地球科学进展 ›› 2013, Vol. 28 ›› Issue (5): 552 -558. doi: 10.11867/j.issn.1001-8166.2013.05.0552

海底科学观测 上一篇    下一篇

科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战
徐景平   
  1. 美国地质调查局,圣克鲁斯 加利福尼亚 95060
  • 收稿日期:2013-04-07 修回日期:2013-04-11 出版日期:2013-05-10

Accomplishments and Challenges in Measuring Turbidity Currents in Submarine Canyons

Xu Jingping   

  1. United States Geological Survey, Santa Cruz, CA 95060, USA
  • Received:2013-04-07 Revised:2013-04-11 Online:2013-05-10 Published:2013-05-10

自1993年至今,美国地质调查局的科学家及其合作伙伴在美国西海岸的Monterey海底峡谷进行了针对现代浊流过程的一系列基础性研究,并成功地在世界上首次实地测量到高精度浊流流速及粒度参数。近20年来的数据和知识积累为解释海底峡谷内沉积物和其他颗粒物质输运的机理,以及浊流在维持深海峡谷中生机勃勃的生态系统所起的重要作用提供了直接依据。通过展示把海底观测应用于海洋沉积动力学研究过程中的成果、经验、教训,以及介绍目前还在讨论中的研究计划,以期达到以下宏观论点:在海洋科学里,只有科学与技术不脱节的科研团队才有希望获得成果和突破。

Since 1993, researchers from the United States Geological Survey (USGS) and its partners conducted a series of field experiments in the Monterey Submarine Canyon, California, to study the hydrodynamics and sediment transport of modern day turbidity currents. For the first time ever, highresolution velocity profiles and sediment properties within live turbidity currents were successfully recorded. The stateoftheart data and knowledge accumulated during the past 20 years contributed substantially to interpreting the mechanism of transporting sediments and other particles through submarine canyons, as well as to understanding the important roles of turbidity currents in sustaining the vibrant ecosystem in submarine canyons. None of these would have been possible without the technological advances in oceanographic and geological instrumentations.

中图分类号: 

[1]Heezen B C, Ewing W M. Turbidity currents and submarine slumps and the 1929 Grand Banks (Newfoundland) earthquake[J]. American Journal Science Series,1952,250:849-873.

[2]Parker G, Garcia M, Fukushima Y, et al.  Experiments on turbidity currents over an erodible bed[J].Journal of Hydraulic Research,1987,25:123-147, doi: 10.1080/00221688709499292.

[3]Garcia M. Depositional turbidity currents laden with poorly sorted sediment[J].Journal of Hydraulic Engineering,1994,120:1 240-1 263, doi: 10.1061/ASCE0733-9429(1994)120:11(1240).

[4]Huang H, Imran J, Pirmez C. Numerical modeling of poorly sorted depositional turbidity currents[J].Journal of Geophysical Research,2007,112: 1-15.

[5]Bouma A H, Normark W R, Barnes N E. Submarine Fans and Related Turbidite Systems[M].New York:Springer Verlag, 1985: 351.

[6]Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J].Sedimentology, 2012,59(7): 1 937-2 003, doi:10.1111/j.1365-3091.2012.01353.x.

[7]Hsu S K, Kuo J, Lo C L, et al. Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan[J].Terrestrial, Atmospheric and Oceanic Science, 2008, 19:767-772, doi:10.3319/TAO.2008.19.6.767(PT).

[8]Inman D L, Nordstrom C E, Reinhard E F. Currents in submarine canyons: An air-sea-land interaction[J].Annual Review of Fluid Mechanics,1976, 8:275-310, doi: 10.1146/annurev.fl .08.010176.001423.

[9]Prior D B, Bornhold B D, Wiseman W J, et al. Turbidity current activity in a British Columbia fjord[J].Science,1987, 237:1 330-1 333, doi: 10.1126/science.237.4820.1330.

[10]Garfield N, Rago T A, Schnebele K J, et al. Evidence of a turbidity current in Monterey Submarine Canyon associated with the 1989 Loma Prieta earthquake[J].Continental Shelf Research, 1994, 14:673-686, doi: 10.1016/0278-4343(94)90112-0.

[11]Khripounoff A, Vangriesheim A, Babonneau N, et al. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth[J].Marine Geology,2003,194:151-158, doi:10.1016/S0025-3227(02)00677-1.

[12]Kinoshita K, Noble M A.  The Monterey Submarine Canyon, California Moored Array Data Report[R].U.S. Geological Survey, 1995.

