[1] |
Andersen M B, Elliott T, Freymuth H, et al, The terrestrial uranium isotope cycle[J]. Nature, 2015, 517: 356-359,doi:10.1038/nature14062.
|
[2] |
Mason B.Victor Moritz Goldschmidt: Father of Modern Geochemistry[M]. San Antonio, USA: The Geochemical Society Special Publication, 1992.
|
[3] |
Goldschmidt V M.The principles of distribution of chemical elements in minerals and rocks[J]. Journal of Chemical Society of London, 1937,140: 655-673.
|
[4] |
Shannon R D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides[J]. Acta Crystallographica, 1976, 32(5): 751-767.
|
[5] |
Jochum K P, Seufert H M, Spettel B, et al.The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies[J]. Geochimica et Cosmochimica Acta, 1986, 50(6): 1 173-1 183.
|
[6] |
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London, 1989, 42: 313-345.
|
[7] |
Dupuy C, Liotard J M, Dostol J.Zr/Hf fractionation in intraplate basaltic rocks: Carbonatite metasomatism in the mantle source[J]. Geochimica et Cosmochimica Acta, 1992, 56(6): 2 417-2 424.
|
[8] |
Rudnick R L.Making continental crust[J]. Nature, 1995, 378(6 557): 571-578.
|
[9] |
Niu Y L, Hekinian R.Basaltic liquids and harzburgitic residues in the Garrett Transform: A case study at fast-spreading ridges[J].Earth and Planetary Science Letters, 1997, 146(1/2): 243-258.
|
[10] |
Niu Y L, Batiza R.Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacific mantle[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 471-484.
|
[11] |
Niu Y L.Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath ocean ridges[J]. Journal of Petrology, 2004, 45(12): 2 423-2 458.
|
[12] |
Niu Y L.Earth processes cause Zr-Hf and Nb-Ta fractionations, but why and how?[J].RSC Advances, 2012, 2: 3 587-3 591,doi:10.1039/C2RA00384H.
|
[13] |
Rudnick R L, Barth M, Horn I, et al.Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle[J].Science, 2000, 287(5 451): 278-281.
|
[14] |
McDonough W F. Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology[J]. Philosophical Transactions of the Royal Society A, 1991, 335(1 638): 407-418.
|
[15] |
Niu Y L, O’Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry and mineral physics considerations[J]. Journal of Geophysical Research, 2003, 108: 2 209, doi:10.1029/2002JB002048.
|
[16] |
Wade J, Wood B J.The Earth’s ‘missing’ niobium may be in the core[J]. Nature, 2001, 409: 75-78,doi:10.1038/35051064.
|
[17] |
Kamber B S, Greig A, Schonberg R,et al.A refined solution to Earth’s hidden niobium: Implications for evolution of continental crust and mode of core formation[J]. Precambrian Research, 2003, 126(3/4): 289-308.
|
[18] |
Green T H, Blundy J D, Adam A, et al.SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-75 GPa and 1080-1200℃[J]. Lithos, 2000, 53(3): 165-187.
|
[19] |
Schmidt A, Weyer S, John T.HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the Earth’s HFSE budget[J]. Geochimica et Cosmochimica Acta, 2009, 73(2): 455-468.
|
[20] |
Fulmer E C, Nebel O, van Westtrenen W. High-precision high field strength element partitioning between garnet, amphibole and alkaline melt from Kakanui, New Zealand[J]. Geochimica et Cosmochimica Acta, 2010, 74(9): 2 741-2 759.
|
[21] |
Xiong X L, Keppler H, Audétat A, et al.Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt[J]. Geochimica Cosmochimica Acta,2011, 75(7): 1 673-1 692.
|
[22] |
Foley S, Tiepolo M, Vannucci R.Growth of early continental crust controlled by melting of amphibolite in subduction zones[J]. Nature, 2002, 417: 837-840,doi:10.1038/nature00799.
