-188.
6 WANG Ziyong, HAN Runsheng, REN Tao, et al. Genesis of Qujiashan manganese deposit, Shaanxi Province: constraints from geological, geochemical, and carbon and oxygen isotopic evidences[J]. Journal of Central South University, 2019, 26(12):3 516-3 533.
7 ROY S. Sedimentary manganese metallogenesis in response to the evolution of the Earth system[J]. Earth Science Reviews, 2006, 77(4):273-305.
8 DILL H G. The "chessboard" classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium[J]. Earth Science Reviews, 2010, 100: 1-420.
9 KULESHOV V N. Isotope geochemistry the origin and formation of manganese rocks and ores[M]. Elsevier, 2017.
10 SOKOLOVA-DUBININA G A, DERIUGINA Z P. A study of the process of iron-manganese concretions formation in the Punnus-Iarvi Lake[J]. Mikrobiologiia, 1967, 36(6): 1 066-1 076.
11 SOKOLOVA-DUBININA G A, DERIUGINA Z P. On the role of microorganisms in the formation of rodokhrozite in Punnus-Jahrvi Lake[J]. Mikrobiologiia, 1967, 36(3): 435-442.
12 COLEMAN M, FLEET A, DOBSON P. Preliminary studies of manganese-rich carbonate nodules from leg 68, suite 503, eastern Equatorial Pacific[R]. Initial Reports DSDP, U.S. Govt. Printing office, 1982, 68: 481-489.
13 KULESHOV V N, SHTERENBERG L Y. Isotopic composition of ferromanganese concretions from lake krasnoye[J]. International Geology Review, 1988, 30(10): 1 092-1 103.
14 CHEN Jianlin, ZHANG Fusheng, LIN Chengyi, et al. Biogenesis study of manganese nodules from the Chinese pioneer area in the Pacific Ocean[J]. Acta Geologica Sinica, 2001, 75(2): 228-233.
陈建林, 张富生, 林承毅, 等. 太平洋中国开辟区锰结核生物成因研究[J]. 地质学报, 2001, 75(2): 228-233.
15 ASTAKHOV A S, TIEDEMANN R, MURDMAA I O, et al. Manganese carbonates in the upper quaternary sediments of the Deryugin basin (Sea of Okhotsk)[J]. Oceanology, 2006, 46(5): 716-729.
16 Dick G J, Clement B G, Webb S M, et al. Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas basin deep-sea hydrothermal plume[J]. Geochimica et Cosmochimica Acta, 2009, 73(21): 6 517-6 530.
17 PIRJO Yli-Hemminki, KIRSTEN S, JRGENSEN Jouni, et al. Iron-Manganese Concretions Sustaining Microbial Life in the Baltic Sea: the structure of the bacterial community and enrichments in metal-oxidizing conditions[J]. Geomicrobiology Journal, 2014, 31(4): 263-275.
18 SULU-GAMBARI F, SEITAJ D, BEHRENDS T, et al. Impact of cable bacteria on sedimentary iron and manganese dynamics in a seasonally-hypoxic marine basin[J]. Geochimica et Cosmochimica Acta, 2016, 192: 49-69.
19 MORGAN J J. Kinetics of reaction between O2 and Mn(Ⅱ) species in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 35-48.
20 BANDSTRA J Z, ROSS D E, BRANTLEY S L, et al. Compendium and synthesis of bacterial manganese reduction rates[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 337-351.
21 YU Hang, LEADBETTER J R. Bacterial chemolithoautotrophy via manganese oxidation[J]. Nature, 2020, 583(7 816): 453-458.
22 OKITA P M, MAYNARD J B, SPIKER E C, et al. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore[J]. Geochimica et Cosmochimica Acta, 1988, 52(11): 2 679-2 685.
23 OKITA P M, III W C S. Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango, Mexico, and TaoJiang, China[J]. Chemical Geology, 1992, 99(1/3): 139-163.
24 KULESHOV V N, BELYAEV A A. Origin of the carbonate manganiferous concretions in the Paleozoic Rocks of Pai-Khoi (based on the carbon and oxygen isotopic compositions)[J]. Lithology & Mineral Resources, 1999, 3: 241-250.
