1 |
Liu Shaomin , Li Xiaowen , Shi Shengjin , et al . Measurement, analysis and application of surface energy and water vapor fluxes at large scale[J]. Advances in Earth Science,2010, 25(11): 1 113-1 127.
|
|
刘绍民,李小文,施生锦,等 . 大尺度地表水热通量的观测、分析与应用[J]. 地球科学进展, 2010, 25(11): 1 113-1 127.
|
2 |
Bai J , Jia L , Liu S , et al . Characterizing the footprint of eddy covariance system and large aperture scintillometer measurements to validate satellite-based surface fluxes[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 943-947.
|
3 |
Ma Y , Menenti M , Feddes R , et al . Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D8).DOI:10.1029/2007JD009124 .
doi: 10.1029/2007JD009124
|
4 |
Xu F , Wang W , Wang J , et al . Area-averaged evapotranspiration over a heterogeneous land surface: Aggregation of multi-point EC flux measurements with high-resolution land-cover map and footprint analysis[J]. Hydrology and Earth System Sciences, 2017, 21(8): 4 037-4 051.
|
5 |
Sun G , Hu Z , Sun F , et al . An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data[J]. Theoretical and Applied Climatology, 2016, 129(3): 965-976.
|
6 |
Cammalleri C , Anderson M C , Kustas W P . Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications[J]. Hydrology and Earth System Sciences, 2014, 18(5): 1 885-1 894.
|
7 |
Zhou Yanzhao , Li Xin . Progress in the energy closure of eddy covariance systems[J]. Advance in Earth Sciences,2018, 33(9): 898-913.
|
|
周彦昭,李新 . 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9): 898-913.
|
8 |
Li Xin , Jin Rui , Liu Shaomin , et al . Upscaling research in HiWATER: Progress and prospects[J]. Journal of Remote Sensing,2016, 20(5): 921-932.
|
|
李新,晋锐,刘绍民,等 . 黑河遥感试验中尺度上推研究的进展与前瞻[J]. 遥感学报, 2016, 20(5): 921-932.
|
9 |
Li Huaixiang , Liu Shaomin , Shi Shengjin , et al . Assessing the performance of domestic optical large aperture scintillometer under different environment conditions[J]. Plateau Meteorology,2017, 36(2): 575-585.
|
|
李怀香,刘绍民,施生锦,等 . 国产光学型大孔径闪烁仪的技术性能分析[J]. 高原气象, 2017, 36(2): 575-585.
|
10 |
Zhang Gong , Zheng Ning , Zhang Jinsong , et al . Advances in the study of regional-averaged evapotranspiration using the scintillation method[J]. Acta Ecologica Sinica,2018, 38(8): 2 625-2 635.
|
|
张功,郑宁,张劲松,等 . 光闪烁方法测算区域蒸散研究进展[J]. 生态学报, 2018, 38(8): 2 625-2 635.
|
11 |
Zhang Gong , Zhang Jinsong , Meng Ping , et al . Application of two-wavelength bichromatic correlation method to calculate the average surface energy and water vapor fluxes in plantation North China[J]. Chinese Journal of Agrometeorology,2018, 39(6): 380-389.
|
|
张功,张劲松,孟平,等 . 双波长交互法测算华北人工林平均水热通量的应用分析[J]. 中国农业气象, 2018, 39(6): 380-389.
|
12 |
Liu S , Xu Z , Song L , et al . Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces[J]. Agricultural and Forest Meteorology, 2016, 230/231: 97-113.
|
13 |
Gioli B , Miglietta F , Martino B D , et al . Comparison between tower and aircraft-based eddy covariance fluxes in five European regions[J]. Agricultural and Forest Meteorology, 2004, 127(1/2): 1-16.
|
14 |
Vellinga O S , Gioli B , Elbers J A , et al . Regional carbon dioxide and energy fluxes from airborne observations using flight-path segmentation based on landscape characteristics[J]. Biogeosciences, 2010, 7(4): 1 307-1 321.
|
15 |
Kral T S , Reuder J , Vihma T , et al . Innovative strategies for observations in the Arctic atmospheric boundary layer (ISOBAR)—The Hailuoto 2017 campaign[J]. Atmosphere, 2018, 9(7):268.
|
16 |
Jacob D J , Chilson B P , Houston L A , et al . Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems[J]. Atmosphere, 2018, 9(7):268.
|
17 |
Witte B M , Mullen J , Thamann M A , et al . Fundamental turbulence measurement with unmanned aerial vehicles (invited)[C]//8th AIAA Atmospheric and Space Environments Conference. Washington DC, 2016.
|
18 |
Elston J , Argrow B , Stachura M , et al . Overview of Small Fixed-Wing Unmanned Aircraft for Meteorological Sampling[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(1): 97-115.
|
19 |
Bean B R , Gilmer R , Grossman R L , et al . An analysis of airborne measurements of vertical water vapor flux during BOMEX[J]. Journal of the Atmospheric Sciences, 1972, 29(5): 860-869.