|
[23] |
Blundy J, Wood B.Prediction of crystal-melt partition coefficients from elastic moduli[J]. Nature, 1994, 372: 452-454,doi:10.10381372452a0.
|
[24] |
Blundy J, Wood B.Partitioning of trace elements between crystals and melts[J]. Earth and Planetary Science Letters, 2003, 210(3/4): 383-397.
|
[25] |
Pfänder J A, Münker C, Stracke A, et al.Nb/Ta and Zr/Hf in ocean island basalts—Implications for crust-mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letters, 2007, 254(1/2): 158-172.
|
[26] |
Konig S, Schuth S.Deep melting of old subducted oceanic crust recorded by superchondritic Nb/Ta in modern island arc lavas[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 265-274.
|
[27] |
Klfoun F, Ionov D, Merlect C.HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites[J]. Earth and Planetary Science Letters, 2002, 199(1/2): 49-65.
|
[28] |
Aulbach S, O’Reilly S Y, Pearson N J. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites[J]. Nature Geoscience, 2008, (1): 468-472,doi:10.1038/nge0226.
|
[29] |
Dostal J, Chatterjee A K.Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada)[J]. Chemical Geology, 2000, 163(1/4): 207-218.
|
[30] |
Yin R, Wang R C, Zhang A C, et al.Extreme fractionation from zircon to halfnon in Koktokay No. 1 granitic pegmatite, Altai, nlorthwestern China[J]. American Mineralogist, 2013, 98: 1 714-1 724.
|
[31] |
Xiao Y, Sun W D, Hoefs J, et al.Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): 4 770-4 782.
|
[32] |
Liang J L, Ding X, Sun X M.Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project[J]. Chemical Geology, 2009, 268(1/2): 27-40.
|
[33] |
John T, Klemd R, Klemme S.Nb-Ta fractionation by partial melting at the titanite-rutile transition[J]. Contributions to Mineralogy and Petrology, 2011, 161: 35-45,doi:10.1007/S00410-010-0520-4.
|
[34] |
Chen Y X, Zheng Y F.Extreme Nb/Ta fractionation in metamorphic titanite from ultrahigh-pressure metagranite[J]. Geochimica et Cosmochimica Acta, 2015, 150: 53-73,doi:10.1016/j.gca.2014.12.002.
|
[35] |
Hoffmann J E, Munker C, Naerass T.Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs[J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4 157-4 178.
|
[36] |
Firdaus M L, Minami T, Norosuye K, et al.Strong elemental fractionation of Zr-Hf and Nb-Ta across the Pacific Ocean[J]. Nature Geoscience, 2011, (4): 227-230,doi:10.1038/ngeo114.
|
[37] |
Lasaga A C.Kinetic Theory in the Earth Sciences[M]. Princeton, NJ: Princeton University Press, 1998:811.
|
[38] |
Millet M A, Dauphas N.Ultra-precise titanium stable isotope measurements by double-spike high resolution MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29: 1 441-1 458,doi:10.1039/C4JA00096J.
|
[39] |
Millet M A, Dauphas N, Greber N D, et al.Titanium stable isotope investigation of magmatic processes on the Earth and Moon[J]. Earth Planetaryu Science Letters, 2016, 449: 197-205,doi:10.1016/j.epsl.2016.05.039.
|
[40] |
Schonbachler M, Rehkamper M, Lee D C, et al.Ion exchange chromatography and high precision isotopic measurements of zirconium by MC-ICP-MS[J]. Analyst, 2004, 129: 32-37,doi:10.1039/B310766C.
|
[41] |
Akram W, Schonbachler M.Zirconium isotope constraints on the composition of Theia and current Moon-forming theories[J]. Earth and Planetary Science Letters, 2016, 449: 302-310,doi:10.1016/j.epsl.2016.05.022.
|
[42] |
Beard B L, Johnson C M, Skulan J L, et al.Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J]. Chemical Geology, 2003, 195(1/4): 87-117.
|
[43] |
Beard B L, Johnson C M.High precision iron isotope measurements of terrestrial and lunar materials[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1 653-1 660.