25 FAN Delian, YE Jie, YIN Leiming, et al. Microbial processes in the formation of the Sinian Gaoyan manganese carbonate ore, Sichuan Province, China[J]. Ore Geology Reviews, 1999,15(1/3): 79-93.
26 KULESHOV V N, GAVRILOV Y O. Isotopic composition (δ13C, δ18O) of carbonate concretions from terrigenous deposits in the Northern Caucasus[J]. Lithology & Mineral Resources, 2001, 36(2): 160-163.
27 KULESHOV V N. Isotopic composition (δ13C, δ18O) and origin of manganese carbonate ores from the Early Oligocene Deposits, the Eastern Paratethys[J]. Chemie der Erde-Geochemistry, 2003, 63(4): 329-363.
28 KULESHOV V N. A superlarge deposit-Kalahari manganese ore field (Northern Cape, South Africa): geochemistry of isotopes (δ13C and δ18O) and genesis[J]. Lithology & Mineral Resources, 2012, 47(3): 217-233.
29 KULESHOV V N, BRUSNITSYN A I. Isotopic composition (δ13C, δ18O) and the origin of carbonates from manganese deposits of the Southern Urals[J]. Lithology & Mineral Resources, 2005, 40(4): 364-375.
30 TANG Shiyu, LIU Tiebing. Origin of the early Sinian Minle manganese deposit, Hunan Province, China[J]. Ore Geology Reviews, 1999, 15(1):71-78.
31 NYAME F K, BEUKES N J, KASE K, et al. Compositional variations in manganese carbonate micronodules from the Lower Proterozoic Nsuta deposit, Ghana: product of authigenic precipitation or post-formational diagenesis?[J]. Sedimentary Geology, 2002, 154(3/4): 159-175.
32 MUKHOPADHYAY J, GUTZMER J, BEUKES N J. Organotemplate structures in sedimentary manganese carbonates of the Neoproterozoic Penganga Group, Adilabad, India[J]. Journal of Earth System Science, 2005, 114(3): 247-257.
33 YU Wenchao, POLGÁRI M, GYOLLAI I, et al. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research, 2019, 322: 122-135.
34 POLGÁRI M, HEIN J R, TÓTH A L, et al. Microbial action formed Jurassic Mn-carbonate ore deposit in only a few hundred years (Úrkút, Hungary)[J]. Geology, 2012, 40(10): 903-906.
35 POLGÁRI M, HEIN J R, VIGH T, et al. Microbial processes and the origin of the Úrkút manganese deposit, Hungary[J]. Ore Geology Reviews, 2012, 47: 87-109.
36 POLGÁRI M, HEIN J R, BÍRÓ L, et al. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (Úrkút, Hungary)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 99-120.
37 DU Qiuding, YI Haisheng. New microbiological origin evidence of manganese deposit in the Falang Formation of Middle Triassic, southeast Yunnan[J]. Geological Science and Technology Information, 2009, 28(5):78-85.
杜秋定, 伊海生. 滇东南中三叠统法郎组锰矿床微生物成因的新证据[J]. 地质科技情报, 2009, 28(5):78-85.
38 ZHENG Yuchun. A preliminary study on biomineralogical characteristics of manganese ore from mingle,west Hunan[J]. Acta Mineralogica Sinica,1986(1):36-43,97.
郑钰纯.民乐锰矿生物矿物学特征初步研究[J].矿物学报,1986(1):36-43,97.
39 XU Zhaoliang. Algal fossils from late Precambrian Banded Manganese Formation (BMF), Xiangtan, Hunan Province of China[J]. Journal of Integrative Plant Biology,1987,29(1):104-110,129.
徐兆良. 湘潭晚前寒武纪条带状含锰建造中的化石藻类[J]. 植物学报, 1987,29(1):104-110,129.
40 ZHENG Guangxia, LIU Xunfeng. The algae mineralization of the sedimentary dialogite deposits of Sinian and its diagenetic succession, Guizhou Province[J]. Guizhou Geology, 1987, 4(3):41-52.
