Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (7): 696-706    DOI: 10.11867/j.issn.1001-8166.2017.07.0696
综述与评述     
深海热液生态系统特征及其对极端微生物的影响
张亮1, 2, 秦蕴珊1
1.中国科学院海洋地质与环境重点实验室,中国科学院海洋研究所,山东 青岛 266071;
2.海洋国家实验室海洋矿产资源评价与探测技术功能实验室,山东 青岛 266071
The Characteristic of Deep Sea Hydrothermal Ecosystem and Their Impact on the Extreme Microorganism
Zhang Liang1, 2, Qin Yunshan1
1.Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2.Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
 全文: PDF(10695 KB)   HTML
摘要: 深海是地球上最重要的极端环境之一,发育了数量巨大的极端微生物。它们独特的生存环境、生理结构、代谢机制和共生关系成为探讨生命起源及寻找外太空生命的关键。尽管从生物学角度对极端微生物已开展了大量研究,但深海热液系统对极端微生物演化的影响仍不甚清楚。因此,在总结深海极端的理化环境和地质环境特征的基础上,分析了海底热液活动的分布特征、形成机理及其对周围生物群落种类、分布和演替规律的巨大影响。重点探讨了热液环境下各种极端微生物的生命形式及其对深海营养物质循环和生态系统演化的重要意义。目前,极端环境与生命过程的研究仍处于初级阶段,亟待加强深海原位探测和分子生物学技术的研发以及多学科交叉研究。
关键词: 热液喷口极端环境深海极端微生物    
Abstract: Deep-sea is one of the most important extreme environments on the earth. Numerous and diverse extremophiles thrive in this extreme environment, presenting distinctive physiological structure, metabolic mechanism and symbiosis relations, which provide new methods to study the origin of life and extraterrestrial life. Despite extensive studies on deep-sea extremophiles from the point of view of biology, the impacts of deep-sea hydrothermal activity on the evolution of extremophiles remain largely unknown. On the basis of summarizing features of the deep-sea ziphysicochemical and geological environment, the distribution and formation mechanism of submarine hydrothermal vents were analyzed, respectively. Hydrothermal vents have great effect on the distribution and succession of communities. Our discussion focused on the extreme life forms of microorganisms surviving in the hydrothermal ecosystem and their important significance for the nutrient cycling and ecosystem evolution. However, the research of life processes in extreme environments is still in the primary stage and more work is needed on the in-situ detection technique, molecular biology and interdisciplinary research.
Key words: Extremophiles    Deep-sea    Hydrothermal vents.    Extreme environment
收稿日期: 2017-01-23 出版日期: 2017-07-20
ZTFLH:  P735  
基金资助: 国家自然科学基金项目“冲绳海槽中北部和南部热液活动区构造差异及控制因素研究”(编号:41406065); 国家重点基础研究发展计划项目“典型弧后盆地热液活动及其成矿机理”(编号:2013CB429700)资助
作者简介: 张亮(1985-),男,山东曲阜人,助理研究员,主要从事海底热液活动研究.E-mail:zhangliang@qdio.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张亮
秦蕴珊

引用本文:

张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.

Zhang Liang, Qin Yunshan. The Characteristic of Deep Sea Hydrothermal Ecosystem and Their Impact on the Extreme Microorganism. Advances in Earth Science, 2017, 32(7): 696-706.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.07.0696        http://www.adearth.ac.cn/CN/Y2017/V32/I7/696

[1] Tyler P. Ecosystems of the Deep Ocean[M]. Amsterdam: Elsevier Science Ltd., 2003.
[2] Lonsdale P. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers[J]. Deep Sea Research , 1977, 24(9): 857-863.
[3] Gold T. The deep, hot biosphere[J]. Proceedings of National Academy of Sciences , 1992, 89: 6 045-6 049.
[4] Reysenbach A L, Shock E. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science , 2002, 296(5 570): 1 077-1 082.
[5] Hasan N A, Grim C J, Lipp E K, et al . Deep-sea hydrothermal vent bacteria related to human pathogentic Vibrio species[J]. Proceedings of National Academy of Sciences , 2015, doi:10.1073/pnas.1503928112.