|
[44] |
Belshaw N S, Zhu X K, Guo Y, et al.Hi precision measurement of iron isotopes by plasma source mass spectrometry[J]. International Journal of Mass Spectrometry, 2000, 197(1/3): 191-195.
|
[45] |
Zhu X K, Guo Y, Williams R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 200(1/2): 47-62.
|
[46] |
Polyakov V B, Mineev S D.The use of Mössbauer spectroscopy in stable isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 849-865.
|
[47] |
Schauble E A, Rossman G R, Taylor Jr H P. Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2 487-2 497.
|
[48] |
Williams H M, McCammon C A, Peslier A H, et al. Iron Isotope Fractionation and the Oxygen fugacity of the mantle[J]. Sciences, 2004, 304(5 677): 1 656-1 659.
|
[49] |
Teng F Z, Dauphas N, Helz R T.Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake[J]. Science, 2008, 320(5 883): 1 620-1 622.
|
[50] |
Williams H M, Nielsen S G, Renac C, et al.Fractionation of oxygen and iron isotopes by partial melting processes: Implications for the interpretation of stable isotope signatures in mafic rocks[J]. Earth and Planetary Science Letters, 2009, 283(1/4): 156-166.
|
[51] |
Williams H M, Wood B J, Wade J, et al.Isotopic evidence for internal oxidation of the Earth’s mantle during accretion[J]. Earth and Planetary Science Letters, 2012, 321: 54-63,doi:10.1016/j.epsl.2011.12.030.
|
[52] |
Socci P A, Foden J D, Halverson G P.Redox-controlled iron isotope fractionation during magmatic differentiation: An example from the Red Hill intrusion, S. Tasmania[J]. Contributions to Mineralogy and Geochemistry,2012, 164: 757-772,doi:10.1007/S00410-012-0769-X.
|
[53] |
Niu Y L.Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic-Cenozoic volcanism in eastern China[J]. Geological Journal of China Universities, 2005, 11(1): 9-46.
|
[54] |
Niu Y L, Gilmore T, Mackie S, et al.Mineral chemistry, whole-rock compositions and petrogenesis of ODP Leg 176 gabbros: Data and discussion[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2002, 176, doi:10.2973/odp.proc.sr.176.011.2002, 60.
|
[55] |
Stone S, Niu Y L.Origin of compositional trends in clinopyroxene of oceanic gabbros and gabbroic rocks: A case study using data from ODP Hole 735B[J].Journal of Volcanology and Geothermal Research, 2009, 184: 313-322,doi:10.1016/j.jvagepres.2009.04.009.
|
[56] |
Frost D J, McCammon C A. The redox state of Earth’s mantle[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 389-420,doi:10.1146/annarev.earth.36.031207.124322.
|
[57] |
Dick H J B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 1984, 86(1): 54-76.
|
[58] |
Niu Y L, Hékinian R.Spreading rate dependence of the extent of mantle melting beneath ocean ridges[J]. Nature, 1997, 385: 326-329,doi:10.1038/385326a0.
|
[59] |
Poitrasson F, Freydier R.Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS[J]. Chemical Geology, 2005, 222(1/2): 132-147.
|
[60] |
Poitrasson F.On the iron isotope homogeneity level of the continental crust[J].Chemical Geology, 2005, 235: 195-200.
|
[61] |
Poitrassona F, Hallidaya A N, Lee D C, et al.Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms[J]. Earth and Planetary Science Letters, 2004, 223(3/4): 253-266.
|
[62] |
O’Hara M J, Niu Y L. Obvious problems in lunar petrogenesis and new perspectives[C]∥Foulger G R, Lustrino M, King S D, eds. The Interdisciplinary Earth: A Volume in Honor of Don L Anderson,Geological Society of America Special Paper 514 and American Geophysical Union Special Publication, 2015, 71: 339-366,doi:10.1130/2015.2514(20).
|
[63] |
Niu Y L, O’Hara M J. Is Lunar Magma Ocean (LMO) gone with the wind?[J].National Science Review,2016,3(1):12-15.