郑光夏, 刘巽锋. 贵州震旦纪沉积菱锰矿床的藻类成矿作用及其成岩序列[J]. 贵州地质, 1987,4(3):41-52.
41 YIN Leiming. Microfossils from late Proterozoic manganese ore deposits in western Hunan Province and eastern Guizhou Province, south China[J]. Science in China (Series B), 1990, 33(6): 88-96.
42 JOÃO Carlos Biondi, LOPEZ M. Urucum Neoproterozoic-Cambrian manganese deposits (MS, Brazil): biogenic participation in the ore genesis, geology, geochemistry, and depositional environment[J]. Ore Geology Reviews, 2017, 91: 335-386.
43 BIONDI J C, Polgári MÁRTA, Gyollai ILDIKÓ, et al. Biogenesis of the Neoproterozoic kremydilite manganese ores from Urucum (Brazil)—a new manganese ore type[J]. Precambrian Research, 2020, 340:105624.
44 ZHAO Dongxu. Types and biogenic mineralization of manganese rock in Gaoyan rhodochrosite ore, north Sichuan Province[J]. Acta Petrologica Sinica, 1994, 10(2): 171-183.
赵东旭. 川北高燕锰矿的锰质岩类型和生物成矿作用[J]. 岩石学报, 1994, 10(2):171-183.
45 FU Xiugen, ZHU Lidong, XIONG Yongzhu, et al. Characteristics and significance of biomarkers in Gaoyan manganese deposit of Chengkou area, Chongqing[J]. Acta Sedimentologica Sinica, 2004, 22(4):614-620.
付修根, 朱利东, 熊永柱, 等. 重庆城口高燕锰矿的生物标志物特征及意义[J]. 沉积学报, 2004, 22(4):614-620.
46 ZHAO Dongxu. Epiphyton manganese stromatolites from Doushantuo Formation in Chengkou, Sichuan[J]. Chinese Science Bulletin, 1992, 37(20): 1 873-1 875.
赵东旭. 四川城口陡山沱组的Epiphyton锰质叠层石[J]. 科学通报, 1992, 37(20):1 873-1 875.
47 WANG Yao, DAI Yongding, CHEN Menge. Re-examination of geological features of manganes carbonate deposits and their genesis in Chengkou County, Chongqing[J]. Chinese Journal of Geology, 1999, 34(4): 451-462.
王尧, 戴永定, 陈孟莪. 重庆城口锰矿床的地质特征及其成因的再认识[J]. 地质科学, 1999, 34(4): 451-462.
48 CAO Ruiji, YU Congliu. Late Sinian microstromatolites first discovered from Shimen, Hunan[J]. Acta Micropalaeontologica Sinica, 1991, 8(4): 365-371.
曹瑞骥, 俞从流. 湖南石门晚震旦世微叠层石的发现[J]. 微体古生物学报, 1991, 8(4):365-371.
49 CAO Ruiji, YUAN Xunlai. Stromatolites[M]. Hefei: University of Science and Technology of China Press, 2006.
曹瑞骥, 袁训来. 叠层石[M]. 合肥: 中国科学技术大学出版社, 2006.
50 WANG Ruirui, ZHANG Yueqiao, XIE Guoai, et al. Origin of the Dabashan foreland salient: insights from sandbox modeling[J]. Acta Geologica Sinica, 2011, 85(9): 1 409-1 419.
王瑞瑞, 张岳桥, 解国爱, 等. 大巴山前陆弧形构造的成因:来自砂箱实验的认识[J]. 地质学报, 2011, 85(9): 1 409-1 419.
51 LI Jianhua, ZHANG Yueqiao, DONG Shuwen, et al. Structural and geochronological constraints on the Mesozoic tectonic evolution of the North Dabashan zone, South Qinling, central China[J]. Journal of Asian Earth Sciences, 2013, 64: 99-114.
52 DONG Yunpeng, ZHANG Xiaoning, LIU Xiaoming, et al. Propagation tectonics and multiple accretionary processes of the Qinling Orogen[J]. Journal of Asian Earth Sciences, 2015, 104:84-98.
