Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (2): 111-127    DOI: 10.11867/j.issn.1001-8166.2017.02.0111
综述与评述     
用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题
牛耀龄1, 2, 3, 龚红梅1, 2, 王晓红1, 2, 肖媛媛1, 2, 郭鹏远1, 2, 邵凤丽1, 2, 4, 孙普1, 2, 4, 陈硕1, 2, 4, 段梦1, 2, 5, 孔娟娟1, 2, 4, 王国栋1, 2, 薛琦琪1, 2, 5, 高雅洁1, 2, 4, 洪迪1, 2, 4
1.中国科学院海洋研究所,山东 青岛 266071;
2.青岛海洋科学与技术国家实验室,山东 青岛 266061;
3.Department of Earth Sciences, Durham University, Durham DH1 3LE, UK;
4.中国科学院大学,北京 100049;
5.中国地质大学,北京 100083
Some Key Problems on the Petrogenesis of Seafloor Basalts, Abyssal Peridotites and Geodynamics—A Non-traditional Isotope Approach
Niu Yaoling1, 2, 3, Gong Hongmei1, 2, Wang Xiaohong1, 2, Xiao Yuanyuan1, 2, Guo Pengyuan1, 2, Shao Fengli1, 2, 4, Sun Pu1, 2, 4, Chen Shuo1, 2, 4, Duan Meng1, 2, 5, Kong Juanjuan1, 2, 4, Wang Guodong1, 2, Xue Qiqi1, 2, 5, Gao Yajie1, 2, 4, Hong Di1, 2, 4
1.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2.Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061,China;
3.Department of Earth Sciences, Durham University, Durham DH1 3LE,UK;
4.University of Chinese Academy of Sciences, Beijing 100049, China;
5.China University of Geosciences, Beijing 100083, China
 全文: PDF(5459 KB)   HTML
摘要: 2017年中国科学院海洋研究所“大洋岩石圈与地幔动力学实验室”建成。未来5年,该实验室在国家自然科学基金重点项目(编号:41630968)的资助下,用珍贵的太平洋、大西洋和印度洋洋中脊玄武岩(MORB)、辉长岩和深海橄榄岩(MORP)研究地球化学和地幔动力学的几个基本科学问题: ①用Ti-Zr-Hf稳定同位素验证“Nb-Ta和Zr-Hf元素对质量分异的假说”;②从MORB演化过程和地幔熔融过程检验目前对铁同位素分馏的基本假说,即重Fe同位素与Fe3+有亲和性,且比轻Fe同位素和Fe2+更不相容;③提出并试图检验地幔高氧逸度是板块构造的结果,即含有大量Fe3+的蛇纹石化大洋岩石圈地幔橄榄岩俯冲到深部地幔所致;④对代表性的MORB样品和中国东部新生代碱性玄武岩样品进行铀同位素研究,检验Andersen等(2015)有关地球演化过程中壳幔循环导致的内、外动力地质过程的相互关系。
关键词: 地幔动力学深海橄榄岩非传统稳定同位素壳幔循环大洋玄武岩    
Abstract: This paper discusses some major research to be carried out in the next five years in the newly established Laboratory of Ocean Lithosphere and Mantle Geodynamics. By using our existing sample collections of global mid-ocean ridge basalts, gabbros and abyssal peridotites from the Pacific, Atlantic and Indian oceans, the research includes: ①Using Ti-Zr-Hf stable isotope methods to test the hypothesis that the observed huge Nb-Ta and Zr-Hf fractionations result from mass-dependent fractionation under mantle magmatic conditions; ②Using a MORB sample suite of uniform ratios of incompatible elements and Sr-Nd-Pb isotopes with large major element compositional variation to test the common hypothesis of iron isotope fractionation, i.e, the affinity of heavy Fe with ferric Fe (Fe3+), and both heavy Fe and ferric Fe (Fe3+) being more incompatible than light Fe and ferrous Fe (Fe2+) during magma evolution; while using an incompatible trace element and Sr-Nd-Pb isotope highly variable MORB suite to test the same hypothesis during low-degree mantle melting (i.e, the effect of mantle metasomatism); ③Proposing and testing the hypothesis that the high oxygen fugacity of the Earth’s mantle is a consequence of plate tectonics by subducting partially serpentinized oceanic mantle lithosphere with abundant ferric Fe (e.g. Fe3+/SFe>2); ④The recent work by Andersen et al. (Nature, 2015) is a milestone contribution by using U isotope variation in oceanic basalts to hypothesize that the O2-rich atmosphere since the late Archean (abont 2.4 Ga) mobilized the water soluble U (6+ vs. 4+) from continents, transported to the ocean and subducted with sediments to the upper mantle, which explains the low Th/U in MORB (<2.5) and the high Th/U (>3.5) ocean island basalts (OIB) do not see such U addition effect probably because OIB source materials are all ancient (> abont 2.4 Ga) if there were subducted component. The Cenozoic alkali basalts from eastern China are ideal materials for evaluating the significance of the subducted seafloor materials for the petrogenesis of OIB and enriched MORB by using the U isotope approach, which is expected to revise and improve the Andersen et al hypothesis.