|
20 |
Bean B R , Reinking R F . Marine turbulent boundary layer fluxes of water vapor, sensible heat and momentum during gate[M] //Turbulent Fluxes Through the Sea Surface, Dynamics Wave , and Prediction . Boston, MA: Springer US, 1978: 21-33.
|
21 |
Desjardins R L , Brach E J , Alvo P , et al . Aircraft monitoring of surface carbon dioxide exchange[J]. Science, 1982, 216 (4 547): 733-735.
|
22 |
Gioli B , Miglietta F , Vaccari F P , et al . The Sky Arrow ERA, an innovative airborne platform to monitor mass, momentum and energy exchange of ecosystems[J]. Annals of Geophysics, 2006, 49: 109-116.
|
23 |
Desjardins R L , Worth D E , MacPherson J I , et al . Flux measurements by the NRC Twin Otter atmospheric research aircraft: 1987-2011[J]. Advances in Science and Research, 2016(13): 43-49.
|
24 |
Daida J M , Russell P B , Crawford T L , et al . An unmanned aircraft vehicle system for boundary-layer flux measurements over forest canopies[C]//Proceedings of IGARSS ' 9 -1994 IEEE International Geoscience and Remote Sensing Symposium.
|
|
Pasadena, CA, USA , 1994.
|
25 |
van den Kroonenberg A , Martin T , Buschmann M , et al . Measuring the wind vector using the autonomous mini aerial vehicle M2AV[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(11): 1 969-1 982.
|
26 |
Thomas R M , Lehmann K , Nguyen H , et al . Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system[J]. Atmospheric Measurement Techniques, 2012, (5): 243-257.
|
27 |
Reineman B D , Lenain L , Statom N M , et al . Development and testing of instrumentation for UAV-Based flux measurements within terrestrial and marine atmospheric boundary layers[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(7): 1 295-1 319.
|
28 |
Anderson K , Gaston K J . Lightweight unmanned aerial vehicles will revolutionize spatial ecology[J]. Frontiers in Ecology and the Environment, 2013, 11(3): 138-146.
|
29 |
Reuder J , B?serud L , Jonassen M O , et al . Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign[J]. Atmospheric Measurement Techniques, 2016, 9(6): 2 675-2 688.
|
30 |
Thomas R M , Lehmann K , Nguyen H , et al . Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system[J]. Atmospheric Measurement Techniques, 2012, 5: 243-257.
|
31 |
Lothon M , Lohou F , Pino D , et al . The BLLAST field experiment: Boundary-Layer late afternoon and sunset turbulence[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 10 931-10 960.
|
32 |
Ramanathan V , Ramana M V , Roberts G , et al . Warming trends in Asia amplified by brown cloud solar absorption[J]. Nature, 2007, 448: 575-578.
|
33 |
Sun Yibo . Study of Airborne Eddy Covariance Regional Turbulent Water and Heat Fluxes Measurements Methods [D]. Beijing: Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, 2018.
|
|
孙义博 . 机载涡动相关区域湍流水热通量观测方法研究[D]. 北京: 中国科学院大学, 2018.
|
34 |
Vellinga O S , Dobosy R J , Dumas E J , et al . Calibration and quality assurance of flux observations from a small research aircraft[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2): 161-181.
|
35 |
Alaoui-Sosse S , Durand P , Medina P , et al . OVLI-TA: An Unmanned Aerial System for measuring profiles and Turbulence in the Atmospheric Boundary Layer[J]. Sensors, 2019, 19(3): 581.
|
36 |
Rautenberg A , Graf S M , Wildmann N , et al . Reviewing wind measurement approaches for fixed-wing unmanned aircraft[J]. Atmosphere, 2018, 9(11):422.
|
37 |
Rautenberg A , Allgeier J , Jung S , et al . Calibration procedure and accuracy of wind and turbulence measurements with five-hole probes on fixed-wing unmanned aircraft in the atmospheric boundary layer and wind turbine wakes[J]. Atmosphere, 2019, 10(3):124.
|
38 |
Calmer R , Roberts G C , Preissler J , et al . Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions[J]. Atmospheric Measurement Techniques, 2018, 11(5): 2 583-2 599.
|
39 |
Drüe C , Heinemann G . A review and practical guide to in-flight calibration for aircraft turbulence sensors[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(12): 2 820-2 837.
|
40 |
Crawford T L , Mcmillen R T , Dobosy R J , et al . Correcting airborne flux measurements for aircraft speed variation[J]. Boundary-Layer Meteorology, 1993, 66(3): 237-245.
|
41 |
Mayer S , Jonassen M O , Sandvik A , et al . Profiling the Arctic stable boundary layer in advent valley, Svalbard: Measurements and simulations[J]. Boundary-Layer Meteorology, 2012, 143(3): 507-526.
|
42 |
Reuder J , Jonassen M O , ólafsson H . The small unmanned meteorological observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research[J]. Acta Geophysica, 2012, 60(5): 1 454-1 473.