53 DONG Yunpeng, Santosh M. Tectonic architecture and multiple orogeny of the Qinling orogenic belt, central China[J]. Gondwana Research, 2016, 29: 1-40.
54 LI Sanzhong, JAHN B M, ZHAO Shujuan, et al. Triassic southeastward subduction of North China Block to South China Block: insights from new geological, geophysical and geochemical data[J]. Earth-Science Reviews, 2017, 166:270-285.
55 LI Jinxi, LI Zhiwu, LIU Shugen, et al. Kinematics of the Chengkou fault in the south Qinling orogen, Central China[J]. Journal of Structural Geology, 2018, 114(SEP.): 64-75.
56 CUI Kai, WANG Yixuan. Structural styles and origin of the Dabashan foreland arcuate belt and basin-mountain system in central China[J]. Journal of Asian Earth Sciences, 2019, 176:244-252.
57 LING Wenli, REN Bangfang, DUAN Ruchun, et al. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication[J]. Science Bulletin, 2008, 53(14):2 192-2 199.
58 ZHAO Junhong, LI Qiwei, LIU Hang, et al. Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator[J]. Earth-Science Reviews, 2018, 187:1-18.
59 HE Dengfa, LI Desheng, ZHANG Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3):589-606.
何登发, 李德生, 张国伟, 等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学, 2011, 46(3):589-606.
60 CHEN Long, ZHANG Yi, LI Jian, et al. Geological characteristics and ore controlling factors of Hongzi mining area in Chengkou manganese deposit, Chongqing[J]. Geology and Exploration, 2020, 56(5): 915-927.
陈龙, 张懿, 李建, 等. 重庆城口锰矿红籽矿区地质特征及控矿因素分析[J]. 地质与勘探, 2020, 56(5): 915-927.
61 WALTER M R. Stromatolites, developments in sedimentology[M]. Amsterdam: Elsevier, 1976.
62 SEMIKHATOV M A. Experience in stromatolite studies in the USSR[M]//Stromatolites: developments in sedimentology, 20. Amsterdam: Elsevier, 1976: 337-358.
63 BURNE R V, MOORE L S. Microbialites: organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3): 241-254.
64 RIDING R. Calcareous algae and stromatolites[M]. Berlin Heidelberg: Springer, 1991: 21-51.
65 MEI Mingxiang. Revised classification of microbial carbonates: complementing the classification of limestones[J]. Earth Science Frontiers, 2007(5):224-236.
梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007(5):224-236.
66 WU Yasheng, JIANG Hongxia, YU Gongliang, et al. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong, Chongqing, China[J]. Journal of Palaeogeography, 2018, 20(5):737-775.
吴亚生, 姜红霞, 虞功亮, 等. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因[J]. 古地理学报, 2018, 20(5):737-775.
67 GREY K, AWRAMIK S M. Handbook for the study and description of microbialites: geological Survey of Western Australia, Bulletin 147[M/OL]. www.dmirs.wa.gov.au/GSWApublications, 2020.
68 GOLUBIC S. The relatiomship between blue-green algae and carbonate deposits[M]// The biology of blue-green algae. Blackwell Scientific Publications, 1973: 434-472.
69 NUTMAN A P, BENNETT V C L, FRIEND C R L, et al. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures[J]. Nature, 2016, 537(7 621):535-538.
70 HOFMANN H J. Archean stromatolites as microbial archives[M]// Microbial sediment. Heidelberg: Speringer-Verlag, 2000: 315-327.
71 FANG Qifei, ZHANG Huquan. A review of earth system change impacts on the stromatolite decline[J]. Advances in Earth Science, 2014, 29(9):1 003-1 010.
房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J].地球科学进展, 2014, 29(9): 1 003-1 010.
72 KUANG Hongwei, LIU Yongqing, GENG Yuansheng, et al. Important sedimentary geological events of the Meso-Neoproterozoic and their significance[J]. Journal of Palaeogeography, 2019, 21(1): 1-30.
旷红伟, 柳永清, 耿元生, 等. 中国中新元古代重要沉积地质事件及其意义[J]. 古地理学报, 2019, 21(1): 1-30.