[6] Xiao Xiang, Zhang Yu. Life in extreme environments: Approaches to study life-environment co-evolutionary strategies[J]. Science in China ( Series D ), 2014, 57(5): 869-877.
. 中国科学:D辑, 2014, 44(6): 1 087-1 095.]
[7] Rothschild L J, Mancinelli R L. Life in extreme environments[J]. Nature , 2001, 409: 1 092-1 101.
[8] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews , 1995, 59(1): 143-169.
[9] Jørgensen B B, Boetius A. Feast and famine-microbial life in the deep-sea bed[J]. Nature Reviews Microbiology , 2007,5(10): 770-781.
[10] Li Xuegong, Xu Jun, Xiao Xiang. High pressure adaptation of deep-sea microorganisms and biogeochemical cycles[J]. Microbiology China , 2013, 40(1): 59-70.

[11] Nagano Y, Nagahama T. Fungal diversity in deep-sea extreme environments[J]. Fungal Ecology , 2012, 5(4): 463-471.
[12] Oyanagi R, Okamoto A, Hirano N, et al . Competitive hydration and dehydration at olivine-quartz boundary revealed by hydrothermal experiments: Implications for silica metasomatism at the crust-mantle boundary[J]. Earth and Planetary Science Letters , 2015, 425: 44-54.
[13] Haase K M, Petersen S, Koschinsky A, et al . Fluid compositions and mineralogy of precipiates from Mid Atlantic Ridge hydrothermal vents at 4°48'S[J]. PANGAEA ,2009,doi:10.1594/ PANGAEA. 727454.
[14] Fang J, Bazylinski D A. Deep Sea Geomicrobiology[M]. Washington DC: High-Pressure Microbiology ASM Press, 2008.
[15] Beaulieu S E, Baker E T, German C R, et al . Where are the undiscovered hydrothermal vents on oceanic spreading ridges?[J]. Deep-Sea ResearchⅡ : Topical Studies in Oceanography , 2015,doi:10.1016/j.dsr 2.2015.05.001i.
[16] Bird P. An updated digital model of plate boundaries[J]. Geochemistry Geophysics Geosystems , 2003, 4(3): 1 027, doi:10.1029/2001GC000252.
[17] Kelley D S, Baross J A, Delaney J R, et al. Volcanoes, fluids, and life at a mid-ocean ridge spreading centers[J]. Annual Review Earth & Planet Science , 2002, 30: 385-491.
[18] Kelley D S, Delaney J R, Lilley M D, et al . Unusual sulfide structures and venting style in the newly discovered Mothra Hydrothermal Field, Endeavour Segment of the Juan de Fuca Ridge[J]. Eos Transaction American Geophysical Union , 1997, 78: 46.
[19] Humphris S E, Herzig P M, Miller D J, et al . The internal structure of an active sea-floor massive sulphide deposit[J]. Nature , 1995, 377(6 551): 713-716.
[20] Christiansen B, Wolff G. The oceanography, biogeochemistry and ecology of two NE Atlantic seamounts: The OASIS project[J]. Deep-Sea Research Part II : Topical Studies in Oceanography , 2009, 56(25): 2 579-2 581.
[21] Shao Ke, Chen Jianping, Ren Mengyi. Evaluation methodology and indicator system of polymetallic sulfide mineral resources in the Indian Ocean[J]. Advances in Earth Science ,2015, 30(7): 812-822.
. 地球科学进展, 2015, 30(7): 812-822.]
[22] Yanagawa K, Nunoura T, McAllister S M, et al . The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)[J]. Frontiers in Microbiology , 2013, 4: 1-10.
[23] Hasterok D, Chapman D S, Davis E E. Ocean heat flow: Implications for global heat loss[J]. Earth Planetary Science Letters , 2011, 311(3/4): 386-395.
[24] Takai K, Oida H, Suzuki Y, et al . Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems[J]. Applied and Environmental Microbiology , 2004, 70(4): 2 404-2 413.
[25] Thornburg C T, Zabriskie T M, McPhail K L. Deep-sea hydrothermal vent: Potential hot spots for natural products discovery?[J]. Journal of Natural Products , 2010, 73: 489-499.
[26] Martin W, Baross J, Kelley D, et al . Hydrothermal vents and the origin of life[J]. Nature Reviews Microbiology , 2008, 6: 805-814.