|
[64] |
Williams H M, Peslier A H, McCammon C,et al. Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 435-452.
|
[65] |
Weyer S, Anbar A D, Gerdes A, et al.Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 345-359.
|
[66] |
Zhao X M, Zhang H F, Zhu X K.Iron isotope variations in spinel peridotite xenoliths from North China Craton: Implications[J]. Contributions to Mineralogy and Petrology, 2010, 160: 1-14,doi:10.1007/S00410-009-00461-y.
|
[67] |
Zhao X M, Zhang H F, Zhu X K, et al.Iron isotope evidence for multistage melt-peridotite interaction in the lithospheric mantle of eastern China[J]. Chemical Geology, 2012, 292/293: 127-139,doi.1016/j.chemgeo.2011.11.016.
|
[68] |
Teng F, Dauphas N, Huang S, et al.Iron isotopic systematics of oceanic basalts[J]. Geochimica et Cosmochimica Acta, 2013, 107: 12-26,doi:10.1016/j.gca.2012.12.027.
|
[69] |
Su B X, Teng F Z, Hu Y, et al.Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: Perspectives from ophiolite[J]. Earth and Planetary Science Letters, 2015, 430: 523-532,doi:10.1016/j.espl.2015.08.020.
|
[70] |
Chen C, Su B X, Uysal I, et al. ophiolite, southern Turkey[J]. Chemical Geology, 2015, 417: 115-124,doi:10.1016/j.chemgeo.2015.10.001.
|
[71] |
Regelous M, Niu Y L, Wendt J I, et al.An 800 ka record of the geochemistry of magmatism on the East Pacific Rise at 10°30'N: Insights into magma chamber processes beneath a fast-spreading ocean ridge[J]. Earth and Planetary Science Letters, 1999, 168: 45-63.
|
[72] |
Niu Y L, Hékinian R.Ridge suction drives plume-ridge interactions (Chapter 9)[M]∥Oceanic Hotspots. New York:Springer-Verlag, 2004:285-307.
|
[73] |
Niu Y L, Waggoner G, Sinton J M,et al.Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise 18°-19°S[J]. Journal of Geophysical Research, 1996, 101(B12): 27 711-27 733.
|
[74] |
Niu Y L, Collerson K D, Batiza R,et al.The origin of E-type MORB at ridges far from mantle plumes: The East Pacific Rise at 11°20'N[J].Journal of Geophysical Research, 1999, 104(4): 7 067-7 087.
|
[75] |
Niu Y L, Regelous M, Wendt J I, et al.Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component[J]. Earth and Planetary Science Letters, 2002, 199: 327-345.
|
[76] |
Niu Y L, O’Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry and mineral physics considerations[J]. Journal of Geophysical Research, 2003, 108: 2 209, doi:10.1029/2002JB002048.
|
[77] |
Niu Y L, O’Hara M J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle[J]. Lithos, 2009, 112(1/2): 1-17.
|
[78] |
Niu Y L.The origin of alkaline lavas[J]. Science, 2008, 320(5 878): 883-884.
|
[79] |
Niu Y L.Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts (OIB)[J]. Chinese Science Bulletin, 2009, 54: 4 148-4 160,doi:10.1007/S11434-009-0668-3.
|
[80] |
Niu Y L, Batiza R.An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting[J]. Journal of Geophysical Research, 1991, 96(B13): 21 753-21 777.
|
[81] |
Niu Y L.Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites[J]. Journal of Petrology, 1997, 38(8): 1 047-1 074.
|
[82] |
Niu Y L, Wilson M, Humphreys E R, et al.The origin of intra-plate Ocean Island Basalts (OIB): The lid effect and its geodynamic implications[J]. Journal of Petrology, 2011, 52(7/8): 1 443-1 468.
|
[83] |
Zhao X M, Zhang H F, Zhu X K, et al.Effects of melt percolation on iorn isotopic variation in peridotites from Yangyuan, North China Craton[J]. Chemical Geology, 2015, 401: 96-110.
