地球科学进展 ›› 2005, Vol. 20 ›› Issue (9): 970 -979. doi: 10.11867/j.issn.1001-8166.2005.09.0970

所属专题: 青藏高原研究——青藏科考虚拟专刊

综述与评述 上一篇    下一篇

青藏高原的地幔动力学研究
熊熊 1,2,傅容珊 3,滕吉文 2,许厚泽 1   
  1. 1.中国科学院测量与地球物理研究所,湖北 武汉 430077;
    2.中国科学院地质与地球物理研究所,北 京 100101;
    3.中国科学技术大学地球及空间科学学院,安徽 合肥 230026
  • 收稿日期:2005-03-02 修回日期:2005-05-18 出版日期:2005-09-25
  • 通讯作者: 熊熊
  • 基金资助:

    国家自然科学基金项目“地幔对流作用下青藏高原岩石层形变研究”(编号: 40274037);“利用大地测量资料精化大陆地幔岩石层热结构”(编号: 40474028);中国科学院知识创新工程重要方向项目“青藏高原东部现今地壳运动的观测研究”(编号: KZCX3-SW-153)资助.

A STUDY OF MANTLE DYNAMICS OF THE TIBETAN PLATEAU

XIONG Xiong 1,2;FU Rongshan 3;TENG Jiwen 2;XU Houze 1   

  1. 1.Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077,China;
    2.Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100101,China;
    3.College of Earth and Space Science, University of Science and Technology of China, Hefei 230026,China
  • Received:2005-03-02 Revised:2005-05-18 Online:2005-09-25 Published:2005-09-25

青藏高原的形成是印度板块与欧亚大陆碰撞、挤压的结果,但简单的碰撞模型及南西—北东向的挤压无法解释高原现今所有的构造。因此,其他地球动力学因素,尤其是地幔动力学过程逐渐引起人们的关注。简要回顾青藏高原隆升的地幔动力学机制研究历史;较详细地介绍了青藏高原下深部结构的地幔动力学含义;并重点评述在青藏高原隆升的地幔动力学机制研究领域所取得的主要结果。说明在全球构造格局中,青藏高原不仅仅是印度和欧亚大陆会聚、碰撞以及大陆形变的结果,它也是青藏高原大陆岩石层和下伏地幔物质运动的相互耦合、相互作用的产物。

The uplift and formation of the Tibetan Plateau is the dynamic consequence of the collision between the Indian and Eurasian plates. However, the collision model alone and the South-north compression between two plates cannot clarify all the tectonic features of the plateau. Therefore, other dynamic processes, especially that within the mantle draw the attention gradually. The research history on the mantle dynamic mechanism of the uplift of Tibetan Plateau is reviewed briefly and the mantle dynamic implication of the deep structure beneath the plateau in reviewed in detail. We concentrate on introducing the progress of the study on mantle dynamic mechanism of the uplift of Tibetan Plateau. It is proposed that the Tibetan Plateau is the consequence of not only the collision between India and Eurasia plates, but also the coupling and interaction between the lithosphere and underlaying mantle of the plateau.

中图分类号: 