Key words: Seafloor basalt    Mantle geodynamics    Abyssal peridotite    Crust-mantle recycling    Non-traditional stable isotopes.
收稿日期: 2016-12-13 出版日期: 2017-02-20
ZTFLH:  P541  
基金资助: 国家自然科学基金重点项目“用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题”(编号:41630968)资助
作者简介: 牛耀龄(1959-),男,甘肃临洮人,教授,主要从事岩石学、地球化学、全球构造与地球化学动力学研究.E-mail:yaoling.niu@durham.ac.uk
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
肖媛媛
段梦
王晓红
邵凤丽
王国栋
洪迪
牛耀龄
郭鹏远
孙普
孔娟娟
薛琦琪
龚红梅
高雅洁
陈硕

引用本文:

牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.

Niu Yaoling, Gong Hongmei, Wang Xiaohong, Xiao Yuanyuan, Guo Pengyuan, Shao Fengli, Sun Pu, Chen Shuo, Duan Meng, Kong Juanjuan, Wang Guodong, Xue Qiqi, Gao Yajie, Hong Di. Some Key Problems on the Petrogenesis of Seafloor Basalts, Abyssal Peridotites and Geodynamics—A Non-traditional Isotope Approach. Advances in Earth Science, 2017, 32(2): 111-127.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.02.0111        http://www.adearth.ac.cn/CN/Y2017/V32/I2/111

[1] Andersen M B, Elliott T, Freymuth H, et al , The terrestrial uranium isotope cycle[J]. Nature , 2015, 517: 356-359,doi:10.1038/nature14062.
[2] Mason B. Victor Moritz Goldschmidt: Father of Modern Geochemistry[M]. San Antonio, USA: The Geochemical Society Special Publication, 1992.
[3] Goldschmidt V M. The principles of distribution of chemical elements in minerals and rocks[J]. Journal of Chemical Society of London , 1937,140: 655-673.
[4] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides[J]. Acta Crystallographica , 1976, 32(5): 751-767.
[5] Jochum K P, Seufert H M, Spettel B, et al . The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies[J]. Geochimica et Cosmochimica Acta , 1986, 50(6): 1 173-1 183.
[6] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London , 1989, 42: 313-345.
[7] Dupuy C, Liotard J M, Dostol J. Zr/Hf fractionation in intraplate basaltic rocks: Carbonatite metasomatism in the mantle source[J]. Geochimica et Cosmochimica Acta , 1992, 56(6): 2 417-2 424.
[8] Rudnick R L. Making continental crust[J]. Nature , 1995, 378(6 557): 571-578.
[9] Niu Y L, Hekinian R. Basaltic liquids and harzburgitic residues in the Garrett Transform: A case study at fast-spreading ridges[J]. Earth and Planetary Science Letters , 1997, 146(1/2): 243-258.
[10] Niu Y L, Batiza R. Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacific mantle[J]. Earth and Planetary Science Letters , 1997, 148(3/4): 471-484.
[11] Niu Y L. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath ocean ridges[J]. Journal of Petrology , 2004, 45(12): 2 423-2 458.
[12] Niu Y L. Earth processes cause Zr-Hf and Nb-Ta fractionations, but why and how? [J]. RSC Advances , 2012, 2: 3 587-3 591,doi:10.1039/C2RA00384H.
[13] Rudnick R L, Barth M, Horn I, et al . Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle[J]. Science , 2000, 287(5 451): 278-281.