|
[84] |
Niu Y L, Langmuir C H, Kinzler R J.The origin of abyssal peridotites: A new perspective[J]. Earth and Planetary Science Letters, 1997, 152(1/4): 251-265.
|
[85] |
Hess H H.History of the ocean basins[M]∥Petrologic Studies: A Volume to Honour A F.Buddington, Denver, CO: Geological Society of America, 2016:599-620.
|
[86] |
Niu Y L, Wilson M, Humphreys E R, et al.A trace element perspective on the source of Ocean Island Basalts (OIB) and fate of Subducted Ocean Crust (SOC) and Mantle Lithosphere (SML)[J]. Episodes, 2012, 35(2): 310-327.
|
[87] |
Evans B W, Hattori K, Baronnet A.Serpentinite: What, why, where?[J].Element, 2013, 9(2): 99-106.
|
[88] |
Song S G, Su L, Niu Y L, et al.CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge[J]. Geochimica et Cosmochimica Acta, 2009, 73(6):1 737-1 754.
|
[89] |
Greenberger R N, Mustard J F, Cloutis E A, et al.Serpentinization, iron oxidation, and aqueous conditions in an ophiolite: Implications for hydrogen production and habitability on Mars[J]. Earth and Planetary Science Letters, 2015, 416: 21-34,doi:10.1016/j.epel.2015.02.002.
|
[90] |
Craddock P R, Warren J M, Dauphas N.Abyssal peridotites reveal the near-chondritic composition of the Earth[J]. Earth and Planetary Science Letters, 2013, 365: 63-76,doi:10.1016/j.epsl.2013.01.011.
|
[91] |
Williams H M, Bizimis M.Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts[J]. Earth and Planetary Science Letters, 2014, 404: 396-407,doi:10.1016/j.epsl.2014.07.033.
|
[92] |
Wade J, Wood B J.Core formation and the oxidation state of the Earth[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 78-95.
|
[93] |
Wood B J, Bryndzia L T, Johnson K E.Mantle oxidation state and its relationship to tectonic environment and fluid speciation[J]. Science, 1990, 248(4 953): 337-344.
|
[94] |
Schönbachler M, Carlson R W, Horan M F, et al.Heterogeneous accretion and the moderately volatile element budget of Earth[J]. Science, 2010, 328(5 980): 884-887.
|
[95] |
Javoy M, Kaminski E, Guyot F, et al.The chemical composition of the Earth: Enstatite chondrite models[J]. Earth and Planetary Science Letters, 2010, 293(3/4): 259-268.
|
[96] |
Debret B, Millet M A, Pons M L, et al.Isotopic evidence for iron mobility during subduction[J]. Geology, 2016, 44: 215-218,doi:10.1130/G37565.1.
|
[97] |
Song S G, Zhang L F, Niu Y L,et al.Geochronology of diamond-bearing zircons from garnet-peridotite in the North Qaidam UHPM belt, North Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision[J]. Earth and Planetary Science Letters, 2005, 234(1/2): 99-118.
|
[98] |
Nebel O, Sossi P A, Benard A,et al.Redox-variability and controls in subduction zones from an iron-irotope perspective[J]. Earth and Planetary Science Letters, 2015, 432: 142-151,doi:10.1016/j.epsl.2015.09.036.
|
[99] |
Bourdon B, Turner S, Henderson G M, et al.Introduction to U-series geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 1-21.
|
[100] |
Andersen M S, Stirling C H, Weyer S.Utanium isotope fractionation[J]. Reviews in Mineralogy and Geochemistry, 2017, 81, doi: 10.2138/rmg.2017.82.19.
|
[101] |
Elliott T, Zindler A, Bourdon B.Exploring the kappa conundrum: The role of recycling in the lead isotope evolution of the mantle[J]. Earth and Planetary Science Letters, 1999, 169(1/2): 129-145.