[1] Molnar P. Structure and tectonics of the Himalaya: constraints and implications of geophysical data [J]. Annual Review of Earth and Planetary Science, 1984, 12: 489-518.
[2] Watts A B. Isostasy and Flexure of the Lithosphere [M]. London: Cambridge University Press, 2001.9-12.
[3] Dewey J F, Cande S, Pitmam W C. Tectonic evolution of the India-Eurasia collision zone[J].Eclogae Geologicae Helvetiae,1989, 63: 717-734.
[4] Cui Junwen. Continental crustal thickening and mechanism of uplift of the Himalayan collision belt [A]. In: Chinese Geological  Academy, Bulletin of Chinese Geological Academy[C]. Beijing:Geological Press,1990,21:55-62. [崔军文. 喜马拉雅碰撞带陆壳增厚和隆升机制[A]. 见: 中国地质科学院主编. 中国地质科学院院报, 21号[C]. 北京: 地质出版社, 1990,21:55-62.]
[5] Zeng Rongsheng. 3D seismic velocity structure of the Tibetan Plateau and its eastern adjacent areas and continental collision model [J]. Acta Seismologica Sinica,1992,14(suppl.): 523-533. [曾融生. 青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型[J]. 地震学报, 1992,14(增刊): 523-533.]
[6] Zeng Rongsheng, Ding Zhifeng, Wu Qingju. Study on lithospheric tectonics and dynamic process of the Tibetan Plateau [J]. Chinese Journal of Geophysics,1994,37(suppl.): 99-l16. [曾融生,丁志峰,吴庆举. 青藏高原岩石圈构造及动力学过程研究[J]. 地球物理学报, 1994,37(增刊): 99-l16.]
[7] Teng Jiwen, Zhang Zhongjie, Wang Guangjie, et al. The deep internal dynamical processes and new model of continental-continental collision in Himalayan collision orogenic zone [J].Chinese Journal of Geophysics,1999,42(4): 481-494. [滕吉文,张中杰, 王光杰. 等. 喜马拉雅碰撞造山带的深层动力学过程与陆—陆碰撞新模型[J].地球物理学报,1999, 42(4): 481-494.]
[8] Marquart G, Schmeling H. Topography and geoid undulations caused by small-scale convection beneath continental lithosphere of variable elastic thickness [J].Journal of Geophysics,1989, 97:511-527.
[9] Zorin Y A, Florensov N A. On geodynamics of Cenzonic uplifts in central Asia [J]. Tectonophysics,1979, 61: 271-283.
[10] McGetchin T R, Burke K C, ThompsonG A, et al., Mode and mechanisms of plateau uplift[A]. In: Bally A W, Bender P L, McGetchin T R, et al. Dynamics of Plate Interiors, Colorado[C]. Boulder: American  Geophysics Union, 1980.99-110.
[11] Liu H S. Geodynamical basis for crustal deformation under the Tibetan Plateau [J].Physics of the Earth and Planetary Interiors,1985, 40: 43-60.
[12] Huang Peihua, Fu Rongshan. Investigation of state of mantle convection at the lithospheric bottom in China [J]. Chinese Journal of Geophysics,1983,26(1): 39-47. [黄培华, 傅容珊. 中国岩石层底面地幔对流状态的探讨[J]. 地球物理学报, 1983,26(1): 39-47.]
[13] Fu R S, Huang P H. The global stress field in the lithosphere obtained from the satellite gravitational harmonics[J].Physics of the Earth and Planetary Interiors,1983, 31: 269-276.
[14] Fu Rongshan, Huang Peihua. Calculating lithospheric stress field by using satellite gravity data [J].Chinese Journal of Geophysics,1983, 26(suppl.): 39-47. [傅容珊, 黄培华. 利用卫星重力数据计算岩石层内应力场[J]. 地球物理学报, 1983, 26(增刊): 39-47.]
[15] Fu Rongshan, Huang Jianhua, Liu Wenzhong. Correlation equation between regional gravity isostatic anomalies and small scale convection in the upper mantle [J].Chinese Journal of Geophysics,1994, 37: 638-646. [傅容珊, 黄建华, 刘文忠.区域重力异常和上地幔小尺度对流相关方程[J]. 地球物理学报, 1994, 37: 638-646.]