[14] McDonough W F. Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology[J]. Philosophical Transactions of the Royal Society A , 1991, 335(1 638): 407-418.
[15] Niu Y L, O’Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry and mineral physics considerations[J]. Journal of Geophysical Research , 2003, 108: 2 209, doi:10.1029/2002JB002048.
[16] Wade J, Wood B J. The Earth’s ‘missing’ niobium may be in the core[J]. Nature , 2001, 409: 75-78,doi:10.1038/35051064.
[17] Kamber B S, Greig A, Schonberg R, et al . A refined solution to Earth’s hidden niobium: Implications for evolution of continental crust and mode of core formation[J]. Precambrian Research , 2003, 126(3/4): 289-308.
[18] Green T H, Blundy J D, Adam A, et al . SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-75 GPa and 1080-1200℃[J]. Lithos , 2000, 53(3): 165-187.
[19] Schmidt A, Weyer S, John T. HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the Earth’s HFSE budget[J]. Geochimica et Cosmochimica Acta , 2009, 73(2): 455-468.
[20] Fulmer E C, Nebel O, van Westtrenen W. High-precision high field strength element partitioning between garnet, amphibole and alkaline melt from Kakanui, New Zealand[J]. Geochimica et Cosmochimica Acta , 2010, 74(9): 2 741-2 759.
[21] Xiong X L, Keppler H, Audétat A, et al . Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt[J]. Geochimica Cosmochimica Acta ,2011, 75(7): 1 673-1 692.
[22] Foley S, Tiepolo M, Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones[J]. Nature , 2002, 417: 837-840,doi:10.1038/nature00799.
[23] Blundy J, Wood B. Prediction of crystal-melt partition coefficients from elastic moduli[J]. Nature , 1994, 372: 452-454,doi:10.10381372452a0.
[24] Blundy J, Wood B. Partitioning of trace elements between crystals and melts[J]. Earth and Planetary Science Letters , 2003, 210(3/4): 383-397.
[25] Pfänder J A, Münker C, Stracke A, et al . Nb/Ta and Zr/Hf in ocean island basalts—Implications for crust-mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters , 2007, 254(1/2): 158-172.
[26] Konig S, Schuth S. Deep melting of old subducted oceanic crust recorded by superchondritic Nb/Ta in modern island arc lavas[J]. Earth and Planetary Science Letters , 2011, 301(1/2): 265-274.
[27] Klfoun F, Ionov D, Merlect C. HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites[J]. Earth and Planetary Science Letters , 2002, 199(1/2): 49-65.
[28] Aulbach S, O’Reilly S Y, Pearson N J. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites[J]. Nature Geoscience , 2008, (1): 468-472,doi:10.1038/nge0226.
[29] Dostal J, Chatterjee A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada) [J]. Chemical Geology , 2000, 163(1/4): 207-218.
[30] Yin R, Wang R C, Zhang A C, et al . Extreme fractionation from zircon to halfnon in Koktokay No. 1 granitic pegmatite, Altai, nlorthwestern China[J]. American Mineralogist , 2013, 98: 1 714-1 724.
[31] Xiao Y, Sun W D, Hoefs J, et al . Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile[J]. Geochimica et Cosmochimica Acta , 2006, 70(18): 4 770-4 782.
[32] Liang J L, Ding X, Sun X M. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project[J]. Chemical Geology , 2009, 268(1/2): 27-40.
[33] John T, Klemd R, Klemme S. Nb-Ta fractionation by partial melting at the titanite-rutile transition[J]. Contributions to Mineralogy and Petrology , 2011, 161: 35-45,doi:10.1007/S00410-010-0520-4.
[34] Chen Y X, Zheng Y F. Extreme Nb/Ta fractionation in metamorphic titanite from ultrahigh-pressure metagranite[J]. Geochimica et Cosmochimica Acta , 2015, 150: 53-73,doi:10.1016/j.gca.2014.12.002.
[35] Hoffmann J E, Munker C, Naerass T. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs[J]. Geochimica et Cosmochimica Acta , 2011, 75(15): 4 157-4 178.
[36] Firdaus M L, Minami T, Norosuye K, et al . Strong elemental fractionation of Zr-Hf and Nb-Ta across the Pacific Ocean[J]. Nature Geoscience , 2011, (4): 227-230,doi:10.1038/ngeo114.