|
[102] |
Fujii Y, Nomura M, Onitsuka H, et al.Anomalous isotope fractionation in uranium enrichment process[J]. Journal of Nuclear Science and Technology, 1989, 26: 1 061-1 064,doi:10.1080/18811248.1989.9734427.
|
[103] |
Bigeleisen J.Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements[J]. Journal of the American Chemical Society, 1996, 118(15): 3 676-3 680.
|
[104] |
Schauble E A.Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements[J]. Geochimica et Cosmochimica Acta, 2007, 71(9): 2 170-2 189.
|
[105] |
Stirling C H, Andersen M B, Potter E,et al.Low-temperature isotopic fractionation of uranium[J].Earth and Planetary Science Letters, 2007, 264(1/2): 208-225.
|
[106] |
Weyer S, Ionov D A.Partial melting and melt percolation in the mantle: The message from Fe isotopes[J]. Earth and Planetary Science Letters, 2007, 259(1/2): 119-133.
|
[107] |
Bopp C J, Lundstrom C C, Johnson T M,et al.Variations in 238U/235U in uranium ore deposits: Isotope signatures of the U reduction process?[J].Geology, 2009, 37(7): 611-614.
|
[108] |
Brennecka G A, Borg L E, Hutcheon I D,et al.Natural variations in uranium isotope ratios of uranium ore concentrates: Understanding the 238U/235U fractionation mechanism[J]. Earth and Planetary Science Letters,2010, 291(1/4): 228-233.
|
[109] |
Hiess J, Condon D J, McLean N,et al. 238U/235U systematics in terrestrial uranium-bearing minerals[J]. Science, 2012, 335(6 076): 1 610-1 614.
|
[110] |
Berry W B N, Wilde P. Progressive ventilation of the oceans: An explanation for the distribution of the lower Paleozoic black shales[J]. American Journal of Science, 1978, 278: 257-275,doi:10.2475/ajs.278.3.257.
|
[111] |
Dahl T W, Hammarlund E U, Anbar A D,et al.Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish[J]. Proceeding of the National Academy of Sciences,2010, 107(42):17 911-17 915.
|
[112] |
Dahl T W, Boyle R A, Canfield D E,et al.Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event[J].Earth and Planetary Science Letters,2014, 401: 313-326,doi:10.1016/j.epsl.2014.05.043.
|
[113] |
Gill B C, Lyons T W, Young S A,et al.Geochemical evidence for widespread euxinia in the later Cambrian ocean[J]. Nature, 2011, 469: 80-83,doi:10.1038/nature09700.
|
[114] |
Tissot F H, Dauphas N.Uranium isotopic comnpositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia[J]. Geochimica et Cosmochimica Acta, 2015, 167: 113-143,doi:10.1016/j.gca.2015.06.024.
|
[115] |
Wang X L, Johnson T M, Lundstrom C C.Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen[J]. Geochimica et Cosmochimica Acta, 2015, 150: 160-170,doi:10.1016/j.gca.2014.12.007.
|
[116] |
Wang X L, Johnson T M, Lundstrom C C.Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI)[J]. Geochimica et Cosmochimica Acta,2015, 158: 262-275,doi:10.1016/j.gca.2015.03.006.
|
[117] |
Goldmann A, Brennecka G, Noordmann W,et al.The uranium isotopic composition of the Earth and the solar system[J]. Geochimica et Cosmochimica Acta, 2015,148: 145-158,doi:10.1016/j.gca.2014.09.028.
|
[118] |
Hofmann A W, White W M.Mantle plumes from ancient oceanic crust[J]. Earth and Planetary Science Letters, 1982, 57(2): 421-436.
|
[119] |
Pilet S, Hernandez J, Sylvester P,et al.The metasomatic alternative for ocean island basalt chemical heterogeneity[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 148-166.
|
[120] |
Pilet S, Baker M B, Stolper E M.Metasomatized lithosphere and the origin of alkaline lavas[J]. Science, 2008, 320(5 878): 916-919.