[16] Fu Rongshan, Chang Xiaohua, Huang Jianhua, et al. Regional gravity isostatic anomaly and small scale convection in upper mantle II[J].Chinese Journal of Geophysics,1994, 37(suppl.): 249-258. [傅容珊, 常筱华, 黄建华.等.区域重力异常和上地幔小尺度对流模型 II[J]. 地球物理学报, 1994, 37(增刊): 249-258.]
[17] Fu R S, Huang J H, Wei Z X. The upper mantle flow beneth the North China Platform[J].Pure and Applied Geophysics,1996, 146(4): 649-659.
[18] Fu Rongshan, Huang Jianhua, Xu Yaoming, et al. Study of the mantle dynamics of the lithosphere movements in the region from Qinghai-Xizang plateau to Tianshan mountain [J].Chinese Journal of Geophysics,1998, 41: 658-668. [傅容珊,黄建华,徐耀民,等. 青藏高原—天山地区岩石层构造运动的地幔动力学机制[J].地球物理学报,1998, 41: 658-668.]
[19] Xiong Xiong,Teng Jiwen. Study on crustal movement and deep process in eastern Qinghai-Xizang Plateau[J].Chinese Journal of Geophysics,2002,45(4): 507-515. [熊熊,滕吉文. 青藏高原东缘地壳运动与深部过程研究[J]. 地球物理学报,2002,45(4): 507-515.]
[20] Molnar P, England P, Mantinod J. Mantle dynamics, uplift of Tibetan Plateau and the Indian Monsoon[J]. Review of Geophysics, 1993, 37(4): 357-396.
[21] Houseman G A, McKenzie D P, Molnar P. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergence belts[J]. Journal of Geophysical Research, 1981, 86(B7):6 115-6 132.
[22] Molnar P. A review of geophysical constraints on the deep structure of the Tibetan plateau, the Himalaya and the Karakoram, and their tectonic implication [J]. Philosophy Transition of Royal Society of London,1988, A326: 33-88.
[23] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet [J].Science,1992, 255: 1 663-1 670.
[24] McNamara D E, Owens T J, Silver P G, et al. Shear wave anisotropy beneath the Tibetan plateau[J]. Journal of Geophysical Research, 1994, 99(B7):13 655-13 665.
[25] Curtis A, Woodhouse J H. Crust and upper mantle shear velocity structure beneath the Tibetan plateau and surrounding regions from interevent surface wave velocity inversion [J]. Journal of Geophysical Research,1997, 102(B6):11 789-11 813.
[26] Wu F T, Levshin A. Surface-wave group velocity tomography of east Asia[J]. Physics of the Earth and Planetary Interiors,1994, 84:59-77.
[27] Hirn A M, Sapin J C, Lepine J D, et al. Increase in melt fraction along a south-north traverse below the Tibetan Plateau: evidence from seismology [J]. Tectonophysics, 1997, 273:17-30.
[28] Masson F, Achauer U, Wittlinger G. Joint analysis of P-traveltimes teleseismic tomography and gravity modeling for northern Tibet[J]. Journal of Geodynamics, 1998, 26:85-109.
[29] Xu Y, Liu F T, Liu J H, et al. Crust and upper mantle structure beneath western China from P wave travel time tomography [J]. Journal of Geophysical Research, 2002, 107(B10): 2220, doi:10.1029/2001 JB000402.
[30] Rodgers A J, Schwartz S Y. Lithospheric structure of the Qiangtang Terrane, northern Tibetan plateau, from complete regional waveform modeling: Evidence for partial melt [J]. Journal of Geophysical Research, 1998, 103(B4):7 137-7 152.
[31] Fan G  W, Lay T. Characteristics of Lg attenuation in the Tibetan plateau[J]. Journal of Geophysical Research,2002, 107(B10):2256, doi:10.1029/2001JB000804.