[13]Xu J P, Noble M A, Eittreim S L, et al. Distribution and transport of suspended particulate matter in Monterey Canyon, California[J].Marine Geology, 2002,181:215-234, doi:10.1016/S0025-227(0100268-7).

[14]Xu J P, Noble M A. Currents in Monterey Submarine Canyon[J].Journal of Geophysical Research, 2009,114, C03004, doi: 10.1029/2008JC004992.

[15]Paull C K, Ussler W III, Greene H G, et al. Caught in the act: The 20 december 2001 gravity flow event in Monterey Canyon[J].Geo-Marine Letters, 2003,22: 227-232, doi: 10.1007/s00367-003-0117-2.

[16]Xu J P, Noble M A, Rosenfeld L K. In-situ measurements of velocity structure within turbidity currents[J].Geophysical Research Letters, 2004,31: L09311, doi: 10.1029/2004GL019718.

[17]Xu J P. Normalized velocity profiles of field measured turbidity currents[J].Geology, 2010,38:563-566, doi: 10.1130/G30582.1.

[18]Normark W R,  Piper D J W. Initiation processes and flow evolution of turbidity currents: Implications for the depositional record[C]∥Osborne R E, ed. From Shoreline to Abyss: Contributions in Marine Geology in Honour of Francis Parker Shepard. SEPM (Society for Sedimentary Geology) Special Publication,46,1991:207-230.

[19]Paull C K, Schlining B, Ussler W III, et al. Submarine mass transport within Monterey Canyon: Benthic disturbance controls on the distribution of chemosynthetic biological communities[C]∥Mosher D C, Craig Shipp, Lorena Moscardelli,

et al, eds. Submarine Mass Movements and Their Consequences: 4th  International Symposium. New York: Springer,2009:229-246.

[20]Paull C K, Ussler W III, Johnson J E, et al. Recent sediment transport events in Monterey Canyon and fan channel[C]∥Geophysical Research Abstract: European Geosciences Union, 2006, 8:08799, abs. EGU06-A-08799.

[21]Paull C K, Caress D W, Ussler W III, et al.  High-resolution bathymetry of the axial channels within Monterey and Soquel submarine canyons, offshore central California[J].Geosphere, 2011,7:1 077-1 101, doi:10.1130/GES00636.1.

[22]Smith D, Kvitek R, Iampietro P, et al. Twenty-nine months of geomorphic change in upper Monterey Canyon (2002-2005)[J].Marine Geology,2007,236(1/2): 79-94.

[23]Paull C K, Ussler W III, Caress D W, et al. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon[J].Geosphere,2010, 6:755-774, doi: 10.1130/GES00527.1.

[24]Wynn R B, Piper D J W, Gee M J R. Generation and migration of coarse-grained sediment waves in turbidity current channels and channel-lobe transition zones[J].Marine Geology,2002,192:59-78.

[25]Xu J P, Wong F L, Kvitek R, et al. Sandwave migration in Monterey Submarine Canyon, Central California[J].Marine Geology, 2008,248/3-4:93-212. doi: 10.1016/j.margeo.2007.11.005.

[26]Xu J P, Barry J, Paull  C K. Small-scale turbidity currents in a big submarine canyon[J].Geology, doi:10.1130/G33727.1,2013.

[27]Johnson K S, Paull C K, Barry J P, et al. A decadal record of underflows from a coastal river into the deep sea[J].Geology,2001, 29(11):1 019- 1 022.

[28]Piper D J W, Normark W R. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective[J].Journal of Sedimentary Research, 2009,79:347-362,doi: 10.2110/jsr.2009.046.

[29]El-Gawad S M A, Pirmez C, Cantelli A, et al. 3-D numerical simulation of turbidity currents in submarine canyons off the Niger Delta[J].Marine Geology,

2012,326/328(C): 55-66,doi:10.1016/j.margeo.2012.06.003.

[1] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[2] 张苗苗, 陈晓东, 徐建桥, 崔小明, 刘明, 邢乐林, 穆朝民, 孙和平. 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021, 36(5): 500-509.
[3] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[4] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
[5] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[6] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[7] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[8] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[9] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[10] 雷小途,张雪芬,段晚锁,李泓,高志球,钱传海,赵兵科,汤杰. 近海台风立体协同观测科学试验[J]. 地球科学进展, 2019, 34(7): 671-678.
[11] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[12] 马成龙,陈晓东,江利明,孙和平,徐建桥,董景龙,李德伟. 月基 InSAR观测地球大尺度形变能力的初步研究[J]. 地球科学进展, 2019, 34(2): 164-174.
[13] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[14] 钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11): 1111-1119.
[15] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
阅读次数
全文


摘要