[1] Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis[M]. Cambridge, UK, and New York: Cambridge University Press, 2007.
[2] Q, Zhao M, Running S W. Evolution of hydrological and carbon cycles under a changing climate[J]. Hydrological Processes, 2011, 25: 4 093-4 102.
[3] Yaoming, Hu Zeyong, Tian Lide, et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science, 2014, 29(2): 207-215.[马耀明, 胡泽勇, 田立德, 等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.]
[4] Guoxiong, Lin Hai, Zou Xiaolei, et al. Research on global climate change and scientific data[J]. Advances in Earth Science, 2014, 29(1): 15-22.[吴国雄, 林海, 邹晓蕾, 等. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.]
[5] X, Zhai P, Zhang Q. Variations in droughts over China: 1951-2003[J]. Geophysical Research Letters, 2005, 32: L04707, doi:
10.1029/2004GL021853.
[6] R, Wang B, Zhou T. Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau[J]. Journal of Climate, 2004, 17: 2 702-2 713.
[7] R, Adegoke J, Beltran-Przekurat A, et al. An overview of regional land-use and land-cover impacts on rainfall[J]. Tellus B, 2007, 59: 587-601.
[8] H. Human activity and climate change in Africa[J]. Advances in Global Change Research, 2007, 33: 209-220.
[9] D. A comparative study of mass and energy exchange rates over a closed C 3 (wheat) and an open C 4 (corn) crop: II. CO 2 exchange and water use efficiency[J]. Agricultural and Forest Meteorology, 1994, 67: 291-321.
[10] G R, Wang Q F, Zhuang J. Modeling the water use efficiency of soybean and maize plants under environmental stresses: Application of a synthetic model of photosynthesis-transpiration based on stomatal behavior[J]. Journal of Plant Physiology, 2004, 161: 303-318.
[11] S, Flanagan L B, Alstad K P, et al. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques[J]. Global Change Biology, 2006, 12: 294-310.
[12] D, Luo Y, Cheng W, et al. Canopy radiation-and water-use efficiencies as affected by elevated CO 2 [J]. Global Change Biology, 2001, 7: 75-91.
[13] L K, Hsiao T C. Predicted versus measured photosynthetic water-use efficiency of crop stands under dynamically changing field environments[J]. Journal of Experimental Botany, 2004, 55: 2 395-2 411.
[14] L, Vickers D. Relationship of area-averaged carbon dioxide and water vapour fluxes to atmospheric variables[J]. Agricultural and Forest Meteorology, 2002, 112: 195-202.
[15] R, Raupach M, Coppin P, et al. Spatial and temporal variations in fluxes of energy, water vapour and carbon dioxide during OASIS 1994 and 1995[J]. Boundary-Layer Meteorology, 2004, 110: 3-38.
[16] J, Erickson J E, Peresta G, et al. Evapotranspiration and water use efficiency in a Chesapeake Bay wetland under carbon dioxide enrichment[J]. Global Change Biology, 2010, 16: 234-245.
[17] T M, Albertson J D. Canopy scale measurements of CO 2 and water vapor exchange along a precipitation gradient in southern Africa[J]. Global Change Biology, 2004, 10: 329-341.
[18] Jianlin, Yu Guirui, Fang Quanxiao, et al. Responses of water use efficiency of 9 plant species to light and CO 2 and their modeling[J]. Acta Ecologica Sinica, 2008, 28(2): 525-533.[王建林, 于贵瑞, 房全孝, 等. 不同植物叶片水分利用效率对光和CO 2 的响应与模拟[J]. 生态学报, 2008, 28(2): 525-533.]
[19] I C, Köhler I H, Auerswald K, et al. Last-century changes of alpine grassland water-use efficiency: A reconstruction through carbon isotope analysis of a timeseries of Capra ibex horns[J]. Global Change Biology, 2010, 16: 1 171-1 180.
[20] H, Lu C, Chen G, et al. Climate and land use controls over terrestrial water use efficiency in monsoon Asia[J]. Ecohydrology, 2011, 4: 322-340.
[21] A, Twine T E, Zeri M, et al. A regional comparison of water use efficiency for miscanthus, switchgrass and maize[J]. Agricultural and Forest Meteorology, 2012, 164: 82-95.
[22] X, Liu S, Lin Z, et al. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain[J]. Agriculture, Ecosystems & Environment, 2009, 134: 67-78.
[23] A, Inatomi M. Water-use efficiency of the terrestrial biosphere: A model analysis focusing on interactions between the global carbon and water cycles[J]. Journal of Hydrometeorology, 2012, 13: 681-694.
[24] L, Ji J. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model[J]. Tellus B, 2007, 59: 425-438.
[25] B G, Gonzàlez-Meler M A, Long S P. More efficient plants: A consequence of rising atmospheric CO 2 ?[J]. Annual Review of Plant Biology, 1997, 48: 609-639.
