地球科学进展 ›› 2013, Vol. 28 ›› Issue (5): 559 -565. doi: 10.11867/j.issn.1001-8166.2013.05.0559

海底科学观测 上一篇    下一篇

底基三脚架在深海观测中的应用
李建如 1, 徐景平 2, 刘志飞 1   
  1. 1.同济大学海洋地质国家重点实验室,上海 200092;
    2.美国地质调查局,圣克鲁兹 加利福尼亚 95060
  • 收稿日期:2013-04-07 修回日期:2013-04-26 出版日期:2013-05-10
  • 基金资助:

    国家自然科学基金重点项目“南海东北部底层海流和沉积搬运过程的观测研究”(编号:91128206);同济大学“中央高校基本科研业务费专项资金”资助.

Applications of Tripods to DeepSea Observation

Li Jianru 1, Xu Jingping 2, Liu Zhifei 1   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;2.United States Geological Survey, Santa Cruz CA 95060, USA
  • Received:2013-04-07 Revised:2013-04-26 Online:2013-05-10 Published:2013-05-10

底基三脚架是海底观测的平台之一,它能装备多种观测仪器,长期、稳定地立于海底,进行几乎无干扰的原位观测。底基三脚架已成功应用于深海化学、物理、生物和地质过程的现场观测,取得了大量的重要成果,但在我国的深海研究中还未开展。简述了底基三脚架的概念和发展历史、工作原理、应用及前景等,希望引起我国海洋工作者的兴趣和关注,推动底基三脚架在我国深海观测中的应用和发展。

Tripods installed with various instruments, data loggers, and a recovery system, are selfcontained, fully submerged structures that can rest stably on the seafloor. These bottom measurement systems can be used for nearly nondisturbed and longterm investigations on the seafloor. In the past four decades, tripods have made significant contributions to our understanding of the ocean chemical, physical, biological and geological processes. Some discoveries in deepsea observation have also been made from tripod experiments. The paper reviews the concept, development history, and applications of tripods.

中图分类号: 

[1]Knott S T. Use of the precision graphic recorder in oceanography[J]. Marine Scientific Instrumentation, 1962, 1: 251-262.

[2]Cacchione D A, Sternberg R W, Ogston A S. Bottom instrumented tripods: History, applications, and impacts[J]. Continental Shelf Research,2006, 26: 2 319-2 334.

[3]Shanghai Center of Marine Science & Technology(Prepartory Office), State Key Laboratory of Marine Geology of Tongji University. China Seafloor Observation—Science and Technology [M]. Shanghai: Tongji University Press, 2011.[上海海洋科技研究中心(筹),海洋地质国家重点实验室(同济大学). 海底观测——科学与技术的结合[M]. 上海:同济大学出版社,2011.]

[4]Sternberg R W. Friction factors in tidal channels with differing bed roughness[J]. Marine Geology,1968, 6: 243-260.

[5]Cacchione D A, Drake D E. A new instrument system to investigate sediment dynamics on continental shelves[J]. Marine Geology,1979, 30: 299-312.

[6]Gross T F, Williams III A J. Characterization of deep-sea storms[J]. Marine Geology,1991, 99: 281-302.

[7]Agrawal Y C, Traykovski P. Particles in the bottom boundary layer: Concentration and size dynamics through events[J]. Journal of Geophysical Research, 2001, 106: 9 533-9 542.

[8]Mikkelsen O A, Pejrup M. The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity[J]. Geo-Marine Letters, 2001, 20: 187-195.

[9]Sternberg R W, Berhane I, Ogston A S. Measurement of size and settling velocity of suspended aggregates on the northern California shelf[J]. Marine Geology,1999, 154: 43-53.

[10]Rubin D M, Chezar H, Topping D J, et al. Two new approaches for measuring spatial and temporal changes in bed-sediment grain size[C]∥Flemming B W, Hartmann D, Delafontaine M T, eds. International Workshop on Particle Size to Sediment Dynamics. Germany: Hanse Institute, 2004: 126-128.

[11]Tengberg A, De Bovee F, Hall P, et al. Benthic Chamber and Profiling Landers in Oceanography—A Review of Design, Technical Solutions and Functioning[M]. Oxford: Elsevier Science Ltd.1995.

[12]Kuenen Ph H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. Journal of Geology, 1950, 58(2): 91-127.

[13]Nowell A R M, Hollister C D. The objectives and rationale of HEBBLE[J]. Marine Geology, 1985, 66: 1-11.

[14]Grant W D, Williams A J, Glenn S M. Bottom stress estimates and their prediction on the northern California continental shelf during CODE-1: The importance of wave-current interaction[J]. Journal of Physical Oceanography,1984, 14: 506-527.

[15]McCave I N, Chandler R C, Swift S A, et al. Contourites of the Nova Scotian continental rise and the HEBBLE area[M]∥Stow D A V, Pudsey C J, Howe  J A,

et al, eds. Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics. London:Geological Society, 2002.

[16]Boyle E A. Introduction: Chemical oceanography[J]. Chemical Reviews,2007, 107: 305-307.

[17]Black K S, Fones G R, Peppe O C, et al. An autonomous benthic lander: Preliminary observations from the UK BENBO thematic programme[J]. Continental Shelf Research,2001, 21: 859-877.

[18]Priede I G, Bagley P M, Way S, et al. Bioluminescence in the deep sea: Free-fall lander observations in the Atlantic Ocean off Cape Verde[J]. Deep-Sea Research I, 2006, 53: 1 272-1 283.

[19]Jamieson A J, Fujii T, Solan M, et al. HADEEP: Free-falling landers to the deepest places on Earth[J]. Marine Technology Society Journal, 2009, 43(5): 151-160.

[1] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[2] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[3] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[4] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[5] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[6] 陈春, 高峰, 鲁景亮, 陈松丛. 日本海洋科技战略计划与重点研究布局及其对我国的启示[J]. 地球科学进展, 2016, 31(12): 1247-1254.
[7] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[8] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[9] 汪品先. 我国参加大洋钻探的近十年回顾与展望[J]. 地球科学进展, 2014, 29(3): 322-326.
[10] 刘昕明,林荣澄,黄丁勇. 深海热液口化能合成共生作用的研究进展[J]. 地球科学进展, 2013, 28(7): 794-801.
[11] 汪品先. 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28(5): 517-520.
[12] 王克林, Kate Moran. 加拿大海王星:科学、运行、管理[J]. 地球科学进展, 2013, 28(5): 521-528.
[13] 王展坤,Steven DiMarco,Stephanie Ingle, Leila Belabbassi. 北阿拉伯海的光纤海洋观测网络:成功、挑战和机遇[J]. 地球科学进展, 2013, 28(5): 529-536.
[14] 何剑锋,张芳,林凌. 我国极地海底观测系统的发展与展望[J]. 地球科学进展, 2013, 28(5): 566-571.
[15] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
阅读次数
全文


摘要