73 LIANG Yuzuo, CAO Ruiji, ZHANG Luyi. Late Precambrian Pseudogymnosolenaceae[M]. Beijing: Geological Publishing House, 1984.
梁玉左, 曹瑞骥, 张录易. 晚前寒武纪假裸枝叠层石[M]. 北京:地质出版社, 1984.
74 HOFMANN H J. On Aphebian stromatolites and Riphean stromatolite stratigraphy[J]. Precambrian Research, 1977, 5(2): 175-205.
75 GREY K, THORNE A M. Biostratigraphic significance of stromatolites in upward shallowing sequences of the Early Proterozoic Duck Creek Dolomite, Western Australia[J]. Precambrian Research, 1985, 29(1/3): 183-206.
76 SEMIKHATOV M A. Nekotorye karbonatnye stromatolity afebiya kanadskogo shchita, some aphebian carbonate stromatolites of the Canadian shield[M]// Nizhnyaya granitsa rifeyai stromatolity afebiya, lower boundary of the riphean and stromatolites of the Aphebian. Trudy Geologicheskogo Instituta, Akademiya Nauk SSSR, 1978, 312:111-147.
77 GROTZINGER J P. Geochemical model for Proterozoic stromatolite decline[J]. American Journal Ofence, 1990, 290: 80-103.
78 QIU Shuyu, LIANG Yuzuo. A restudy of Pseudogymnosolenaceae[J]. Acta Palaeontologica Sincia, 1993, 32(1): 123-128.
邱树玉,梁玉左.再论假裸枝叠层石科[J].古生物学报, 1993, 32(1): 123-128.
79 CAO Ruiji, YUAN Xunlai. Research progress of stromatolites in China[J]. Acta Palaeontologica Sinica, 2009, 48(3): 27-34.
曹瑞骥, 袁训来. 中国叠层石研究进展[J]. 古生物学报, 2009, 48(3): 27-34.
80 HOFMANN H J, JACKSON G D. Proterozoic ministromatolites with radial-fibrous fabric[J]. Sedimentology, 1987, 34(6): 963-971.
81 GROTZINGER J P, READ J F. Evidence for primary aragonite precipitation, lower Proterozoic (1.9 Ga) dolomite, Wopmay orogeny, northwest Canada[J]. Geology, 1983, 11(12): 710-713.
82 SUMNER D Y, GROTZINGER J P. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?[J]. Geology, 1996, 24(2): 119-122.
83 GROTZINGER J P, ROTHMAN D H. An abiotic model for stromatolite morphogenesis[J]. Nature, 1996, 383(6 599): 423-425.
84 GROTZINGER J P, KNOLL A H. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?[J]. Annual Review of Earth and Planetary Sciences, 1999, 27(1): 313-358.
85 GROTZINGER J P, JAMES N P. Precambrian carbonates: evolution of understanding[M]//Carbonate sedimentation and diagenesis in the evolving precambrian world. Tulsa: SEPM Special Publication, 2000, 67: 3-20.
86 BARTLEY J K, KAH L C. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle[J]. Geology, 2004, 32(2) :129-132.
87 RIDING R. Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites[J]. Geologia Croatica, 2008, 61(2/3): 73-103.
88 MEI Mingxiang, GAO Jinhan, MENG Qingfen, et al. Microdigital stromatolites and their response to stromatolite decline at 1 250 Ma± for the Mesoproterozoic Wumishan Formation at Jixian section in Tianjin[J]. Journal of Palaeogeography, 2008, 10(5): 495-509.
梅冥相, 高金汉, 孟庆芬 ,等. 天津蓟县中元古界雾迷山组微指状叠层石及其对1 250 Ma±叠层石衰减事件的响应[J].古地理学报, 2008, 10(5): 495-509.
89 TANG Dongjie, SHI Xiaoying, JIANG Ganqing, et al. Mesoproterozoic microdigitate stromatolites:Ultra-fabrics and organomineralization[J]. Geological Review, 2012, 58(6): 1 001-1 016.