[37] Lasaga A C. Kinetic Theory in the Earth Sciences[M]. Princeton, NJ: Princeton University Press, 1998:811.
[38] Millet M A, Dauphas N. Ultra-precise titanium stable isotope measurements by double-spike high resolution MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry , 2014, 29: 1 441-1 458,doi:10.1039/C4JA00096J.
[39] Millet M A, Dauphas N, Greber N D, et al . Titanium stable isotope investigation of magmatic processes on the Earth and Moon[J]. Earth Planetaryu Science Letters , 2016, 449: 197-205,doi:10.1016/j.epsl.2016.05.039.
[40] Schonbachler M, Rehkamper M, Lee D C, et al . Ion exchange chromatography and high precision isotopic measurements of zirconium by MC-ICP-MS[J]. Analyst , 2004, 129: 32-37,doi:10.1039/B310766C.
[41] Akram W, Schonbachler M. Zirconium isotope constraints on the composition of Theia and current Moon-forming theories[J]. Earth and Planetary Science Letters , 2016, 449: 302-310,doi:10.1016/j.epsl.2016.05.022.
[42] Beard B L, Johnson C M, Skulan J L, et al . Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J]. Chemical Geology , 2003, 195(1/4): 87-117.
[43] Beard B L, Johnson C M. High precision iron isotope measurements of terrestrial and lunar materials[J]. Geochimica et Cosmochimica Acta , 1999, 63(11/12): 1 653-1 660.
[44] Belshaw N S, Zhu X K, Guo Y, et al . Hi precision measurement of iron isotopes by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry , 2000, 197(1/3): 191-195.
[45] Zhu X K, Guo Y, Williams R J P, et al . Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters , 2002, 200(1/2): 47-62.
[46] Polyakov V B, Mineev S D. The use of Mössbauer spectroscopy in stable isotope geochemistry[J]. Geochimica et Cosmochimica Acta , 2000, 64(5): 849-865.
[47] Schauble E A, Rossman G R, Taylor Jr H P. Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy[J]. Geochimica et Cosmochimica Acta , 2001, 65(15): 2 487-2 497.
[48] Williams H M, McCammon C A, Peslier A H, et al . Iron Isotope Fractionation and the Oxygen fugacity of the mantle[J]. Sciences , 2004, 304(5 677): 1 656-1 659.
[49] Teng F Z, Dauphas N, Helz R T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake[J]. Science , 2008, 320(5 883): 1 620-1 622.
[50] Williams H M, Nielsen S G, Renac C, et al . Fractionation of oxygen and iron isotopes by partial melting processes: Implications for the interpretation of stable isotope signatures in mafic rocks[J]. Earth and Planetary Science Letters , 2009, 283(1/4): 156-166.
[51] Williams H M, Wood B J, Wade J, et al . Isotopic evidence for internal oxidation of the Earth’s mantle during accretion[J]. Earth and Planetary Science Letters , 2012, 321: 54-63,doi:10.1016/j.epsl.2011.12.030.
[52] Socci P A, Foden J D, Halverson G P. Redox-controlled iron isotope fractionation during magmatic differentiation: An example from the Red Hill intrusion, S. Tasmania[J]. Contributions to Mineralogy and Geochemistry ,2012, 164: 757-772,doi:10.1007/S00410-012-0769-X.
[53] Niu Y L. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China[J]. Geological Journal of China Universities , 2005, 11(1): 9-46.
[54] Niu Y L, Gilmore T, Mackie S, et al . Mineral chemistry, whole-rock compositions and petrogenesis of ODP Leg 176 gabbros: Data and discussion[J]. Proceedings of the Ocean Drilling Program , Scientific Results , 2002, 176, doi:10.2973/odp.proc.sr.176.011.2002, 60.
[55] Stone S, Niu Y L. Origin of compositional trends in clinopyroxene of oceanic gabbros and gabbroic rocks: A case study using data from ODP Hole 735B[J]. Journal of Volcanology and Geothermal Research , 2009, 184: 313-322,doi:10.1016/j.jvagepres.2009.04.009.