[27] Baker E T, German C R, Elderfield H. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences[M]∥Hamphris S E, Zierenbeng R A, Mulineaux L S, et al , eds. Seafloor Hydnthermal Systems: Pjusical, Chemical, Biological, and Geological Interactions.2003.
[28] Beaulieu S E, Baker E T, German C R, et al . An authoritative global database for active submarine hydrothermal vent fields[J]. Geochemistry Geophysics Geosystems , 2013, 14(11): 4 892-4 905.
[29] Connelly D P, Copley J T, Murton B J, et al . Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre[J]. Nature Communications , 2012,(3): 620.
[30] Luan Xiwu. Distribution and tectonic environments of the hydrothermal fields[J]. Advances in Earth Science , 2004, 19(6):931-938.
. 地球科学进展, 2004, 19(6): 931-938.]
[31] Beaulieu S E, Baker E T, German C R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?[J]. Deep-Sea Research Part II : Topical Studies in Oceanography , 2015, 121: 202-212.
[32] Van Dover C L. The Ecology of Deep-Sea Hydrothermal Vents[M]. Princeton, New Jersey:Princeton University Press,2000.
[33] Koschinsky A, Garbe-Schönberg D, Sander S, et al . Hydrothermal venting at pressure- temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge[J]. Geology , 2008, 36(8): 615-618.
[34] Tivey M K. Hydrothermal vent systems[J]. Oceanus , 1991, 34(4): 68-74.
[35] Edmond J M, Von Damm K L, Mcduff R E, et al . Chemistry of hot spring on the East Pacific Rise and their effluent dispersal[J]. Nature , 1982, 297: 187-191.
[36] Wei Manman, Chen Xinhua, Zhou Hongbo. Research process of microbial community in deep-sea hydrothermal vents[J]. Marine Science , 2012, 36(6): 113-121.
. 海洋科学, 2012, 36(6): 113-121.]
[37] Luan Xiwu, Qin Yunshan.Survey methods of modern hydrothermal activity[J]. Progress in Geophysics , 2002, 17(4): 592-597.
. 地球物理学进展, 2002, 17(4): 592-597.]
[38] Luan Xiwu, Zhao Yiyang, Qin Yunshan. A study on shape of hydrothermal plume[J]. Journal of Tropical Oceanography , 2002, 21(2): 91-97.
. 热带海洋学报, 2002, 21(2): 91-97.]
[39] Luan Xiwu. The shape of hydrothermal plume and observation of the submerged buoy[C]∥The 26 th Annual Meeting of China Geophysical Society. Ningbo, 2010.
∥中国地球物理学会第二十六届年会.宁波,2010.]
[40] Luan Xiwu, Zhao Yiyang, Qin Yunshan, et al . Heat flux estimates from hydrothermal system to the ocean[J]. Acta Oceanologica Sinica , 2002, 24(6): 59-66.
. 海洋学报, 2002, 24(6): 59-66.]
[41] Zhai Shikui, Wang Xingtao, Yu Zenghui, et al . Heat and mass flux estimation of modern seafloor hydrothermal activity[J]. Acta Oceanologica Sinica , 2005, 27(2): 115-121.
. 海洋学报, 2005, 27(2): 115-121.]
[42] Stein C A, Stein S. Constraints on hydrothermalheat flux through the oceanic lithospheric from global heat flow[J]. Journal of Geophysical Research , 1994, 99: 3 081-3 095.
[43] Rona P A,Hannington M D, Raman C V, et al. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Economic Geology , 1993, 88: 1 989-2 017.
[44] Sylvan J B, Toner B M, Edwards K J. Life and death of deep-sea vents: Bacterial diversity and ecosystem succession on inactive hydrothermal sulfides[J]. MBio , 2012, 3(1): 1-10.
[45] Karl D M. The Microbiology of Deep-Sea Hydrothermal vents[M].Florida: CRC Press, 1995.
[46] Jin Xianglong. The development of research in marine geophysics and acoustic technology for submarineexploration[J]. Progress in Geophysics , 2007, 22(4): 1 243-1 249.
. 地球物理学进展, 2007, 22(4): 1 243-1 249.]
[47] Inagaki F, Takai K, Komatsu T, et al . Archaeology of Archaea:Geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment[J]. Extremophiles , 2001, 5(6): 385-392.
