[1] S, Pichavant M. Gold solubility in arc magmas: Experimental determination of the effect of sulfur at 1000 ℃ and 0.4 GPa[J]. Geochimica et Cosmochimica Acta, 2012, 84: 560-592.
[2] D R, Hollings P, Walshe J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
[3] R E, Linnen R L, Holtz F. Solubility of Au in Cl-and S-bearing hydrous silicate melts[J]. Geochimica et Cosmochimica Acta, 2010, 74(8): 2 396-2 411.
[4] D A, Berger V I, Moring B C. Porphyry Copper Deposits of the World: Database, Map, and Grade and Tonnage Models[R]. U.S: Geological Survey Open-File Report,2005.
[5] Xiaoyan, Bi Xianwu, Hu Ruizhong, et al. Advances in Tin distrubition brtween granitic melts and coexisting aqueous fluids and a review of Tin in fluids and melts[J]. Advances in Earth Science, 2007, 22(3):281-289.[胡晓燕, 毕献武, 胡瑞忠,等. 锡在花岗岩熔体和流体中的性质及分配行为研究进展[J]. 地球科学进展, 2007, 22(3):281-289. ]
[6] Dongsheng. The theory of partition coefficient and its geochemistry significance[J]. Geological and geochemical,1980,(3): 10-22.[马东升. 分配系数理论及其地球化学意义[J]. 地质地球化学, 1980,(3): 10-22. ]
[7] W L. Trace element partition coefficients-a review of theory and applications to geology[J]. Geochimica et Cosmochimica Acta, 1963, 27(12): 1 209 -1 264.
[8] R. The Earth’s core: Speculations on its chemical equilibrium with the mantle[J]. Geochimica et Cosmochimica Acta, 1971, 35: 203-221.
[9] K G, Heier K S. The distribution of some elements between the metal and silicate phases obtained in a smelting reduction of dunite from Almklovdalen, West Norway[J]. Earth and Planetary Science Letters, 1972, 16(2): 209-212.
[10] K, Lewis Roy S, Anders E. Distribution of gold and rhenium between nickel-iron and silicate melts: Implications for the abundance of siderophile elements on the Earth and Moon[J]. Geochimica et Cosmochimica Acta, 1974, 38: 683-701.
[11] J H, Drake M J. Geochemical constraints on core formation in the Earth[J]. Nature, 1986, 322: 221-228.
[12] W E, Crocket J H, Fleet M E. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200 ℃[J]. Geochimica et Cosmochimica Acta, 1990, 54: 2 341-2 344.
[13] J H, Fleet M E, Stone W E. Experimental partitioning of osmium, iridium and gold between basalt melt and sulphide liquid at 1300 ℃[J]. Australian Journal of Earth Sciences, 1992, 39: 427- 432.
[14] M E, Chryssoulis S L, Stone W E, et al. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: Experiments on the fractional crystallization of sulfide melt[J]. Contributions to Mineralogy and Petrology, 1993, 115: 36-44.
[15] N I, Asif M, Brügmann G E, et al. Distribution of Pd, Rh, Ru, Ir, Os, and Au between sulfide and silicate metals[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1 251-1 260.
[16] M E, Crocket J H, Stone W E. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid aud basalt melt[J]. Geochimica et Cosmochimica Acta, 1996, 60(13): 2 397-2 412.
[17] J H, Fleet M E, Stone W E. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4 139-4 149.
[18] P J. Magmatic sulfides and Au:Cu ratios in porphyry deposits: An experimental study of copper and gold partitioning at 850 ℃, 100MPa in a haplogranitic melt pyrrhotite intermediate solid solution gold metal assemblage, at gas saturation[J]. Lithos, 1999, 46: 573-589.
[19] M E, Crocket J H, Liu Menghua, et al. Laboratory partitioning of Platinum-Group Elements (PGE) and gold with application to magmatic sulfide-PGE deposits[J]. Lithos, 1999, 47: 127-142.
[20] M R, Candela P A, Piccoli P M, et al. Gold solubility, speciation, and partitioning as a function of HCl in the brine-silicate melt-metallic gold system at 800 ℃ and 100 MPa[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3 719-3 732.