[56] Frost D J, McCammon C A. The redox state of Earth’s mantle[J]. Annual Review of Earth and Planetary Sciences , 2008, 36: 389-420,doi:10.1146/annarev.earth.36.031207.124322.
[57] Dick H J B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J] . Contributions to Mineralogy and Petrology , 1984, 86(1): 54-76.
[58] Niu Y L, Hékinian R. Spreading rate dependence of the extent of mantle melting beneath ocean ridges[J]. Nature , 1997, 385: 326-329,doi:10.1038/385326a0.
[59] Poitrasson F, Freydier R. Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS[J]. Chemical Geology , 2005, 222(1/2): 132-147.
[60] Poitrasson F. On the iron isotope homogeneity level of the continental crust[J]. Chemical Geology , 2005, 235: 195-200.
[61] Poitrassona F, Hallidaya A N, Lee D C, et al . Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms[J]. Earth and Planetary Science Letters , 2004, 223(3/4): 253-266.
[62] O’Hara M J, Niu Y L. Obvious problems in lunar petrogenesis and new perspectives[C]∥Foulger G R, Lustrino M, King S D, eds. The Interdisciplinary Earth: A Volume in Honor of Don L Anderson,Geological Society of America Special Paper 514 and American Geophysical Union Special Publication, 2015, 71: 339-366,doi:10.1130/2015.2514(20).
[63] Niu Y L, O’Hara M J. Is Lunar Magma Ocean (LMO) gone with the wind?[J]. National Science Review ,2016,3(1):12-15.
[64] Williams H M, Peslier A H, McCammon C, et al . Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity[J]. Earth and Planetary Science Letters , 2005, 235(1/2): 435-452.
[65] Weyer S, Anbar A D, Gerdes A, et al . Natural fractionation of 238 U/ 235 U[J]. Geochimica et Cosmochimica Acta , 2008, 72(2): 345-359.
[66] Zhao X M, Zhang H F, Zhu X K. Iron isotope variations in spinel peridotite xenoliths from North China Craton: Implications[J]. Contributions to Mineralogy and Petrology , 2010, 160: 1-14,doi:10.1007/S00410-009-00461-y.
[67] Zhao X M, Zhang H F, Zhu X K, et al . Iron isotope evidence for multistage melt-peridotite interaction in the lithospheric mantle of eastern China[J]. Chemical Geology , 2012, 292/293: 127-139,doi.1016/j.chemgeo.2011.11.016.
[68] Teng F, Dauphas N, Huang S, et al . Iron isotopic systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta , 2013, 107: 12-26,doi:10.1016/j.gca.2012.12.027.
[69] Su B X, Teng F Z, Hu Y, et al . Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: Perspectives from ophiolite[J]. Earth and Planetary Science Letters , 2015, 430: 523-532,doi:10.1016/j.espl.2015.08.020.
[70] Chen C, Su B X, Uysal I, et al . Iron isotopic constraints on the origin of peridotite and chromitite in the Kızılda g ˙ ophiolite, southern Turkey[J]. Chemical Geology , 2015, 417: 115-124,doi:10.1016/j.chemgeo.2015.10.001.
[71] Regelous M, Niu Y L, Wendt J I, et al . An 800 ka record of the geochemistry of magmatism on the East Pacific Rise at 10°30'N: Insights into magma chamber processes beneath a fast-spreading ocean ridge[J]. Earth and Planetary Science Letters , 1999, 168: 45-63.
[72] Niu Y L, Hékinian R. Ridge suction drives plume-ridge interactions (Chapter 9)[M]∥Oceanic Hotspots. New York:Springer-Verlag, 2004:285-307.
[73] Niu Y L, Waggoner G, Sinton J M, et al . Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise 18°-19°S[J]. Journal of Geophysical Research , 1996, 101(B12): 27 711-27 733.
[74] Niu Y L, Collerson K D, Batiza R, et al . The origin of E-type MORB at ridges far from mantle plumes: The East Pacific Rise at 11°20'N[J]. Journal of Geophysical Research , 1999, 104(4): 7 067-7 087.
[75] Niu Y L, Regelous M, Wendt J I, et al . Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component[J]. Earth and Planetary Science Letters , 2002, 199: 327-345.
[76] Niu Y L, O’Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry and mineral physics considerations[J]. Journal of Geophysical Research , 2003, 108: 2 209, doi:10.1029/2002JB002048.