[48] Ma Junying, Zhai Shikui. Biological communities of the hydrothermal area on the Iheya Bideg of Okinawa Trough[J]. Marine Science , 1996, 20(2): 30-34.
.海洋科学, 1996, 20(2): 30-34.]
[49] Tunnicliffe V, Fowler C M. Influence of sea-floor spreading on the global hydrothermal vent fauna[J]. Nature , 1996, 379(6 565): 531-533.
[50] Boetius A. Lost city life[J]. Science , 2005, 307: 1 420-1 422.
[51] Desbruyères D, Segonzac M, Bright M. Handbook of deep-sea hydrothermal vent fauna second completely revised edition[J]. Denisia , 2006,18:433-455.
[52] Wang Liling, Lin Jingxing, Hu Jianfang. Recent progress in deep-sea hydrothermal vent communities[J]. Advances in Earth Science , 2008, 23(6): 604-612.
. 地球科学进展, 2008, 23(6): 604-612.]
[53] Van Dover C L, Humphris S E, Fornari D, et al . Biogeography and ecological setting of Indian Ocean hydrothermal vents[J]. Science , 2001, 294(5 543): 818-823.
[54] Laubier L, Desbruyères D. Les oasis du fond des oceans[J]. La Recherche , 1984, 15: 1 506-1 517.
[55] López-García P,López-López A,Moreira D, et al .Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front[J]. Fems Microbiology Ecology ,2001,36 (2/3):193-202.
[56] Childress J J, Fisher C R. The biology of hydrothermal vent animals: Physiology, biochemistry and auotrophic symbioses[J]. Oceanography and Marine Biology , 1992, 30: 337-441.
[57] Marcus J, Tunnicliffe V, Butterfield D A. Post-eruption succession of macrofaunal communities at diffuse flow hydrothermal vents on Axial Volcano, Juan de Fuca Ridge, Northeast Pacific[J]. Deep-Sea Research Part II : Topical Studies in Oceanography , 2009, 56(19): 1 586-1 598.
[58] Lutz R A, Kennish M J. Ecology of deep-sea hydrothermal vent communities: A review[J]. Reviews of Geophysics , 1993, 31(3): 211-242.
[59] Tsurumi M, Tunnicliffe V. Characteristics of a hydrothermal vent assemblage on a volcanically active segment of Juan de Fuca Ridge, northeast Pacific[J]. Canadian Journal of Fisheries and Aquatic Sciences , 2001, 58(3): 530-542.
[60] Takai K, Nakmura K. Archaeal diversity and community development in deep-sea hydrothermal vents[J]. Current Opinion in Microbiology , 2011, 14: 282-291.
[61] Nagano Y, Nagahama T. Fungal diversity in deep-sea extreme environments[J]. Fungal Ecology , 2012, 5(4): 463-471.
[62] Danovaro R, Dell’Anno A, Corinaldesi C, et al . Major viral impact on the functioning of benthic deep-sea ecosystems[J]. Nature , 2008, 454(7 208):1 084-1 087.
[63] Xi Feng, Zheng Tianling, Jiao Nianzhi, et al . A preliminary analysis of mechanism of deep sea microorganisms diversity[J]. Advances in Earth Science , 2004, 19(1): 38-46.
. 地球科学进展, 2004, 19(1): 38-46.]
[64] Gupta G N, Srivastava S, Khare S K, et al . Extremophiles: An overview of microorganism from extreme environment[J]. International Journal of Agriculture , Environment and Biotechnology , 2014, 7(2): 371-380.
[65] Moriya K, Horikoshi K. Isolation of a benzene-tolerant bacterium and its hydrocarbon degradation[J]. Journal of Fermentation & Bioengineering , 1993, 76(93): 168-173.
[66] Dang Hongyue, Song Linsheng, Li Tiegang, et al . Progress in the studies of subseafloor deep biosphere microorganisms[J]. Advances in Earth Science , 2005, 20(12): 1 306-1 313.
. 地球科学进展, 2005, 20(12): 1 306-1 313.]
[67] Corinaldesi C. New perspectives in benthic deep-sea microbial ecology[J]. Frontiers in Marine Science , 2015, 2: 1-12,doi:10.3389/fmars.2015.00017.