[21] K, Campbell A J, Humayun M, et al. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 867-880.
[22] J M, McDonough W F, Ash R. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2005, 237: 855-872.
[23] J E. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4 349-4 360.
[24] A C, Frank M R, Pettke T, et al. Gold partitioning in melt-vapor-brine systems[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3 321-3 335.
[25] A C, Pettke T, Candela P A, et al. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages[J]. Geochimica et Cosmochimica Acta, 2007, 71: 1 764-1 782.
[26] A C, Candela P A, Piccoli P M, et al. The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag[J]. American Mineralogist, 2008, 93: 1 437-1 448.
[27] A S, Simon A, Guilong M. Experimental constraints on Pt, Pd and Au partitioning and fractionation in silicate melt-sulfide-oxide-aqueous fluid systems at 800 ℃, 150 MPa and variable sulfur fugacity[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5 778-5 792.
[28] M R, Simon A C, Pettke T, et al. Gold and copper partitioning in magmatic-hydrothermal systems at 800 ℃ and 100 MPa[J]. Geochimica et Cosmochimica Acta, 2011, 75: 2 470-2 482.
[29] Xiaoming, Wang Henian, Rao Bing. Experiments on the partition coefficient of gold between granitic melts and different fluids[J]. Mineral Deposit, 1998,17(Suppl.): 997-1 002.[曲晓明, 王鹤年, 饶冰. 金在花岗质熔体与不同成分流体之间分配系数的实验研究[J]. 矿床地质,1998,17(增刊): 997-1 002.]
[30] Guoliang. The influence factor of element partition coefficient in melt-solution system and its significance to genesis of mineral deposits[J]. Hu’nan Geology, 1988, 7(3):69-84.[干国梁. 熔体—溶液体系中元素分配系数的影响因素及其矿床成因意义[J]. 湖南地质, 1988, 7(3):69-84. ]
[31] Guoliang. The influence factor of element property and melt composition to partition coefficient and and its significance[J]. Hu’nan Geology, 1989, 8(2):70-77.[干国梁.元素性质和熔体成分对分配系数的影响及其意义[J]. 湖南地质, 1989, 8(2):70-77. ]
[32] Zoltn, Candela P A, Piccoli P M, et al. Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation[J]. Geochimica et Cosmochimica Acta, 2012, 91: 140-159.
[33] Zoltn, Candela P A, Piccoli P M, et al. Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas[J]. Geochimica et Cosmochimica Acta, 2013, 112: 288-304.
[34] Yuan, Audetat Andreas. Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust-mantle differentiation[J].Geochimica et Cosmochimica Acta, 2013, 118: 247-262.
[35] Guangjun. Gold Deposit Geology[M]. Chongqing: Chongqing University Press, 1991.[俞广钧. 金矿床地质学[M]. 重庆: 重庆大学出版社, 1991.]
[36] H L. Geochemistry of Hydrothermal Ore Deposits(Third Edition)[M]. New York: John Wiley and Sons, 1997: 435-469.
[37] Hans P. Minerals in hot water[J]. American Mineralogist, 1986, 71: 655-673.
[38] Zhengguo. Review of experiment research on the formation condition of hydrothermal gold deposits[J]. Geological Science and Technology Information, 1989, 8(4): 75-80.[胡正国. 热液金矿床形成条件的实验研究综述[J]. 地质科技情报, 1989, 8(4): 75-80.]
[39] E H. High-temperature dissolution of gold in water and genesis of gold deposits[J].Gold, 1990, 11(2):38-41.[季曼 E.H. 金在水中的高温溶解和金矿床的成因[J]. 黄金, 1990, 11(2):38-41. ]
[40] E H. High-temperature dissolution of gold in water and genesis of gold deposits(continue)[J].Gold, 1990, 11(3):45-47.[季曼 E.H. 金在水中的高温溶解和金矿床的成因(续)[J]. 黄金, 1990, 11(3):45-47.]
