[1] Wu Shiying. The Hydrothermal Sulphide Resourceat Sea Floor of the World[M]. Beijing: Oceanic Press, 2000.1-290.[吴世迎.世界海底热液硫化物资源[M].北京:海洋出版社,2000.1-290] [2] Zeng Zhigang, Qin Yunshan. Contribution of ocean drilling to the study of seafloorhydrothermal activity[J]. Advances in Earth science,2003,18(5): 764-772.[曾志刚,秦蕴珊. 大洋钻探对海底热液活动研究的贡献[J]. 地球科学进展,2003,18(5):764-772.] [3] Makoto Yuasa. Discussion on seafloor hydrothermal mineral deposit[J]. Geology News, 1983,345:34-43(in Japanese). [4] You C F, Bickle M J. Evolution of an active sea-floor massive sulphide deposit[J]. Nature, 1998, 394:668-671. [5] Prieur D. Microbiology of deep-sea hydrothermal vents[J]. Marine Biotechnology, 1997, 15:242-244. [6] Reysenbach A L, Cady S L. Microbiology of ancient and modern hydrothermal systems[J]. Trends in Microbiology, 2001, 9:79-86. [7] Dziak R P, Johnson H P. Stirring the Oceanic Incubator[J]. Science, 2002, 296: 1 406-1 407. [8] Rona P A, Klinkhammer G, Nelsen T A, et al. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge[J]. Nature, 1986,321:33-37.[9] Pradillon F, Shillito B, Young C M, et al. Developmental arrest in vent worm embryos[J]. Nature,2001,413:698-699. [10] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic ridge at 30°N[J]. Nature,2001,412:145-148. [11] Lutz R A. The biology of deep-sea vents and seeps[J]. Oceanus,1991/92,34:75-83. [12] Marsh A G, Mullineaux L S, Young C M, et al. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents[J]. Nature, 2001, 411: 77-80. [13] Dover C L V. Do‘eyeless’shrimp see the light of glowing deep-sea vents[J]. Oceanus,1988/89,26:47-52. [14] Dubilier N, Mülders C, Ferdelman T, et al. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm[J]. Nature, 2001, 411: 298-302. [15] Zierenberg R A, Adams M W W , Arp A J. Life in extreme environments: Hydrothermal vents[J]. Science USA, 2000,97:12 961-12 962. [16] Deming J W, Baross J A. Deep-sea smokers: Windows to a subsurface biosphere[J].Geochimica et Cosmochimica Acta, 1993, 57:3 219-3 229. [17] Hedrick D B, Guckert J B, White D C, et al. In situ microbial ecology of hydrothermal vent sediments[J]. FEMS Microbiology Reviews, 1992, 101:1-10. [18] Fortin D, Ferris F G , Scott S D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean[J]. American Mineralogist,1998, 83:1 399-1 408. [19] Woese C R, Fox G E. Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms[J]. Science USA,1977,74:5 088-5 090. [20] Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya[J]. Science USA,1990,87:4 576-4 579. [21] Xie Tao, Ding Dafu. The third form of life—Advance in three boundary theory[J].Life Sciences,1997,19:233-236. [解涛,丁达夫.生命的第三界——三界学说的新发展[J].生命科学,1997,19:233-236.] [22] Bult C J, White O,Olsen G J, et al. Complete genome sequence of the methanogenic archaeon, methanococcus jannasvhii[J]. Science,1996,273:1 085-1 073. [23] Hu Kai, Wu Qingshu. The basic outline of the evolution of single cell life-form[J]. Hereditas,2002, 24(1):104-110. [胡楷,吴庆书.单细胞生物进化研究的进步[J].遗传,2002,24(1):104-110.] [24] Ma Ting, Liu Rulin. Study on thermotolerant mechanism of thermophiles[J]. Microbiology Bulletin, 2002, 29:86-88.[马挺, 刘如林. 嗜热菌耐热机理的研究进展[J].微生物学通报,2002, 29:86-88.][25] Gold T. The deep, hot biosphere[J]. Science USA, 1992, 89:6 045-6 049. [26] Reysenbach A L, Shock E. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science, 2002, 296: 1 077-1 082. [27] Madigan M T, Martinko J M, Parker J. Biology[M]. Beijing: Science Press, 2001.751-760. [28] Juniper S K, Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal sites[J]. Canadian Mineralogist, 1988,26:859-869. [29] Warren L A, Kauffman M E. Microbial geoengineers[J]. Science, 2003, 299:1 027-1 028. [30] Labrenz M, Druschel G K, Thomsen-Ebert T, et al. Formation of Sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290:1 744-1 747. [31] Kazue Tazaki. 微生物がつくる鉱物[J]. Geology News, 1995,489:17-30(in Japanese). [32] Beveridge T J, Fyfe W S. Metal fixation by bacterial cell walls[J]. Canadian Journal of Earth Science,1985, 22: 1 892-1 898. [33] Cary S C, Shank T, Stein J. Worms bask in extreme temperatures[J]. Nature, 1998, 391: 545-546. [34] Maginn E J, Little C T S, Herrington R J, et al. Mills Sulphide mineralisation in the deep sea hydrothermal vent polychaete, Alvinella pompejana: Implications for fossil preservation[J]. Marine Geology, 2002, 181: 337-356. [35] Konhauser K O. Diversity of bacterial iron mineralization[J]. Earth-Science Reviews,1998,43:91-121. [36] Dai Yongding. Biomineralogy[M]. Beijing: Petroleum Industry Publishing House, 1994.303-321. [戴永定.生物矿物学[M].北京:石油工业出版社, 1994.303-321.] [37] Cowen J P, Giovannoni S J, Kenig F, et al. Fluids from aging ocean crust that support microbial life[J]. Science, 2003, 299:120-123. [38] Hofmann B A, Farmer J D. Filamentous fabrics in low-temperature mineral assemblages: Are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars[J]. Planetary and Space Science, 2000, 48: 1 077-1 086. [39] D’Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments[J]. Science, 2002, 295: 2 067-2 070. [40] Taylor C D ,Wirsen C O. Microbiology and ecology of filamentous sulfur formation[J]. Science, 1997, 277:1 483-1 485. [41] Zhang Yun. Biological Evolution[M].Beijing: Beijing University Press,1998.41-86.[张昀. 生物进化[M].北京:北京大学出版社, 1998.41-86.] |