地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 759 -763. doi: 10.11867/j.issn.1001-8166.2003.05.0759

研究论文 上一篇    下一篇

大洋钻探对洋底以下生命的探索
StevenD'Hondt   
  1. Graduate School of Oceanography,Universi ty of RhodeIsland,Narragansett,RI02882,USA
  • 收稿日期:2003-06-23 修回日期:2003-07-27 出版日期:2003-12-20
  • 通讯作者: StevenD'Hondt E-mail:dhondt@gsosunl.gso.uri.edu

StevenD'Hondt   

  1. Graduate School of Oceanography,Universi ty of RhodeIsland,Narragansett,RI02882,USA
  • Received:2003-06-23 Revised:2003-07-27 Online:2003-12-20 Published:2003-10-01

    对ODP采集的沉积物样品的地球化学研究揭示,在全世界所有的大洋底以下都发现了细菌活动,洋底沉积物中的生物圈可能构成了地球生物数量的 1/3,该生物圈通过调节海洋沉积物的成岩作用和大洋玄武岩的风化,影响到长期的全球生物地球化学循环。
    DSDP最早提出了海洋沉积物中细菌活动性的证据,ODP的一系列航次提供了各种不同环境下深部生物圈细菌群落以及细菌参与的地球化学过程纪录。ODP201是第一个专门致力于研究洋底以下生命的大洋钻探航次,它记录了从富有机质的边缘沉积到贫有机质的开阔海沉积环境的洋底以下细菌活动性和细菌群落的连续性,201航次还揭示,古海洋环境对现在正活跃于深海沉积物中的原核生物群落造成了影响。

中图分类号: 

[1] Cragg B A, Parkes R J, Fry J C, et al. Bacterial biomass and activity profiles within deep sediment layers[J]. Proceedings of the Ocean Drilling Program Scientific Results, 1990, 112: 607-619.

[2] Thierstein H R, Störrlein U. Living bacteria in Antarctic sediments from Leg 119[J]. Proceedings of the Ocean Drilling Program Scientific Results,1991,119: 687-692.

[3] Parkes R J, Cragg B A,Wellsbury P. Recent studies on bacterial populations and processes in subseafloor sediments: A review[J]. Hydrogeological Journal,2000,8:160. 

[4] Taylor B, Huchon P, Klaus A, et al. Active continental extension in the Western Woodlark Basin, Papua New Guinea[J]. Proceedings of the Ocean Drilling Program Initial Reports,1999,180:1-77.

[5] D’Hondt S L, Jørgensen B B, Miller D J, et al. Proceedings of ODP, Initial Reports[R]. Ocean Drilling Program, Texas A & M University, College Station, TX, USA, 2003.201.

[6] Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen maJority[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95:6 578-6 583.

[7] Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments, in Kaplan[A]. In: Natural Gases in Marine Sediments[C]. New York: N Y Plenum Press,1974.99-139.

[8] Fisk M R, Giovannoni S J, Thorseth I H. Alteration of oceanic volcanic glass: Textural evidence of microbial activity[J]. Science,1998,281:978-980.

[9] Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir[J]. Geochimica et Cosmochimica Acta, 2001, 65:529-543.

[10] Bastin E S, Anderson B, Greer F E, et al. The problem of the natural reduction of sulphates[J]. Bulletin of the American Association of Petroleum Geologists, 1926, 10:1 270-1 299.

[11] Oremland R S, Culbertson C, Simoneit B R T. Methanogenic activity in sediment from Leg 64, Gulf of California, in Curray[A]. In: Initial Reports of the Deep Sea Drilling Project[C]. Washington DC: US Government Printing Office,1982, 64: 759-762.

[12] Tarafa M E, Whelan J K. Evidence of microbiological activity in Leg 95 (New Jersey Transect) sediments, in Poag[A]. In: Initial Reports of the Deep Sea Drilling ProJect[C]. Washington DC:US Government Printing Office, 1987, 95:635-640.

[13] Whelan J K, Oremland R, Tarafa M, et al. Evidence for sulfate-reducing and methane-producing microorganisms in sediments from Sites 618, 619, and 222, in Bouma[A]. Initial Reports of the Deep Sea Drilling Project [C]. Washington DC: US Government Printing Office,1986,96:767-775.

[14] D'Hondt S, Rutherford S, Spivack A, et al. Metabolic activity of the subsurface biosphere in deep-sea sediments [J]. Science,2002,295:2 067-2 070.

[15] Rochelle P A, Fry J C, Parkes R J, et al. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities [J]. Federation of European Microbiological Societies Microbiology Letters, 1992, 100:59-65.

[16] Bale S J, Goodman K, Rochelle P A,et al. Desulfovibrio profundus sp nov, a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea [J]. International Journal of Systematic Bacteriology, 1997, 47:515-521.

[17] Torsvik T, Furnes H, Muehlenbachs K, et al. Evidence for microbial activity at the glass-alteration interface in oceanic basalts [J]. Earth and Planetary Science Letters, 1998,162:165-176.

[18] Staudigel H, Yayanos A, Chastian R, et al. Biologically mediated dissolution of volcanic glass in seawater [J]. Earth and Planetary Science Letters,1998, 164:233-244.

[19] Smith D C, Spivack A J, Fisk M R, et al. ODP Leg 185 Shipboard Science Party, Tracer-based estimates of drilling-induced microbial contamination of deep sea crust[J]. Geomicro-biological Journal, 2000, 17:207-219.

[20] Griffin W T, Phelps T J, ColwellF S, et al. Methods for obtaining deep subsurface micro biological samples by drilling [A]. In:The Microbiology of the Terrestrial and Deep Subsurface [C]. Boca Raton: Lewis Publishers, 1997.23-44.

[21] House C H, Cragg B A, Teske A. Drilling contamination tests during ODP Leg 201 using chemical and particulate tracers[A]. In: Proceedings of ODP, Initial Reports[C]. Ocean Drilling Program: Texas A&M University, College Station, TX 77845-9547, USA,2003, 201:1-19.

[1] 拓守廷,温廷宇,张钊,李阳阳. 大洋钻探计划运行的国际经验及对我国的启示[J]. 地球科学进展, 2021, 36(6): 632-642.
[2] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[3] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[4] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[5] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[6] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[7] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[8] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[9] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[10] 汪品先. 未雨绸缪——迎接大洋钻探学术新计划的制定[J]. 地球科学进展, 2017, 32(12): 1229-1235.
[11] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[12] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[13] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[14] 郑伟, 齐永安, 张忠慧, 邢智峰. 豫西荥阳陆相二叠纪—三叠纪之交的微生物成因构造(MISS)及其地质意义[J]. 地球科学进展, 2016, 31(7): 737-750.
[15] 王莹, 刘同旭, 李芳柏. 微生物—矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31(4): 347-356.
阅读次数
全文


摘要