[68] Birrien J L, Zeng X, Jebbar M, et al . Pyrococcus yayanosii sp. Nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent[J]. International Journal of Systematic & Evolutionary Microbiology , 2011, 61(12): 2 827-2 881.
[69] Schrenk M O, Kelley D S, Delaney J R, et al . Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney[J]. Applied and Environmental Microbiology , 2003, 69(6): 3 580-3 592.
[70] Burgaud G, Hué N T, Arzur D A, et al . Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents[J]. Research in Microbiology , 2015, 166(9): 700-709.
[71] Sun Xiaoxia, Sun Song. Research progress of deep sea chemosyntheric ecosystems[J]. Advances in Earth Science , 2010, 25(5): 552-560.
. 地球科学进展, 2010, 25(5): 552-560.]
[72] Anantharaman K, Duhaime M B, Breier J A, et al . Sulfur oxidation genes in diverse deep-sea viruses[J]. Science , 2014, 344(6 185):757-760.
[73] Jiao Nianzhi, Li Chao, Wang Xiaoxue. Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science , 2016, 31(7): 668-681.
. 地球科学进展, 2016, 31(7): 668-681.]
[74] Cavanaugh C M, Gardiner S L, Jones M L, et al . Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: Possible chemoautotrophic symbionts[J]. Science , 1981, 213: 340-342.
[75] Nagahama T, Hamamoto M, Nakase T, et al . Rhodotorula benthica sp nov . and Rhodotorula calyptogenae sp nov., novel yeast species from animals collected from the deep-sea floor, and Rhodotorula lysiniphila sp nov., which is related phylogenetically[J]. International Journal of Systematic & Evolutionary Microbiology , 2003, 53: 897-903.
[76] Van Dover C L, Fry B. Microorganisms as food resources at deep-sea hydrothermal vents[J]. Limnology and Oceanography , 1994, 39(1): 51-57.
[77] Roberto D, Antonio D, Cinzia C, et al . Virus-mediated archaeal hecatomb in the deep seafloor[J]. Science Advances , 2016, 2(10): e1600492.
[78] Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen majority[J]. Proceedings of the National Academy of Sciences , 1998, 95(12): 6 578-6 583.
[79] Berdy J. Bioactive microbial metabolites[J]. The Journal of antibiotics , 2005, 58(1): 1-26.
[80] Butler M S. Natural products to drugs: Natural product-derived compounds in clinical trials[J]. Natural Product Reports , 2008, 25(3): 475-516.
[81] Ren X Q, Sha Z L. Probathylepadidae, a new family of Scalpelliformes (Thoracica: Cirripedia: Crustacea), for Probathylepas faxian gen . nov., sp. nov., from a hydrothermal vent in the Okinawa Trough[J]. Zootaxa , 2015, 4 033(1): 144-150.
[1] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[2] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[3] 陈春, 高峰, 鲁景亮, 陈松丛. 日本海洋科技战略计划与重点研究布局及其对我国的启示[J]. 地球科学进展, 2016, 31(12): 1247-1254.
[4] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[5] 汪品先. 我国参加大洋钻探的近十年回顾与展望[J]. 地球科学进展, 2014, 29(3): 322-326.
[6] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[7] 刘昕明,林荣澄,黄丁勇. 深海热液口化能合成共生作用的研究进展[J]. 地球科学进展, 2013, 28(7): 794-801.
[8] 李建如,徐景平,刘志飞. 底基三脚架在深海观测中的应用[J]. 地球科学进展, 2013, 28(5): 559-565.
[9] 汪品先. 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28(5): 517-520.
[10] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
[11] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[12] 秦蕴珊,尹宏. 西太平洋——我国深海科学研究的优先战略选区[J]. 地球科学进展, 2011, 26(3): 245-248.
[13] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[14] 王剑飞,萨仁高娃,李铁刚,申之义,于心科. 苏禄海深海沉积物古菌群落结构多样性研究[J]. 地球科学进展, 2010, 25(7): 766-774.
[15] 孙治雷,李军,孙致学,黄威,崔汝勇,李季伟. 热液喷口系统中氧化物沉淀体的形成及微生物的作用[J]. 地球科学进展, 2010, 25(12): 1325-1336.