|
[121] |
Guo P Y, Niu Y L, Yu X H.A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context[J]. Journal of Asian Earth Science, 2014, 79: 86-96,doi:10.1016/j.jseaes.2013.09.012.
|
[122] |
Zhang M J, Hu P Q, Niu Y L, et al.Chemical and stable isotopic constraints on the nature and origin of volatiles in the sub-continental lithospheric mantle beneath eastern China[J]. Lithos, 2007, 96(1/2): 55-66.
|
[123] |
Zhang M J, Niu Y L, Hu P Q.Volatiles in the mantle lithosphere: Modes of occurrence and chemical compositions[M]∥Anderson J E, Coates R W,eds. The Lithosphere: Geochemistry, Geology and Geophysics.Nova Scientific Publishers, Inc., 2009:171-212.
|
[124] |
Guo P Y, Niu Y L, Ye L, et al. Lithosphere thinning beneath west North China Craton: Evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts[J]. Lithos, 2014, 202/203: 37-54.
|
[125] |
Guo P Y, Niu Y L, Sun P, et al. The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone[J]. Lithos, 2016,240/243: 104-118,doi:10.1016/j.lithos.2015.11.010.
|
[126] |
Sun P, Niu Y L, Guo P Y, et al. Elemental and Sr-Nd-Pb isotope geochemistry of the Cenozoic basalts in Southeast China: Insights into their mantle sources and melting processes[J].Lithos, 2017, 272/273: 16-30,doi:10.1016/j.lithos.2016.12.005.
|
[127] |
Xu Y G.Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: Evidence, provenance and significance[J]. Geochimica et Cosmochimica Acta, 2014, 143: 49-67,doi:10.1016/j.gca.2014/04.045.
|
[128] |
Niu Y L.Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives[J]. Global Tectonics and Metallogeny, 2014,10: 23-46,doi:10.1127/gtm/2014/0029.
|
[129] |
Xiao Y Y, Lavis S, Niu Y L, et al.Trace element transport during subduction-zone ultrahigh pressure metamorphism: Evidence from Western Tianshan, China[J]. Geological Society of America Bulletin, 2012, 124(7/8): 1 113-1 129.
|
[130] |
Xiao Y Y, Niu Y L, Song S G, et al. Elemental responses to subduction-zone metamorphism: Constraints from the North Qilian Mountain, NW China[J]. Lithos, 2013, 160/161: 55-67.
|
[131] |
Xiao Y Y, Niu Y L, Li H K, et al.Trace element budgets and (re-)distribution during subduction-zone ultrahigh pressure metamorphism: Evidence from Western Tianshan, China[J]. Chemical Geology,2014, 365: 54-68,doi:10.1016/chemgeo.2013.12.005.
|
[132] |
Xiao Y Y, Niu Y L, Wang K L, et al.Geochemical behaviors of chemical elements during subduction-zone metamorphism and geodynamic significance[J]. International Geology Review, 2016, 58(10): 1 253-1 277.
|
[133] |
Niu Y L, Zhao Z D, Zhu D C,et al.Continental collision zones are primary sites for net continental crust growth—A testable hypothesis[J]. Earth-Science Reviews, 2013, 127: 96-110,doi:10.1016/j.earscirev.2013.09.024.
|
[134] |
Huang H, Niu Y L, Nowell G,et al.Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism[J]. Chemical Geology, 2014, 370: 1-18,doi:10.1016/j.chemgeo.2014.01.010.
|
[135] |
Chen S, Niu Y L, Li J Y,et al. Syncollisional adakitic granodiorites formed by fractional crystallization: Insights from their enclosed Mafic Magmatic Enclaves (MMEs) in the Qumushan pluton, North Qilian Orogen at the northern margin of the Tibetan Plateau[J]. Lithos, 2016, 248/251: 455-468,doi:10.1016/j.lithos.2016.01.033.
|
[136] |
Chen S, Wang X H, Niu Y L, et al.Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS[J].Science Bulletin, 2017, 62(4): 277-289.
|