[41] Sheng, Liu Yushan. Experiment research of gold solution and geology significance[J]. Geochemistry, 1995, 24(Suppl.): 168-176.[张生, 刘玉山. 金溶解度实验研究及地质意义[J]. 地球化学, 1995, 24(增刊): 168-176.]
[42] T W. Transport and deposit of gold in hydrothermal system[J]. Foreign Precambrian Geology, 1985, (2):59-72.[Seward T W. 金在热液系统中的搬运和沉淀[J]. 国外前寒武纪地质,1985, (2):59-72.]
[43] A E, Bowell Robert, Migdisov A A. Gold in solution[J]. Elements, 2009, 5: 281-287.
[44] Ralph G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85 (22):3 533-3 539.
[45] Dimitrios, Wood Scott A. Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution[J]. Geochimica et Cosmochimica Acta, 1990, 54: 3-12.
[46] Qingcheng, Lü Xinbiao, Gao Qi, et al. Dissolution and migration of Au in hydrothermal ore deposit: A review[J]. Advances in Earth Science, 2012, 27(8):847-856.[胡庆成,吕新彪,高奇,等. 热液金矿金的溶解和迁移研究进展[J].地球科学进展,2012, 27(8):847-856.]
[47] J A. The speciation of gold in aqueous solution: A theoretical study[J]. Geochimica et Cosmochimica Acta, 1996, 60:17-29.
[48] Xiandong, Lu Xiancai, Wang Rucheng, et al. Speciation of gold in hydrosulphide-rich ore-forming fluids: Insights from first-principles molecular dynamics simulations[J].Geochimica et Cosmochimica Acta, 2011, 75: 185-194.
[49] C H, Williams-Jones A E. The disproportionation of gold(I)chloride complexes at 25 to 200 ℃[J]. Geochimica et Cosmochimica Acta, 1997, 61: 1 971-1 983.
[50] T, Guenther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399:676-679.
[51] C A, Ryan C G, Mernagh T P, et al. Segregation of ore metals between magatic brine and vapor: A fluid inclusion study using PIXE microanalysis[J]. Economic Geology, 1992, 87: 1 566-1 583.
[52] C A, Günther D, Audétat A. Metal fraction between magmatic brine and vapor, determinded by microanalysis of fluid inclusions[J]. Geology, 1999, 87:755-758.
[53] Chengbiao, Zhang Xingchun, Wang Shouxu, et al. Advances of researches on the evolution of ore-forming fluids and vapor transport of metals in magmatic-hydrothermal systems[J]. Geological Review, 2009, 55(1): 100-112.[冷成彪, 张兴春, 王守旭,等.岩浆—热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质论评, 2009, 55(1): 100-112.]
[54] D Y, Migdisov A A, Williams-Jones A E. The solubility of gold in H2O-H2S vapour at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5 140-5 153.
[55] Ronghua, Hu Shumin, Zhang Xuetong. Transportation of Au and Cu by vapor andrelated ore genesis[J]. Mineral Deposits, 2006, 25(6): 705-714.[张荣华, 胡书敏, 张雪彤. 金铜在气相中的迁移实验及矿石的成因[J]. 矿床地质, 2006, 25(6): 705-714.]
[56] D Y, Migdisov A A, Williams-Jones A E. The solubility of gold in hydrogen sulphide gas: An experimental study[J]. Geochimica et Cosmochimica Acta, 2007, 71: 3 070-3 081.
[57] A C, Pettke T, Candela P A, et al. Magnetite solubility and iron transport in magmatic-hydrothermal environment[J]. Geochimica et Cosmochimica Acta, 2004, 68: 4 905-4 914.
[58] Z, Halter W E, Pettke T, et al. Determination of fluid/melt partition coefficients in volatile saturated magmatic systems by LA-ICP-MS analysis of coexistent fluid and silicate melt inclusions[J]. Geochimica et Cosmochimica Acta, 2008, 72:2 169-2 179.
[59] Jun, Wang Henian. Geochemistry[M]. Beijing: Science Press, 2004.[陈俊,王鹤年. 地球化学[M]. 北京:科学出版社, 2004.]