[77] Niu Y L, O’Hara M J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle[J]. Lithos , 2009, 112(1/2): 1-17.
[78] Niu Y L. The origin of alkaline lavas[J]. Science , 2008, 320(5 878): 883-884.
[79] Niu Y L. Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts (OIB)[J]. Chinese Science Bulletin , 2009, 54: 4 148-4 160,doi:10.1007/S11434-009-0668-3.
[80] Niu Y L, Batiza R. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting[J]. Journal of Geophysical Research , 1991, 96(B13): 21 753-21 777.
[81] Niu Y L. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites[J]. Journal of Petrology , 1997, 38(8): 1 047-1 074.
[82] Niu Y L, Wilson M, Humphreys E R, et al . The origin of intra-plate Ocean Island Basalts (OIB): The lid effect and its geodynamic implications[J]. Journal of Petrology , 2011, 52(7/8): 1 443-1 468.
[83] Zhao X M, Zhang H F, Zhu X K, et al . Effects of melt percolation on iorn isotopic variation in peridotites from Yangyuan, North China Craton[J]. Chemical Geology , 2015, 401: 96-110.
[84] Niu Y L, Langmuir C H, Kinzler R J. The origin of abyssal peridotites: A new perspective[J]. Earth and Planetary Science Letters , 1997, 152(1/4): 251-265.
[85] Hess H H. History of the ocean basins[M]∥Petrologic Studies: A Volume to Honour A F.Buddington, Denver, CO: Geological Society of America, 2016:599-620.
[86] Niu Y L, Wilson M, Humphreys E R, et al . A trace element perspective on the source of Ocean Island Basalts (OIB) and fate of Subducted Ocean Crust (SOC) and Mantle Lithosphere (SML) [J]. Episodes , 2012, 35(2): 310-327.
[87] Evans B W, Hattori K, Baronnet A. Serpentinite: What, why, where? [J]. Element , 2013, 9(2): 99-106.
[88] Song S G, Su L, Niu Y L, et al . CH 4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge[J]. Geochimica et Cosmochimica Acta , 2009, 73(6):1 737-1 754.
[89] Greenberger R N, Mustard J F, Cloutis E A, et al . Serpentinization, iron oxidation, and aqueous conditions in an ophiolite: Implications for hydrogen production and habitability on Mars[J]. Earth and Planetary Science Letters , 2015, 416: 21-34,doi:10.1016/j.epel.2015.02.002.
[90] Craddock P R, Warren J M, Dauphas N. Abyssal peridotites reveal the near-chondritic composition of the Earth[J]. Earth and Planetary Science Letters , 2013, 365: 63-76,doi:10.1016/j.epsl.2013.01.011.
[91] Williams H M, Bizimis M. Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts[J]. Earth and Planetary Science Letters , 2014, 404: 396-407,doi:10.1016/j.epsl.2014.07.033.
[92] Wade J, Wood B J. Core formation and the oxidation state of the Earth[J]. Earth and Planetary Science Letters , 2005, 236(1/2): 78-95.
[93] Wood B J, Bryndzia L T, Johnson K E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation[J]. Science , 1990, 248(4 953): 337-344.
[94] Schönbachler M, Carlson R W, Horan M F, et al . Heterogeneous accretion and the moderately volatile element budget of Earth[J]. Science , 2010, 328(5 980): 884-887.
[95] Javoy M, Kaminski E, Guyot F, et al . The chemical composition of the Earth: Enstatite chondrite models[J]. Earth and Planetary Science Letters , 2010, 293(3/4): 259-268.
[96] Debret B, Millet M A, Pons M L, et al . Isotopic evidence for iron mobility during subduction[J]. Geology , 2016, 44: 215-218,doi:10.1130/G37565.1.
[97] Song S G, Zhang L F, Niu Y L, et al . Geochronology of diamond-bearing zircons from garnet-peridotite in the North Qaidam UHPM belt, North Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision[J]. Earth and Planetary Science Letters , 2005, 234(1/2): 99-118.
[98] Nebel O, Sossi P A, Benard A, et al . Redox-variability and controls in subduction zones from an iron-irotope perspective[J]. Earth and Planetary Science Letters , 2015, 432: 142-151,doi:10.1016/j.epsl.2015.09.036.
