地球科学进展 ›› 2014, Vol. 29 ›› Issue (6): 683 -690. doi: 10.11867/j.issn.1001-8166.2014.06.0683

综述与评述 上一篇    下一篇

硅酸盐熔体和流体中金的性质及行为研究进展
王水龙 1, 2, 尚林波 1, 毕献武 1, 樊文苓 1   
  1. 1.中国科学院地球化学研究所矿床地球化学重点实验室, 贵州 贵阳 550002; 2.中国科学院大学, 北京 100039
  • 出版日期:2014-06-10
  • 基金资助:

    国家自然科学基金项目“与铜、金成矿有关的大陆富碱岩浆系统氧逸度研究”(编号:40873037); 国家自然科学基金重点项目“哀牢山—金沙江新生代富碱岩浆系统铜、金成矿作用”(编号:41130423)资助

Gold Property in Silicate Melts and Fluids and Its Gold Distribution Behaviors between Melts and Coexisting Fluids

Wang Shuilong 1, 2, Shang Linbo 1, Bi Xianwu 1, Fan Wenling 1   

  1. 1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002,China; 2. University of Chinese Academy of Sciences, Beijing 100039, China)
  • Online:2014-06-10 Published:2014-06-10

岩浆演化过程中岩浆—流体阶段发生的相转变过程控制了元素在两相之间的分配行为。作为与岩浆热液活动有密切成因联系的金矿床,其在硅酸盐熔体和流体中的性状及两相间的分配行为是控制该类矿床成矿的重要物理化学因素。介绍了金在流体、熔体中的性状,论述了其在流体/硅酸盐熔体间的分配行为不仅受温度、压力、氧逸度等物理化学条件的影响,还受流体组分(阴离子、阳离子)、熔体组成(Na2O+K2O/Al2O3,Na/K,SiO2,NBO/T)的制约;最后对目前实验研究存在的问题、改进方法以及今后的研究方向进行了探讨。

Porphyry deposit is a kind of important ore deposit. Phase transition of Magma-Fluid stage in magma evolution controls the element distribution between different phases. Gold distribution between Melts and Coexisting Fluids is a important key to the metallogenic mechanism of porphyry deposits. The distribution of gold between different phases is not only controlled by temperature, pressure, oxygen fugacity, but also influenced by the content of fluids and composition of melts. Finally we reviewed the problems in experiment and future research on the partitioning of Au between melt and coexsiting fluids.

中图分类号: 