[32] Fan G  W, Lay T. Strong Lg wave attenuation in the Northern and Eastern Tibetan plateau measured by a two-station/two-event stacking method [J].Geophysical Research Letters,2003, 30(10):1530, doi:10.1029/2002GL016211.
[33] Barazangi M, Ni J. Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan plateau: Possible evidence for underthrustings of Indian continental lithosphere beneath Tibet [J]. Geology, 1982, 19:179-185.
[34] McNamara D E, Owens T J, Walter W R. Observations of regional phase propagation across the Tibetan plateau[J]. Journal of Geophysical Research, 1995, 100(B11):22 215-22 229.
[35] McNamara D E, Walter W R, Owens T J, et al. Upper mantle velocity structure beneath the Tibetan Plateau from Pn travel time tomography [J]. Journal of Geophysical Research, 1997, 102(B1):493-505.
[36] Hearn T M, Wang S Y, Ni J F, et al. Uppermost mantle velocities beneath China and surrounding regions [J].Journal of Geophysical Research, 2004, 109(B11301): doi:10.1029/2003JB002874.
[37] Liang C T, Song X D, Huang, J L. Tomographic inversion of Pn travel times in China [J].Journal of Geophysical Research,2004, 109(B11304):doi:10.1029/2003JB002789.
[38] Ding L, Kapp P, Zhong D L, et al. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction [J]. Journal of Petrology,2003, 44(10):1 833-1 865.
[39] Turner S, Hawksworth J, Rogers N,et al. Timing of the Tibetan uplift constrained by analysis of volcanic rocks [J].Nature,1993, 364:50-54.
[40] Rapine R, Tilmann F, West M,et al. Crustal structure of northern and southern Tibet from surface wave dispersion analysis [J].Journal of Geophysical Research, 2003, 108(B2):2120, doi:10.1029/2001 JB000445.
[41] Wang Y. Heat flow pattern and lateral variations of lithosphere strength in China mainland: Constraints on active deformation [J]. Physics of the Earth and Planetary Interiors, 2001, 126: 121-146.
[42] Kola-Ojo O, Meissner R. Southern Tibet: Its deep seismic structure and some tectonic implications [J]. Journal of Asian Earth Science,2001, 19:249-256.
[43] Owens T J, Zandt G. Implications of crustal property variations for models of Tibetan plateau evolution [J]. Nature,1997, 387: 37-43.
[44] Zhou R, Grand S P, Tajima F, et al. High velocity zone beneath the southern Tibetan Plateau from P-wave differential travel-time data [J].Geophysical Research Letters,1996, 23(1):25-28.
[45] Zhu L, Helmberger D V. Intermediate depth earthquakes beneath the India-Tibet collision zone [J]. Geophysical Research Letters, 1996, 23(5):435-438.
[46] Dricker I G, Roecker S W. Lateral heterogeneity in the upper mantle beneath the Tibetan plateau and its surroundings from SS-S travel time residuals [J]. Journal of Geophysical Research,2002, 107(B11):2305, doi:10.1029/2001JB 000797.
[47] Kosarev G, Kind R, Sobolev S X, et al. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet [J]. Science, 1998, 283: 1 306-1 309.
[48] Sandvol E, Ni J, Kind R, et al. Seismic anisotropy beneath the southern Himalayas-Tibet collision zone [J]. Journal of Geophysical Research, 1997, 102(B8): 17 813-17 823.
[49] Herquel G, Wittlinger G, Guilbert J. Anisotropy and crustal thickness of Northern-Tibet. New Constraints for tectonic modeling [J]. Geophysical Research Letters, 1995, 22(14): 1 925-1 928.