汤冬杰, 史晓颖, 蒋干清, 等. 中元古代微指状叠层石:超微组构和有机矿化过程[J]. 地质论评, 2012, 58(6): 1 001-1 016.
90 TANG Dongjie, SHI Xiaoying, JIANG Ganqing, et al. Microfabrics in Mesoproterozoic microdigitate stromatolites: evidence of biogenicity and organomineralization at micron and nanometer scales[J]. Palaios, 2013, 28(3): 178-194.
91 MIN Xiao, HUA Hong, LIU Lijing, et al. Phosphatized Epiphyton from the terminal Neoproterozoic and its significance[J]. Precambrian Research, 2019, 331: 105358.
92 RIDING R. Calcified Algae and Bacteria. The ecology of the cambrian radiation[M]. New York: Columbia University Press, 2001: 445-473.
93 WOO J, CHOUGH S K, HAN Zuozhen. Chambers of Epiphyton thalli in microbial buildups, Zhangxia Formation (Middle Cambrian), Shandong Province, China[J]. Palaios, 2008, 23(1): 55-64.
94 GANDIN A, DEBRENNE F. Distribution of the archaeocyath-calcimicrobial bioconstructions on the Early Cambrian shelves[J]. Palaeoworld, 2010, 19(3/4): 222-241.
95 PRATT B R. Epiphyton and Renalcis-diagenetic microfossils from calcification of coccoid blue-green algae[J]. Journal of Sedimentary Research, 1984, 54(3): 948-971.
96 WALTER M R. Stromatolites: the main geoglogical source of information on the evolution of the Early Benthos[M]//Early life on Earth, Nobel symposium, 84. New York: Columbia University Press, 1994: 270-286.
97 AWRAMIK S M. The history and significance of stromatolites[M]//Early organic evolution: implications for mineral and energy resources. Heidelberg: Springer, 1992: 435-449.
98 KUANG Hongwei, FAN Zhengxiu, LIU Yongqing, et al. Stromatolite characteristics of Mesoproterozoic Shennongjia Group in the northern margin of Yangtze Block, China[J]. China Geology, 2019, 2(3): 364-381.
99 KENNARD J M.Thrombolites and stromatolites within shale-carbonate cycles, Middle-Late Cambrian Shannon Formation, Basin Amadeus, Central Australia[M]//Phanerozoic stromatolites II. Kluwer: Dordrecht, 1994: 443-503.
100 GROTZINGER J P. Facies and evolution of precambrian carbonate depositional systems: emergence of the modern platform archetype[M]// Controls on carbonate platforms and basin development. Tulsa: SEPM Special Publication, 1989, 44: 79-106.
101 WALTER M R, GROTZINGER J P, SCHOPF J W. Proterozoic stromatolites[M]//The proterozoic biosphere, a mulitidisciplinary study. Cambridge: Cambridge University Press, 1992, 253-260.
102 ZHENG Famo. The characteristics of the petrology and sedimentary environments of the Sinian in the Chengkou area, northern Sichuan Province[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 1990, 17(4):81-89.
郑发模. 城口震旦系岩石学特征及沉积环境分析[J]. 成都地质学院学报:自然科学版, 1990, 17(4):81-89.
103 FAN Delian, ZHANG Zhu, YE Jie. Black rock series and related deposits in China[M]. Beijing: Science Press, 2004.
范德廉, 张煮, 叶杰. 中国的黑色岩系及其有关矿床[M]. 北京:科学出版社, 2004.
104 FAN Delian, LIU Tiebing, YE Jie. The process of formation of manganese carbonate deposits hosted in black shale series[J]. Economic Geology, 1992, 87(5):1 419-1 429.
105 LI Huimin, LI Zhiming. Research on metallogenic geology characteristics and exploration indications of manganese, north edge of Yangzi platform[J]. Geology and Prospecting, 2005, 41(1):18-21.
李会民, 李智明. 扬子地台北缘锰矿成矿地质特征及找矿方向研究[J]. 地质与勘探, 2005, 41(1):18-21.
106 CHEN Jia, ZHU Mingzhong, DONG Shuyi, et al. REE characteristics of Mn-bearing carbonate rocks in Gaoyan manganese deposit, Chongqing[J]. Contributions to Geology and Mineral Resources Research, 2017, 32(3): 367-374.