|
43 |
B?serud L , Reuder J , Jonassen M O , et al . Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign[J]. Atmospheric Measurement Techniques, 2016, 9(10): 1-22.
|
44 |
B?serud L , Flügge M , Bhandari A , et al . Characterization of the SUMO turbulence measurement system for wind turbine wake assessment[J]. Energy Procedia, 2014, 53: 173-183.
|
45 |
Subramanian B , Chokani N , Abhari R S . Drone-based experimental investigation of three-dimensional flow structure of a multi-megawatt wind turbine in complex terrain[J]. Journal of Solar Energy Engineering, 2015, 137(5): 51 007.
|
46 |
Frew E W , Elston J , Argrow B , et al . Sampling severe local storms and related phenomena: Using unmanned aircraft systems[J]. IEEE Robotics & Automation Magazine, 2012, 19(1): 85-95.
|
47 |
Wildmann N , Hofs?? M , Weimer F , et al . MASC — A small Remotely Piloted Aircraft (RPA) for wind energy research[J]. Advances in Science and Research, 2014, 11(1): 55-61.
|
48 |
Spiess T , Bange J , Buschmann M , et al . First application of the meteorological Mini-UAV 'M2AV'[J]. Meteorologische Zeitschrift, 2007, 16(2): 159-169.
|
49 |
Martin S , Bange J , Beyrich F . Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo”[J]. Atmospheric Measurement Techniques, 2011, (4): 705-716.
|
50 |
Lampert A , P?tzold F , Jiménez M A , et al . A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation[J]. Atmospheric and Chemistry and Physics, 2016, 16(12): 8 009-8 021.
|
51 |
Martin S , Beyrich F , Bange J . Observing entrainment processes using a small unmanned aerial vehicle: A feasibility study[J]. Boundary-Layer Meteorology, 2014, 150(3): 449-467.
|
52 |
Hesselbarth H , Neininger B . UAV-platform UMARS2 for environmental research[C]//First Conference for Atmospheric Research Using Remotely-Piloted Aircraft. Palma de Mallorca,Balearic Islands, Spain, 2013.
|
53 |
Reineman B D , Lenain L , Melville W K . The use of ship-launched fixed-wing UAVs for measuring the marine atmospheric boundary layer and ocean surface processes[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(9): 2 029-2 052.
|
54 |
Altst?dter B , Platis A , Wehner B , et al . ALADINA — An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer[J]. Atmospheric Measurement Techniques, 2015,(8): 1 627-1 639.
|
55 |
B?rfuss K , P?tzold F , Altst?dter B , et al . New setup of the UAS ALADINA for measuring boundary layer properties, Atmospheric particles and solar radiation[J]. Atmosphere, 2018, 9(1):28.
|
56 |
Metzger S , Junkermann W , Butterbach-Bahl K , et al . Measuring the 3-D wind vector with a weight-shift microlight aircraft[J]. Atmospheric Measurement Techniques, 2011, 4(7): 1 421-1 444.
|
57 |
Wildmann N , Ravi S , Bange J . Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with Remotely Piloted Aircraft (RPA)[J]. Atmospheric Measurement Techniques, 2014, 6(6): 9 783-9 818.
|
58 |
Garman K E , Hill K A , Wyss P , et al . An airborne and wind tunnel evaluation of a wind turbulence measurement system for aircraft-based flux measurements[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23: 1 696-1 708.
|
59 |
Sun Y , Jia L , Chen Q , et al . Optimizing window length for turbulent heat flux calculations from airborne eddy covariance measurements under near neutral to unstable atmospheric stability conditions[J]. Remote Sensing, 2018, 5(10): 670.
|
60 |
Sun J , Howell J F , Esbensen S K , et al . Scale dependence of air-sea fluxes over the western equatorial Pacific[J]. Journal of the Atmospheric Sciences, 1996, 53(21):2 997-3 012.
|
61 |
Mahrt L , Macpherson J I , Desjardins R . Observations of fluxes over heterogeneous surfaces[J]. Boundary-Layer Meteorology, 1994, 4(67): 345-367.
|
62 |
Mahrt L . Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 416-429.
|
63 |
Witte M B , Singler F R , Bailey C S . Development of an unmanned Aerial vehicle for the measurement of turbulence in the atmospheric boundary layer[J]. Atmosphere, 2017, 8(10): 195.
|
64 |
Finkelstein P L , Sims P F . Sampling error in eddy correlation flux measurements[J]. Journal of Geophysical Research, 2001, 106(D4): 3 503-3 509.
|
65 |
Aubinet M . Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem[J]. Ecological Applications, 2008, 18(6): 1 368-1 378.
|
66 |
Mitic C M , Schuepp P H , Desjardins R L , et al . Flux association in coherent structures transporting CO2, H2O, heat and ozone over the code grid site[J]. Agricultural and Forest Meteorology, 1997, 87(1): 27-39.
|