[50] Oreshin S,Vinnik L,Peregoudov D,et al.Lithosphere and asthenosphere of the Tien Shan imaged by S receiver function[J]. Geophysical Research Letters, 2002, 29: 10.1029/2001GL014441.
[51] Wolfe C J, Vermon III F L. Shear-wave splitting at central Tien Shan: Evidence for rapid variation of anisotropy patterns [J]. Geophysical Research Letters, 1998, 25:1 217-1 220.
[52] Bielinski R A, Park S K, Rybin A, et al. Lithospheric heterogeneity in the Kyrgyz Tien Shan imaged by magnetotelluric studies [J]. Geophysical Research Letters, 2003, 30:1806, doi:10.1029/2003GL017455.
[53] Zhang Z J, Badal J, Chen Y. Shear wave velocity and anisotropy images of crust and upper mantle in Tibet from surface waves [J]. Journal of Geophysical Research, 2005(in review)
[54] Runcorn S K. Satellite gravity measurements and laminar viscous flow model of the earth's mantle[J]. Journal of Geophysical Research, 1964, 69:4 389-4 394.
[55] Runcorn S K. Flow in the mantle inferred from the low degree harmonics of the geopotential [J]. Geophysical Journal of Royal Astronomy Society, 1967, 14: 375-384.
[56] Lambeck K. Geophysical Geodesy: The Slow Deformation of the Earth[M]. Oxford: Clarendon Press,1988.
[57] Pick M. The geoid and tectonic forces[A].In: Vani C ek P, Christou N, eds. Geodesy and Its Geophysical Applications [C]. Florida: CRC Press, Inc, 1994. 239-253.
[58] Liu H S. Convection generated stress field and intra-plate volcanism [J]. Tectonophysics, 1980, 65:225-244.
[59] Huang Jianhua, Chang Xiaohua, Fu Rongshan. Upper mantle flow and lithospheric dynamics in the western China [J]. Acta Seismologica Sinica, 1996, 18(2):194-199.[黄建华,常筱华,傅容珊.西北地区上地幔物质流动及岩石层动力学[J]. 地震学报,1996,18(2):194-199.]
[60] Teng Jiwen, Zhang Zhongjie, Hu Jiafu, et al. Physical-mechanical mechanism for the whole uplift of the Qinghai-Xizang plateau and the lateral shortening and vertical thickening of the crust [J]. Geological Journal of China Universities, 1996,2: 121-133. [滕吉文, 张中杰, 胡家富,等. 青藏高原整体隆升与地壳短缩增厚的物理力学机制研究(上) [J]. 高校地质学报, 1996,2: 121-133.]
[61] Teng Jiwen, Zhang Zhongjie, Hu Jiafu, et al. Physical-mechanical mechanism for the whole uplift of the Qinghai-Xizang Plateau and the lateral shortening and vertical thickening of the crust [J]. Geological Journal of China Universities, 1996, 2: 307-323.[滕吉文, 张中杰, 胡家富,等. 青藏高原整体隆升与地壳短缩增厚的物理力学机制研究(下) [J]. 高校地质学报, 1996,2: 307-323.]
[62] Shi Yaoling, Zhu Yuanqing, Shen Xianjie. Tectonic processes and thermal evolution of the Qinghai-Xizang (Tibetan) plateau[J]. Chinese Journal of Geophysics, 1992,35(6):710-720. [石耀霖,朱元清,沈显杰.青藏高原构造热演化的主要控制因素[J].地球物理学报,1992,35(6):710-720.]
[63] Shi Y L, Zhu Y Q. Some thermotectonic of the Tibetan Plateau [J]. Tectonophysics, 1993, 219: 223-233.
[64] Hinojosa J H, Mickus K. Uplift history of the Colorado Plateau lithosphere: An axisymmetric numerical model[J]. EOS Transactions American Geophysical Union,1994, 75(16): 229.
[65] Zeng Tao, Dong Wenjie. Comparison study between numerical model and observations of uplift of the Tibetan plateau[J]. Chinese Science Bulletin, 1997, 42(20):2 200-2 201. [曾涛,董文杰.青藏高原隆升的数值模型与实测比较[J].科学通报,1997,42(20):2 200-2 201.]
[66] Dong Wenjie, Tang Maocang. Numerical study on uplift and planation of the Tibetan plateau[J]. Science in China(D),1997, 27: 65-69. [董文杰,汤懋苍.青藏高原隆升和夷平过程的数值模型研究[J].中国科学D辑,1997,27: 65-69.]