陈佳, 朱明忠, 董树义, 等. 重庆高燕锰矿床含锰碳酸盐岩稀土元素特征[J]. 地质找矿论丛, 2017, 32(3): 367-374.
107 JIA Wei, CHEN Cuihua, ZHANG Zixian, et al. Ore-forming material source and sedimentary environment of Gaoyan Manganese Deposit in Chongqing[J]. Science Technology and Engineering, 2020, 20(5): 1 724-1 733.
贾伟, 陈翠华, 张自贤, 等. 重庆高燕锰矿床成矿物质来源及沉积环境[J]. 科学技术与工程, 2020, 20(5): 1 724-1 733.
108 LI Yingqiang, HE Dengfa, WEN Zhu. Palaeogeography and tectonic-depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas[J]. Journal of Palaeogeography, 2013, 15(2): 231-245.
李英强, 何登发, 文竹. 四川盆地及邻区晚震旦世古地理与构造—沉积环境演化[J]. 古地理学报, 2013, 15(2): 231-245.
109 WANG Zecheng, LIU jingjiang, JIANG Hua, et al. Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the middle-upper Yangtze region, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1):41-53.
110 LI Zhiwu, RAN Bo, XIAO Bin, et al. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin,central China and its implications for hydrocarbon exploration[J]. Earth Science Frontiers, 2019, 26(1): 59-85.
李智武, 冉波, 肖斌, 等. 四川盆地北缘震旦纪—早寒武世隆—坳格局及其油气勘探意义[J]. 地学前缘, 2019, 26(1): 59-85.
111 WANG Han, LI Zhiwu, LIU Shugen, et al. Ediacaran extension along the northern margin of the Yangtze Platform, South China: constraints from the lithofacies and geochemistry of the Doushantuo Formation[J]. Marine and Petroleum Geology, 2020, 112: 104 056-104 073.
112 BODOR S, POLGÁRI M, SZENTPÉTERY I, et al. Microbially mediated iron ore formation, Silicic Superunit, Rudabánya, Hungary[J]. Ore Geology Reviews, 2016, 72(P1): 391-401.
113 BARGAR J R, TEBO B M, BERGMANN U, et al. Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1[J]. American Mineralogist, 2005, 90: 143-154.
114 WEBB S, DICK G J, BARGAR J R, et al. Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(15): 5 558-5 563.
115 BANDSTRA J Z, ROSS D E, BRANTLEY S L, et al. Compendium and synthesis of bacterial manganese reduction rates[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 337-351.
116 TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic manganese oxides: properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 287-328.
117 WANG Xiao, LI Yan, LI Yanzhang, et al. Effects of Mg2+ and SO42- on Mn-carbonate mineralization induced by microorganisms in shallow seas[J]. Earth Science, 2018, 43(): 145-156.
王霄, 李艳, 黎晏彰, 等. 浅海Mg2+和SO42-对微生物诱导形成锰碳酸盐的影响[J]. 地球科学, 2018, 43(): 145-156.
118 LI Yan, WANG Xiao, LI Yanzhang, et al. Coupled anaerobic and aerobic microbial processes for Mn-carbonate precipitation: a realistic model of inorganic carbon pool formation[J]. Geochimica et Cosmochimica Acta, 2019, 256: 49-65.
119 MAYNARD J B. Manganiferous sediments, rocks, and ores[M]// Treatise on geochemistry(second edition). Elsevier, 2014, 9: 327-349.
120 JOHNSON J E, WEBB S M, MA Chi, et al. Manganese mineralogy and diagenesis in the sedimentary rock record[J]. Geochimica et Cosmochimica Acta, 2016, 173: 210-231.
121 KULESHOV V N, ZHEGALLO E A, SHKOL'NIK E L. Evolution of manganese ore genesis in the Earth's geological history and the role of the biosphere[J]. Doklady Earth Sciences, 2011, 441(2): 1 611-1 615.