[60] Katherine A, Noble D C, Bussey Steven D, et al. Initial gold contents silicic volcanic rocks: Bearing on the behavior of gold in magmatic systems[J]. Geology, 1993, 21: 937-940.
[61] Leyla. Solubility of Gold in Granitic Melts and Partitioning of Au between Melt and NaCl-Saturated Fluid or Sulfides[D]. Montreal: McGill University, 1999.
[62] H St C, Dingwell D B, Borisov A, et al. Experimental petrochemistry of some highly siderophile elements at high temperatures, and some implications for core formation and the mantle’s early history[J]. Chemical Geology, 1995, 120:255-273.
[63] G W E , Samis C S. Activities of ions in silicate melts[J]. Transactions of the Metallurgical Society of AIME, 1962, 224: 878-887.
[64] A, Palme H. Experimental determination of the solubility of Au in silicate melts[J]. Mineralogy and Petrology, 1996, 56: 297-312.
[65] Sébastien, Pichavant M, Mavrogenes J A. Controls on gold solubility in arc magmas: An experimental study at 1000 ℃and 4 kbar[J]. Geochimica et Cosmochimica Acta, 2010, 74: 2 165-2 189.
[66] A, Palme H, Spettel B. The solubility of gold in silicate melts: First results[C]∥Proceedings of the 24th Lunar Planetary Sciences Conference. Houston: Lunar and Planetary Institute, 1993: 147-148.
[67] Yinwen, Ma Zhendong. Geochemistry[M]. Beijing: Geological Publishing House, 2003.[韩吟文,马振东. 地球化学[M]. 北京:地质出版社,2003.]
[68] Zhisheng, Huang Zhilong, Zhu Chengming. Silicate melt texture and liquid immiscibility[J]. Geology-Geochemistry, 1997,(1):60-64.[金志升,黄智龙,朱成明.硅酸盐熔体结构与岩浆液态不混溶作用[J].地质地球化学,1997,(1):60-64.]
[69] J D, Holloway J R. Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas[J]. Geological Society of America Special Paper, 1990, 246: 21-34.
[70] S C, Oupree R, Mortuza M G, et al. NMR evidence for five- and six-coordinated aluminum fluoride complexes in Fbearing aluminosilicate glasses[J]. American Mineralogist, 1991, 76: 309-312.
[71] T, Dingwell D B, Keppler H, et al. Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study[J]. Geochimica et Cosmochimica Acta, 1992, 56:701-707.
[72] D R. The effect of F and Cl on the interdiffusion of peralkaline intermediate and silicic melts[J]. American Mineralogist, 1993, 78:316-324.
[73] Xiaoyan, Bi Xianwu, Cai Guosheng, et al. Apreliminary experimental study on the solubility of gold in granitic silicate melts[J]. Acta Mineralogica Sinica, 2012, 32: 22-27.[胡晓燕, 毕献武, 蔡国盛, 等. 金在花岗质熔体中溶解度的初步实验研究[J]. 矿物学报, 2012, 32: 22-27.]
[74] M A, Webster J D. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas[J]. Reviews in Mineralogy, 1994, 30:231-279.
[75] J D. Water solubility and chlorine partitioning in Cl-rich granitic systems: Effects of melt composition at 2 kbar and 800 ℃[J]. Geochimica et Cosmochimica Acta, 1992, 56: 679-687.
[76] S C, Schoifeld P F. The implication of melt composition in controlling trace-element behavior: An experimental study of Mn and Zn partitioning between forsteirte and silicate melts[J]. Chemical Geology, 1994, 117: 73-87.
[77] I, Mysen B O. A possible effect of melt structure on the Mg-Fe partitioning between olivine and melt[J]. Geochimica et Cosmochimica Acta, 2002, 66(12): 2 267-2 272.
[78] V R, Westrenen W V, Fei Y. Expeirmental evidence that potassium is a substantial radioactive heat source in planetary cores[J]. Nature, 2003, 423: 163-165.
[79] J B, Mahood G A, Hervig R L, et al. The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pnatellera, Italy[J].Contributoin to Mienraolgy and Petrology, 1993,114: 119-129. |