[67] Zhong D L, Ding L. Investigation on process and mechanism of the uplift of the Tibetan Plateau [J]. Science in China(D), 1996, 26: 289-295. [钟大赉,丁林.青藏高原的隆起过程及其机制探讨[J].中国科学D辑,1996,26: 289-295.]
[68] Fu Rongshan, Li Ligang, Huang Jianhua, et al. Three-step model of the Qinghai-Xizang Plateau uplift [J]. Chinese Journal of Geophysics,1999, 42(5): 610-616. [傅容珊,李力刚,黄建华,等. 青藏高原隆升过程的三阶段模式[J]. 地球物理学报,1999, 42(5): 610-616.]
[69] Fu Rongshan, Huang Jianhua, Li Ligang, et al. Numerical simulation of the three-step uplift model of the Tibet plateau[J].Earth Science Frontier,2000, 7(4): 588-596. [傅容珊,黄建华,李力刚,等.待青藏高原隆升三阶段模型的数值模拟[J]. 地学前缘,2000, 7(4): 588-596.]
[70] Teng Jiwen, Yin Zhouxun, Liu Hongbing, et al. The 2D and 3D lithospherie structure and continental dynamics of Qinghai-Xizang Plateau [J].Chinese Journal of Geophysics,1994,37(suppl.): 117-129. [滕吉文,尹周勋,刘宏兵,等.青藏高原岩石层二维和三维结构与大陆动力学[J].地球物理学报,1994,37(增刊): 117-129.]
[71] Kroon D, Steens T, Troelstra S R. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic formifers[A]. In: Proceeding of Ocean Drill Program Scientific Results[C].1991, 117: 257-263.
[72] Prell W L, Murray D W, Clemens S C, et al. Evolution and variability of the Indian Ocean summer monsoon: Evidence from the western Arabian Sea drilling program [A]. In: Duncan R A, eds. Synthesis of Results from Scientific Drilling in the Indian Ocean, Geophysical Monography, Ser. Vol. 70[C]. Washington DC: AGU,1992.447-469.
[73] Cochran J R. Himalayan uplift, sea level, and the record of Bengal Fan sedimentation at the ODP leg 116 sites [A]. In: Proceeding of Ocean Drill Program Scientific Results[C].1990, 116: 397-414.
[74] Maluski H, Matte P, Brunel M, et al. Argon39-Argon40 dating of metamorphic and Plutonic events in the North and High Himalayan belts (southern Tibet-China) [J]. Tectonics,1988, 7:299-326.
[75] Arnaud N O, Vidal P, Tapponnier P, et al. The high K2O volcanism of northwestern Tibet: Geochemistry and tectonic implications [J].Earth and Planetary Science Letters,1992, 111: 351-367.
[76] Bird P. Continental delamination and Colorado Plateau [J].Journal of Geophysical Research, 1979, 84(B13):7 561-7 576.
[77] Kong X, Yin A, Harrison T M. Evaluating the role of pre-existing weakness and topographic distributions in the Indo-Asian collision by use of a thin-shell numerical model [J].Geology,1997, 25:527 -530.
[78] Fu R S, Huang J H, Xiong X. Evolution of the upper mantle flow under Tibetan Plateau[A]. In: Proceedings of International Symposium on crustal movement and hazard reduction in East Asia and South-east Asia[C].1997. 405-417.
[79] Sun Honglie. Recent advancee in studies on Qinghai-Xizang plateau[J]. Advances in Earth Science,1996, 11(6): 536-542. [孙鸿烈. 青藏高原研究的新进展[J]. 地球科学进展, 1996, 11(6): 536-542.]
[80] Wang Chengshan, Ding Xuelin. The new researching progress of Tibetan Plateau uplift [J].Advances in Earth Science,1998, 13(6): 526-532. [王成善,丁学林. 青藏高原隆升研究新进展综述[J]. 地球科学进展, 1998, 13(6): 526-532.]

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[14] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[15] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
阅读次数
全文


摘要