[26] R, Sala O, Field C, et al. CO 2 alters water use, carbon gain, and yield for the dominant species in a natural grassland[J]. Oecologia, 1994, 98: 257-262.
[27] J I, Gifford R M. Stomatal sensitivity to carbon dioxide and humidity a comparison of two C 3 and two C 4 grass species[J]. Plant Physiology, 1983, 71: 789-796.
[28] B, LaMorte R, Seay R, et al. Effects of free-air CO 2 enrichment on energy balance and evapotranspiration of cotton[J]. Agricultural and Forest Meteorology, 1994, 70: 259-278.
[29] D, Harley P. Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application[J]. Plant, Cell & Environment, 1995, 18: 1 157-1 173.
[30] C, Norby R, Wullschleger S. Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO 2 : No loss of photosynthetic enhancement[J]. Plant, Cell & Environment, 1993, 16: 797-807.
[31] H, Dufrêne E, Francois C, et al. Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems[J]. Agricultural and Forest Meteorology, 2006, 141: 35-56.
[32] H, Runion G, Krupa S. Plant responses to atmospheric CO 2 enrichment with emphasis on roots and the rhizosphere[J]. Environmental Pollution, 1994, 83: 155-189.
[33] D, Leavitt S W, Dupouey J L. Variations of wood δ 13C and water-use efficiency of Abies alba during the last century[J]. Ecology, 1997, 78: 1 588-1 596.
[34] M, Siegwolf R T, Schweingruber F H. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years[J]. Global Change Biology, 2004, 10: 2 109-2 120.
[35] T F, Hollinger D Y, Bohrer G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499(7 458): 324-327.
[36] B, Falge E, Gu L, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation[J]. Agricultural and Forest Meteorology, 2002, 113: 97-120.
[37] M, Grace J. Hydraulic conductance, light interception and needle nutrient concentration in Scots pine stands and their relations with net primary productivity[J]. Tree Physiology, 1996, 16: 459-468.
[38] M L, Daube B C, Fan S M, et al. Physiological responses of a black spruce forest to weather[J]. Journal of Geophysical Research, 1997, 102: 28 987-28 996.
[39] Limin, Liu Yu, Zhao Jianfu. The relationship between environmental change and stable carbon isotopes records from tree-ring in Mt. Helan[J]. Environmental Science, 2003, 24: 49-53.[马利民, 刘禹, 赵建夫. 贺兰山油松年轮中稳定碳同位素含量和环境的关系[J]. 环境科学, 2003, 24: 49-53.]
[40] Xiaohong, Qin Dahe, Shao Xuemei, et al. Stable carbon isotope of abies spectabibis from Nyingchi County of Tibet Autonomous Region and its response to climate change[J]. Journal of Glaciology and Geocryology, 2002, 24: 574-578.[刘晓宏, 秦大河, 邵雪梅, 等. 西藏林芝冷杉树轮稳定碳同位素对气候的响应[J]. 冰川冻土, 2002, 24: 574-578.]
[41] H, Belacy N. 13 C/ 12 C records in northern hemispheric trees during the past 500 years—Anthropogenic impact and climatic superpositions[J]. Journal of Geophysical Research: Oceans (1978-2012), 1983, 88: 6 844-6 852.
[42] S, Xing X, Zhang Z, et al. Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe[J]. Global Change Biology, 2011, 17(2): 1 073-1 082.
[43] L H, Pan D, Boote K J, et al. Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean[J]. Agronomy Journal, 2003, 95(4): 1 071-1 081.
[44] Boeck H J, Lemmens C, Bossuyt H, et al. How do climate warming and plant species richness affect water use in experimental grasslands?[J]. Plant and Soil, 2006, 288(1/2): 249-261.
[45] S, Wu M, Han Y, et al. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe[J]. New Phytologist, 2008, 177(1): 209-219.
[46] Y F, Wu J G, Xing Q, et al. Primary productivity and rain use efficiency across a precipitation gradient on the Mongolia Plateau[J]. Ecology, 2008, 89: 2 140-2 153.
[47] Z M, Yu G R, Fan J W, et al. Precipitation-use efficiency along a 4500-km grassland transect[J]. Global Ecology and Biogeography, 2010, 19: 842-851.
[48] G R, Song X, Wang Q F, et al. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables[J]. New Phytologist, 2008, 177: 927-937.
[49] J M, Lauenroth W K, Burke I C, et al. Grassland precipitation-use efficiency varies across a resource gradient[J]. Ecosystems, 1999, 2(1): 64-68.
[50] T, Kimura R, Kamichika M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model[J]. Agricultural Water Management, 2004, 65: 173-191.
[51] X, Yu G, Wang Q, et al. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China[J]. Journal of Forest Research, 2014, 19(1): 70-76.