[99] Bourdon B, Turner S, Henderson G M, et al . Introduction to U-series geochemistry[J]. Reviews in Mineralogy and Geochemistry , 2003, 52(1): 1-21.
[100] Andersen M S, Stirling C H, Weyer S. Utanium isotope fractionation[J]. Reviews in Mineralogy and Geochemistry , 2017, 81, doi:10.2138/rmg.2017.82.19.
[101] Elliott T, Zindler A, Bourdon B. Exploring the kappa conundrum: The role of recycling in the lead isotope evolution of the mantle[J]. Earth and Planetary Science Letters , 1999, 169(1/2): 129-145.
[102] Fujii Y, Nomura M, Onitsuka H, et al . Anomalous isotope fractionation in uranium enrichment process[J]. Journal of Nuclear Science and Technology , 1989, 26: 1 061-1 064,doi:10.1080/18811248.1989.9734427.
[103] Bigeleisen J. Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements[J]. Journal of the American Chemical Society , 1996, 118(15): 3 676-3 680.
[104] Schauble E A. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements[J]. Geochimica et Cosmochimica Acta , 2007, 71(9): 2 170-2 189.
[105] Stirling C H, Andersen M B, Potter E, et al . Low-temperature isotopic fractionation of uranium[J]. Earth and Planetary Science Letters , 2007, 264(1/2): 208-225.
[106] Weyer S, Ionov D A. Partial melting and melt percolation in the mantle: The message from Fe isotopes[J]. Earth and Planetary Science Letters , 2007, 259(1/2): 119-133.
[107] Bopp C J, Lundstrom C C, Johnson T M, et al . Variations in 238 U/ 235 U in uranium ore deposits: Isotope signatures of the U reduction process?[J]. Geology , 2009, 37(7): 611-614.
[108] Brennecka G A, Borg L E, Hutcheon I D, et al . Natural variations in uranium isotope ratios of uranium ore concentrates: Understanding the 238 U/ 235 U fractionation mechanism[J]. Earth and Planetary Science Letters ,2010, 291(1/4): 228-233.
[109] Hiess J, Condon D J, McLean N, et al . 238 U/ 235 U systematics in terrestrial uranium-bearing minerals[J]. Science , 2012, 335(6 076): 1 610-1 614.
[110] Berry W B N, Wilde P. Progressive ventilation of the oceans: An explanation for the distribution of the lower Paleozoic black shales[J]. American Journal of Science , 1978, 278: 257-275,doi:10.2475/ajs.278.3.257.
[111] Dahl T W, Hammarlund E U, Anbar A D, et al . Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish[J]. Proceeding of the National Academy of Sciences ,2010, 107(42):17 911-17 915.
[112] Dahl T W, Boyle R A, Canfield D E, et al . Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event[J]. Earth and Planetary Science Letters ,2014, 401: 313-326,doi:10.1016/j.epsl.2014.05.043.
[113] Gill B C, Lyons T W, Young S A, et al . Geochemical evidence for widespread euxinia in the later Cambrian ocean[J]. Nature , 2011, 469: 80-83,doi:10.1038/nature09700.
[114] Tissot F H, Dauphas N. Uranium isotopic comnpositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia[J]. Geochimica et Cosmochimica Acta , 2015, 167: 113-143,doi:10.1016/j.gca.2015.06.024.
[115] Wang X L, Johnson T M, Lundstrom C C. Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen[J]. Geochimica et Cosmochimica Acta , 2015, 150: 160-170,doi:10.1016/j.gca.2014.12.007.
[116] Wang X L, Johnson T M, Lundstrom C C. Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI) [J]. Geochimica et Cosmochimica Acta ,2015, 158: 262-275,doi:10.1016/j.gca.2015.03.006.
[117] Goldmann A, Brennecka G, Noordmann W, et al . The uranium isotopic composition of the Earth and the solar system[J]. Geochimica et Cosmochimica Acta , 2015,148: 145-158,doi:10.1016/j.gca.2014.09.028.
[118] Hofmann A W, White W M. Mantle plumes from ancient oceanic crust[J]. Earth and Planetary Science Letters , 1982, 57(2): 421-436.
