地球科学进展 ›› 2005, Vol. 20 ›› Issue (7): 732 -739. doi: 10.11867/j.issn.1001-8166.2005.07.0732

研究论文 上一篇    下一篇

现代海底热液微生物群落及其地质意义
冯 军,李江海,牛向龙   
  1. 北京大学地球与空间科学学院,教育部造山带与地壳演化重点实验室,北京 100871
  • 收稿日期:2004-06-07 修回日期:2004-11-01 出版日期:2005-07-25
  • 通讯作者: 冯 军
  • 基金资助:

    国家自然科学基金项目“河北兴隆中元古代硫化物黑烟囱形成机理及其意义”(编号:40472097)资助.

RESEARCH ADVANCES IN HYDROTHERMAL VENT MICROBIAL COMMUNITIES AND ITS SIGNIFICANCE FOR GEOLOGY

FENG Jun; LI Jianghai; NIU Xianglong   

  1. School of Earth and Space Sciences, Peking University, Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Beijing 100871,China
  • Received:2004-06-07 Revised:2004-11-01 Online:2005-07-25 Published:2005-07-25

现代海底黑烟囱周围生活着密集的生物群落,它们一般以黑烟囱喷口为中心向四周呈带状分布。热液生态系统的初级生产者嗜热细菌和古细菌,其初级能量来源于地球深部上升喷出流体提供的化学能,它们氧化热液中硫化物(如H2S、FeS)和甲烷获得能量,还原CO2制造有机物,而不依赖光合作用。作为食物链源头的细菌类和古细菌类与其他动物有2种生存关系:①直接作为其他动物的食物;②与其他动物之间的共生关系。这些嗜热微生物不仅依存于海底热液活动,同时在热液成矿作用中起着重要的作用。它们可能来源于地下深部生物圈,海底黑烟囱是研究深部生物圈的窗口,对其周围嗜热微生物的研究,对于理解生命起源和生物成矿都有重要的理论意义。

Hydrothermal communities in deep seafloor live around Black Smoker sites. The primary producers of hydrothermal ecosystems are thermophiles and archaea. Bacteria convert chemicals (from the sulfurrich fluid spewed out of vents) to energy, in a process called chemosynthesis. They get energy depending on the oxidation of sulfides (H2S, FeS2) and methane and the reduction of carbon dioxide, instead of photosynthesis. There are two kinds of relationship between thermophiles and other animals. Other animals eat thermophiles or thermophiles exist in a symbiotic relationship with vent animals. Thermophiles not only depend on the deep-sea hydrothermal activities, but also play an important role of hydrothermal mineralization. The source of them is likely to be subsurface biosphere. Black smokers could be “windows to a deep biosphere”, which has crucial implication for the research of thermophiles and the understanding of astrobiology and the origin of life.

中图分类号: 