122 LITHERLAND M, MALAN S P. Manganiferous stromatolites from the Precambrian of Botswana[J]. Journal of the Geological Society, 1973, 129(5): 543-544.
123 DOYEN L. The manganese ore deposit of Kisenge-Kamata (Western Katanga). Mineralogical and sedimentological aspects of the primary ore [M]// Ores in sediments. Heidelberg: International Sedimentological Congress, 1973: 93-100.
124 MONTY C L V. Les nodules de manganese sont des stromatolltes oceaniqnes[J]. Comptes Rendus de l'Académie des Sciences de Paris, 1973, 276 :3 285-3 288.
125 BIAN Lizeng, LIN Chengyi, ZHANG Fusheng, et al. Pelagic manganese nodules—a new type of oncolites[J]. Acta Geologica Sinica, 2010, 71(1):43-48.
边立曾, 林承毅, 张富生, 等. 深海锰结核——核形石的新类型[J]. 地质学报, 1996, 70(3): 232-236.
126 CHEN Jianlin, ZHANG Fusheng, BIAN Lizeng. Supermicroorganisms are the builders of ocean polymetallic nodule mineralization[J]. Chinese Science Bulletin, 1997, 42(4): 337-343.
陈建林, 张富生, 边立曾. 超微生物是大洋多金属结核成矿的建造者[J]. 科学通报, 1997, 42(4): 337-343.
127 HUANG Jin, ZHANG Fusheng, LIN Chengyi, et al. Study on rhythm of the stromatolitic lamina in the manganese nodules from the East Pacific Ocean[J]. Donghai Marine Science, 1999, 17(3): 33-39.
黄瑾, 张富生, 林承毅, 等. 东太平洋锰结核中叠层石纹层韵律的研究[J]. 东海海洋, 1999, 17(3): 33-39.
128 HAN Xiqiu, WANG Huiqun, FANG Yinxia, et al. Spectral analyses of rhythmic laminae of stromatolite in manganese nodules from the Pacific Ocean and their significance[J]. Acta Geologica Sinica, 2001, 75(4): 548-553.
韩喜球, 王惠群, 方银霞, 等. 东太平洋锰结核中叠层石纹层周期信号的谱分析及其意义[J]. 地质学报, 2001, 75(4): 548-553.
129 DENG Yu, ZHANG Fusheng, LIN Chengyi, et al. Electron microscopic observation of ultramicrobial fossils in deep-sea manganese nodules crust[J]. Journal of Chinese Electron Microscopy Society, 2006, 25(B08): 352-353.
邓昱, 张富生, 林承毅, 等. 深海锰结核结壳中超微生物化石的电镜观察[J]. 电子显微学报, 2006, 25(B08): 352-353.
130 REID R P. Nonskeletal peloidal precipitates in upper Triassic reefs, Yukon Territory (Canada)[J]. Journal of Sedimentary Petrology, 1987, 57(5): 893-900.
131 DUPRAZ C, VISSCHER P T, BAUMGARTNER L K, et al. Microbe-mineral interactions: early CaCO3 precipitation in a Recent hypersaline lake (Eleuthera Islands, Bahamas)[J]. Sedimentology, 2004, 51(4): 745-765.
132 RIDING R, TOMÁS S. Stromatolite reef crusts, Early Cretaceous, Spain: bacterial origin of in situ-precipitated peloid microspar? [J]. Sedimentology, 2010, 53(1): 23-34.
133 ADACHI N, EZAKI Y, LIU Jianbo, et al. Late Ediacaran Boxonia-bearing stromatolites from the Gobi-Altay, western Mongolia[J]. Precambrian Research, 2019, 334:105470.
134 ZHANG Wei. Important development and significance of modern carbonate stromatolites [J]. Advances in Earth Science, 2020, 35(1): 70-78.
张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
135 WANG Long, KHALID L, MUHAMMAD R, et al. The genesis, classification, problems and prospects of microbial carbonates: implications from the Cambrian carbonate of North China Platform[J]. Advances in Earth Science, 2018, 33(10): 1 005-1 023.
王龙, KHALID L, MUHAMMAD R, 等. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1 005-1 023.
[1] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
阅读次数
全文


摘要