[119] Pilet S, Hernandez J, Sylvester P, et al . The metasomatic alternative for ocean island basalt chemical heterogeneity[J]. Earth and Planetary Science Letters , 2005, 236(1/2): 148-166.
[120] Pilet S, Baker M B, Stolper E M. Metasomatized lithosphere and the origin of alkaline lavas[J]. Science , 2008, 320(5 878): 916-919.
[121] Guo P Y, Niu Y L, Yu X H. A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context[J]. Journal of Asian Earth Science , 2014, 79: 86-96,doi:10.1016/j.jseaes.2013.09.012.
[122] Zhang M J, Hu P Q, Niu Y L, et al . Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub-continental lithospheric mantle beneath eastern China[J]. Lithos , 2007, 96(1/2): 55-66.
[123] Zhang M J, Niu Y L, Hu P Q. Volatiles in the mantle lithosphere: Modes of occurrence and chemical compositions[M]∥Anderson J E, Coates R W,eds. The Lithosphere: Geochemistry, Geology and Geophysics.Nova Scientific Publishers, Inc., 2009:171-212.
[124] Guo P Y, Niu Y L, Ye L, et al . Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts[J]. Lithos , 2014, 202/203: 37-54.
[125] Guo P Y, Niu Y L, Sun P, et al . The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone[J]. Lithos , 2016,240/243: 104-118,doi:10.1016/j.lithos.2015.11.010.
[126] Sun P, Niu Y L, Guo P Y, et al . Elemental and Sr-Nd-Pb isotope geochemistry of the Cenozoic basalts in Southeast China: Insights into their mantle sources and melting processes[J]. Lithos , 2017, 272/273: 16-30,doi:10.1016/j.lithos.2016.12.005.
[127] Xu Y G. Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: Evidence, provenance and significance[J]. Geochimica et Cosmochimica Acta , 2014, 143: 49-67,doi:10.1016/j.gca.2014/04.045.
[128] Niu Y L. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny , 2014,10: 23-46,doi:10.1127/gtm/2014/0029.
[129] Xiao Y Y, Lavis S, Niu Y L, et al . Trace element transport during subduction-zone ultrahigh pressure metamorphism: Evidence from Western Tianshan, China[J]. Geological Society of America Bulletin , 2012, 124(7/8): 1 113-1 129.
[130] Xiao Y Y, Niu Y L, Song S G, et al . Elemental responses to subduction-zone metamorphism: Constraints from the North Qilian Mountain, NW China[J]. Lithos , 2013, 160/161: 55-67.
[131] Xiao Y Y, Niu Y L, Li H K, et al . Trace element budgets and (re-)distribution during subduction-zone ultrahigh pressure metamorphism: Evidence from Western Tianshan, China[J]. Chemical Geology ,2014, 365: 54-68,doi:10.1016/chemgeo.2013.12.005.
[132] Xiao Y Y, Niu Y L, Wang K L, et al . Geochemical behaviors of chemical elements during subduction-zone metamorphism and geodynamic significance[J]. International Geology Review , 2016, 58(10): 1 253-1 277.
[133] Niu Y L, Zhao Z D, Zhu D C, et al . Continental collision zones are primary sites for net continental crust growth—A testable hypothesis[J]. Earth-Science Reviews , 2013, 127: 96-110,doi:10.1016/j.earscirev.2013.09.024.
[134] Huang H, Niu Y L, Nowell G, et al . Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology , 2014, 370: 1-18,doi:10.1016/j.chemgeo.2014.01.010.
[135] Chen S, Niu Y L, Li J Y, et al . Syncollisional adakitic granodiorites formed by fractional crystallization: Insights from their enclosed Mafic Magmatic Enclaves (MMEs) in the Qumushan pluton, North Qilian Orogen at the northern margin of the Tibetan Plateau[J]. Lithos , 2016, 248/251: 455-468,doi:10.1016/j.lithos.2016.01.033.
[136] Chen S, Wang X H, Niu Y L, et al . Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS[J]. Science Bulletin , 2017, 62(4): 277-289.
[1] 熊熊;傅容珊;滕吉文;许厚泽. 青藏高原的地幔动力学研究[J]. 地球科学进展, 2005, 20(9): 970-979.
[2] 王金荣, 郭原生. 深海橄榄岩研究进展[J]. 地球科学进展, 1999, 14(6): 566-570.