[52] Z M, Yu G R, Fu Y L, et al. Effects of vegetation control on ecosystem water use efficiency within and among 60 four grassland ecosystems in China[J]. Global Change Biology, 2008, 14: 1 609-1 619.
[53] G, Louahlia S, Irigoyen J J, et al. Water use efficiency, transpiration and net CO 2 exchange of four alfalfa genotypes submitted to progressive drought and subsequent recovery[J]. Environmental and Experimental Botany, 2011, 72: 123-130.
[54] Tuo, Yang Meixue, Feng Huyuan, et al. Spatial distribution of stable carbon isotope compositionsof plant leaves in the north of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2003, 25: 83-87.[陈拓, 杨梅学, 冯虎元, 等. 青藏高原北部植物叶片碳同位素组成的空间特征[J]. 冰川冻土, 2003, 25: 83-87.]
[55] M, Tenhunen J D, Roupsard O, et al. Severe drought effects on ecosystem CO 2 and H 2 O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses?[J]. Global Change Biology, 2002, 8: 999-1 017.
[56] X, Zhuang Q. Evaluating evapotranspiration and water use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data[J]. Remote Sensing of Environment, 2010, 114: 1 924-1 939.
[57] Shengkui, Feng Qi, Si Jianhua, et al. Summary on the plant water use efficiency at leaf level[J]. Acta Ecologica Sinica, 2009, 29: 3 882-3 892.[曹生奎, 冯起, 司建华, 等. 植物叶片水分利用效率研究综述[J]. 生态学报, 2009, 29: 3 882-3 892.]
[58] B, Zhang J. Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress[J]. Forest Ecology and Management, 2001, 154: 131-139.
[59] Zhongmin, Yu Guirui, Wang Qiufeng, et al. Ecosystem level water use eff iciency: A review[J]. Acta Ecologica Sinica, 2009, 29(3): 1 498-1 507.[胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3): 1 498-1 507.]
[60] H, Chen G, Liu M, et al. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007[J]. Forest Ecology and Management, 2010, 259: 1 311-1 327.
[61] C, Reichstein M, Ciais P, et al. Mean annual GPP of Europe derived from its water balance[J]. Geophysical Research Letters, 2007:34(5),doi:
10.1029/2006GL029006.
[62] I H, Poulton P R, Auerswald K, et al. Intrinsic water use efficiency of temperate seminatural grassland has increased since 1857: An analysis of carbon isotope discrimination of herbage from the Park Grass Experiment[J]. Global Change Biology, 2010, 16: 1 531-1 541.
[63] J, Kelliher F, McSeveny T, et al. Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought[J]. Agricultural and Forest Meteorology, 2002, 111: 65-82.
[64] J, Lin T, Rotenberg E, et al. Carbon sequestration in arid-land forest[J]. Global Change Biology, 2003, 9: 791-799.
[65] S J, Oechel W C, Muhlia-Melo A. Diurnal, seasonal and annual variation in the net ecosystem CO 2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico[J]. Global Change Biology, 2005, 11: 927-939.
[66] Q, Hu Z, Li S, et al. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: Effects of mean annual precipitation and its seasonal distribution[J]. Global Change Biology, 2012, 18(12): 3 624-3 631.
[67] G, Chen D, Xu C, et al. Trend of estimated actual evapotranspiration over China during 1960-2002[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 2007, 112: D11120, doi:
10.1029/2006JD008010.
[68] K, Dickinson R E, Wild M, et al. Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2010, 115: D20112, doi:
10.1029/2009JD013671.
[69] Y, Liang S, Cheng J, et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm[J]. Agricultural and Forest Meteorology, 2013, 171: 187-202.
[70] Jiyuan, Wang Shaoqiang, Chen Jingming, et al. Storages of soil organic carbon and nitrogen and land use changes in China: 1990-2000[J]. Acta Geographica Sinica, 2004, 59: 483-496.[刘纪远, 王绍强, 陈镜明, 等. 1990—2000年中国土壤碳氮蓄积量与土地利用变化[J]. 地理学报, 2004, 59: 483-496.]
[71] L, Dunlop M, Foran B. Land cover change and water vapour flows: Learning from Australia[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2003, 358: 1 973-1 984.
[72] S, Chen J, Lin G, et al. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types[J]. Agricultural and Forest Meteorology, 2009, 149: 1 800-1 809.
[73] Y, Peth S, Horn R, et al. Modeling grazing effects on coupled water and heat fluxes in Inner Mongolia grassland[J]. Soil and Tillage Research, 2010, 109: 75-86.
[74] Longfei. Remote Sensing Land Surface Evapotranspiration and Its Spatial-Temporal Distribution[D]. Beijing: Graduate Univeristy of Chinese Academy of Sciences, 2012.[邴龙飞. 青海省地表蒸散遥感反演及其时空动态特征[D]. 北京:中国科学院研究生院, 2012.] |