[1] Wu Shiying. The Hydrothermal Sulphide Resourceat Sea Floor of the World[M]. Beijing: Oceanic Press, 2000.1-290.[吴世迎.世界海底热液硫化物资源[M].北京:海洋出版社,2000.1-290]
[2] Zeng Zhigang, Qin Yunshan. Contribution of ocean drilling to the study of seafloorhydrothermal activity[J]. Advances in Earth science,2003,18(5): 764-772.[曾志刚,秦蕴珊. 大洋钻探对海底热液活动研究的贡献[J]. 地球科学进展,2003,18(5):764-772.]
[3] Makoto Yuasa. Discussion on seafloor hydrothermal mineral deposit[J]. Geology News, 1983,345:34-43(in Japanese).
[4] You C F, Bickle M J. Evolution of an active sea-floor massive sulphide deposit[J]. Nature, 1998, 394:668-671.
[5] Prieur D. Microbiology of deep-sea hydrothermal vents[J]. Marine Biotechnology, 1997, 15:242-244.
[6] Reysenbach A L, Cady S L. Microbiology of ancient and modern hydrothermal systems[J]. Trends in Microbiology, 2001, 9:79-86.
[7] Dziak R P, Johnson H P. Stirring the Oceanic Incubator[J]. Science, 2002, 296: 1 406-1 407.
[8] Rona P A, Klinkhammer G, Nelsen T A, et al.  Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge[J]. Nature, 1986,321:33-37.[9] Pradillon F, Shillito B, Young C M, et al. Developmental arrest in vent worm embryos[J]. Nature,2001,413:698-699.
[10] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic ridge at 30°N[J]. Nature,2001,412:145-148.
[11] Lutz R A. The biology of deep-sea vents and seeps[J]. Oceanus,1991/92,34:75-83.
[12] Marsh A G, Mullineaux L S, Young C M, et al. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents[J]. Nature, 2001,  411: 77-80.
[13] Dover C L V. Do‘eyeless’shrimp see the light of glowing deep-sea vents[J]. Oceanus,1988/89,26:47-52.
[14] Dubilier N, Mülders C, Ferdelman T, et al. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm[J]. Nature, 2001, 411: 298-302.
[15] Zierenberg R A, Adams M W W , Arp A J. Life in extreme environments: Hydrothermal vents[J]. Science USA, 2000,97:12 961-12 962.
[16] Deming J W, Baross J A. Deep-sea smokers: Windows to a subsurface biosphere[J].Geochimica et Cosmochimica Acta, 1993, 57:3 219-3 229. 
[17] Hedrick D B, Guckert J B, White D C, et al. In situ microbial ecology of hydrothermal vent sediments[J]. FEMS Microbiology Reviews, 1992, 101:1-10. 
[18] Fortin D, Ferris F G , Scott S D. Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean[J]. American Mineralogist,1998, 83:1 399-1 408.
[19] Woese C R, Fox G E. Phylogenetic Structure of the Prokaryotic Domain: The Primary Kingdoms[J]. Science USA,1977,74:5 088-5 090. 
[20] Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya[J]. Science USA,1990,87:4 576-4 579. 
[21] Xie Tao, Ding Dafu. The third form of life—Advance in three boundary theory[J].Life Sciences,1997,19:233-236. [解涛,丁达夫.生命的第三界——三界学说的新发展[J].生命科学,1997,19:233-236.]
[22] Bult C J, White O,Olsen G J, et al. Complete genome sequence of the methanogenic archaeon, methanococcus jannasvhii[J]. Science,1996,273:1 085-1 073.
[23] Hu Kai, Wu Qingshu. The basic outline of the evolution of single cell life-form[J]. Hereditas,2002, 24(1):104-110. [胡楷,吴庆书.单细胞生物进化研究的进步[J].遗传,2002,24(1):104-110.]
[24] Ma Ting, Liu Rulin. Study on thermotolerant mechanism of thermophiles[J]. Microbiology Bulletin, 2002, 29:86-88.[马挺, 刘如林. 嗜热菌耐热机理的研究进展[J].微生物学通报,2002, 29:86-88.][25] Gold T. The deep, hot biosphere[J]. Science USA, 1992, 89:6 045-6 049.
[26] Reysenbach A L, Shock E. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science, 2002, 296: 1 077-1 082.
[27] Madigan M T, Martinko J M, Parker J. Biology[M]. Beijing: Science Press, 2001.751-760.
[28] Juniper S K, Fouquet Y. Filamentous iron-silica deposits from modern and ancient hydrothermal sites[J]. Canadian Mineralogist, 1988,26:859-869.
[29] Warren L A, Kauffman M E. Microbial geoengineers[J]. Science, 2003, 299:1 027-1 028.
[30] Labrenz M, Druschel G K, Thomsen-Ebert T, et al. Formation of Sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290:1 744-1 747.
[31] Kazue Tazaki. 微生物がつくる鉱物[J]. Geology News, 1995,489:17-30(in Japanese).
[32] Beveridge T J, Fyfe W S. Metal fixation by bacterial cell walls[J]. Canadian Journal of Earth Science,1985, 22: 1 892-1 898.
[33] Cary S C, Shank T, Stein J. Worms bask in extreme temperatures[J]. Nature, 1998, 391: 545-546.
[34] Maginn E J, Little C T S, Herrington R J, et al. Mills Sulphide mineralisation in the deep sea hydrothermal vent polychaete, Alvinella pompejana: Implications for fossil preservation[J]. Marine Geology, 2002, 181: 337-356.
[35] Konhauser K O. Diversity of bacterial iron mineralization[J]. Earth-Science Reviews,1998,43:91-121.
[36] Dai Yongding. Biomineralogy[M]. Beijing: Petroleum Industry Publishing House, 1994.303-321. [戴永定.生物矿物学[M].北京:石油工业出版社, 1994.303-321.]
[37] Cowen J P, Giovannoni S J, Kenig F, et al. Fluids from aging ocean crust that support microbial life[J]. Science, 2003, 299:120-123.
[38] Hofmann B A, Farmer J D. Filamentous fabrics in low-temperature mineral assemblages: Are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars[J]. Planetary and Space Science, 2000, 48: 1 077-1 086.
[39] D’Hondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments[J]. Science, 2002, 295: 2 067-2 070.
[40] Taylor C D ,Wirsen C O. Microbiology and ecology of filamentous sulfur formation[J]. Science, 1997, 277:1 483-1 485.
[41] Zhang Yun. Biological Evolution[M].Beijing: Beijing University Press,1998.41-86.[张昀. 生物进化[M].北京:北京大学出版社, 1998.41-86.]

[1] 孙华山,杨辉. 远喷口型 SEDEX铅锌矿床最新研究进展及发展趋势[J]. 地球科学进展, 2021, 36(7): 663-670.
[2] 李荣西, 毛景文, 赵帮胜, 陈宝赟, 刘淑文. 烃类流体在 MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.
[3] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[4] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[5] 党宏月;宋林生;李铁刚;秦蕴珊. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12): 1306-1313.
[6] StevenD'Hondt. 大洋钻探对洋底以下生命的探索[J]. 地球科学进展, 2003, 18(5): 759-763.
阅读次数
全文


摘要