[1] S, Pichavant M. Gold solubility in arc magmas: Experimental determination of the effect of sulfur at 1000 ℃ and 0.4 GPa[J]. Geochimica et Cosmochimica Acta, 2012, 84: 560-592.
[2] D R, Hollings P, Walshe J L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 2005, 100(5): 801-818.
[3] R E, Linnen R L, Holtz F. Solubility of Au in Cl-and S-bearing hydrous silicate melts[J]. Geochimica et Cosmochimica Acta, 2010, 74(8): 2 396-2 411.
[4] D A, Berger V I, Moring B C. Porphyry Copper Deposits of the World: Database, Map, and Grade and Tonnage Models[R]. U.S: Geological Survey Open-File Report,2005.
[5] Xiaoyan, Bi Xianwu, Hu Ruizhong, et al. Advances in Tin distrubition brtween granitic melts and coexisting aqueous fluids and a review of Tin in fluids and melts[J]. Advances in Earth Science, 2007, 22(3):281-289.[胡晓燕, 毕献武, 胡瑞忠,等. 锡在花岗岩熔体和流体中的性质及分配行为研究进展[J]. 地球科学进展, 2007, 22(3):281-289. ]
[6] Dongsheng. The theory of partition coefficient and its geochemistry significance[J]. Geological and geochemical,1980,(3): 10-22.[马东升. 分配系数理论及其地球化学意义[J]. 地质地球化学, 1980,(3): 10-22. ]
[7] W L. Trace element partition coefficients-a review of theory and applications to geology[J]. Geochimica et Cosmochimica Acta, 1963, 27(12): 1 209 -1 264.
[8] R. The Earth’s core: Speculations on its chemical equilibrium with the mantle[J]. Geochimica et Cosmochimica Acta, 1971, 35: 203-221.
[9] K G, Heier K S. The distribution of some elements between the metal and silicate phases obtained in a smelting reduction of dunite from Almklovdalen, West Norway[J]. Earth and Planetary Science Letters, 1972, 16(2): 209-212.
[10] K, Lewis Roy S, Anders E. Distribution of gold and rhenium between nickel-iron and silicate melts: Implications for the abundance of siderophile elements on the Earth and Moon[J]. Geochimica et Cosmochimica Acta, 1974, 38: 683-701.
[11] J H, Drake M J. Geochemical constraints on core formation in the Earth[J]. Nature, 1986, 322: 221-228.
[12] W E, Crocket J H, Fleet M E. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200 ℃[J]. Geochimica et Cosmochimica Acta, 1990, 54: 2 341-2 344.
[13] J H, Fleet M E, Stone W E. Experimental partitioning of osmium, iridium and gold between basalt melt and sulphide liquid at 1300 ℃[J]. Australian Journal of Earth Sciences, 1992, 39: 427- 432.
[14] M E, Chryssoulis S L, Stone W E, et al. Partitioning of platinum-group elements and Au in the Fe-Ni-Cu-S system: Experiments on the fractional crystallization of sulfide melt[J]. Contributions to Mineralogy and Petrology, 1993, 115: 36-44.
[15] N I, Asif M, Brügmann G E, et al. Distribution of Pd, Rh, Ru, Ir, Os, and Au between sulfide and silicate metals[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1 251-1 260.
[16] M E, Crocket J H, Stone W E. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid aud basalt melt[J]. Geochimica et Cosmochimica Acta, 1996, 60(13): 2 397-2 412.
[17] J H, Fleet M E, Stone W E. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4 139-4 149.
[18] P J. Magmatic sulfides and Au:Cu ratios in porphyry deposits: An experimental study of copper and gold partitioning at 850 ℃, 100MPa in a haplogranitic melt pyrrhotite intermediate solid solution gold metal assemblage, at gas saturation[J]. Lithos, 1999, 46: 573-589.
[19] M E, Crocket J H, Liu Menghua, et al. Laboratory partitioning of Platinum-Group Elements (PGE) and gold with application to magmatic sulfide-PGE deposits[J]. Lithos, 1999, 47: 127-142.
[20] M R, Candela P A, Piccoli P M, et al. Gold solubility, speciation, and partitioning as a function of HCl in the brine-silicate melt-metallic gold system at 800 ℃ and 100 MPa[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3 719-3 732.
[21] K, Campbell A J, Humayun M, et al. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 867-880.
[22] J M, McDonough W F, Ash R. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt[J]. Earth and Planetary Science Letters, 2005, 237: 855-872.
[23] J E. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities[J]. Geochimica et Cosmochimica Acta, 2005, 69(17): 4 349-4 360.
[24] A C, Frank M R, Pettke T, et al. Gold partitioning in melt-vapor-brine systems[J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3 321-3 335.
[25] A C, Pettke T, Candela P A, et al. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages[J]. Geochimica et Cosmochimica Acta, 2007, 71: 1 764-1 782.
[26] A C, Candela P A, Piccoli P M, et al. The effect of crystal-melt partitioning on the budgets of Cu, Au, and Ag[J]. American Mineralogist, 2008, 93: 1 437-1 448.
[27] A S, Simon A, Guilong M. Experimental constraints on Pt, Pd and Au partitioning and fractionation in silicate melt-sulfide-oxide-aqueous fluid systems at 800 ℃, 150 MPa and variable sulfur fugacity[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5 778-5 792.
[28] M R, Simon A C, Pettke T, et al. Gold and copper partitioning in magmatic-hydrothermal systems at 800 ℃ and 100 MPa[J]. Geochimica et Cosmochimica Acta, 2011, 75: 2 470-2 482.
[29] Xiaoming, Wang Henian, Rao Bing. Experiments on the partition coefficient of gold between granitic melts and different fluids[J]. Mineral Deposit, 1998,17(Suppl.): 997-1 002.[曲晓明, 王鹤年, 饶冰. 金在花岗质熔体与不同成分流体之间分配系数的实验研究[J]. 矿床地质,1998,17(增刊): 997-1 002.]
[30] Guoliang. The influence factor of element partition coefficient in melt-solution system and its significance to genesis of mineral deposits[J]. Hu’nan Geology, 1988, 7(3):69-84.[干国梁. 熔体—溶液体系中元素分配系数的影响因素及其矿床成因意义[J]. 湖南地质, 1988, 7(3):69-84. ]
[31] Guoliang. The influence factor of element property and melt composition to partition coefficient and and its significance[J]. Hu’nan Geology, 1989, 8(2):70-77.[干国梁.元素性质和熔体成分对分配系数的影响及其意义[J]. 湖南地质, 1989, 8(2):70-77. ]
[32] Zoltn, Candela P A, Piccoli P M, et al. Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation[J]. Geochimica et Cosmochimica Acta, 2012, 91: 140-159.
[33] Zoltn, Candela P A, Piccoli P M, et al. Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas[J]. Geochimica et Cosmochimica Acta, 2013, 112: 288-304.
[34] Yuan, Audetat Andreas. Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts: Implications for the formation of Au-rich magmas and crust-mantle differentiation[J].Geochimica et Cosmochimica Acta, 2013, 118: 247-262.
[35] Guangjun. Gold Deposit Geology[M]. Chongqing: Chongqing University Press, 1991.[俞广钧. 金矿床地质学[M]. 重庆: 重庆大学出版社, 1991.]
[36] H L. Geochemistry of Hydrothermal Ore Deposits(Third Edition)[M]. New York: John Wiley and Sons, 1997: 435-469.
[37] Hans P. Minerals in hot water[J]. American Mineralogist, 1986, 71: 655-673.
[38] Zhengguo. Review of experiment research on the formation condition of hydrothermal gold deposits[J]. Geological Science and Technology Information, 1989, 8(4): 75-80.[胡正国. 热液金矿床形成条件的实验研究综述[J]. 地质科技情报, 1989, 8(4): 75-80.]
[39] E H. High-temperature dissolution of gold in water and genesis of gold deposits[J].Gold, 1990, 11(2):38-41.[季曼 E.H. 金在水中的高温溶解和金矿床的成因[J]. 黄金, 1990, 11(2):38-41. ]
[40] E H. High-temperature dissolution of gold in water and genesis of gold deposits(continue)[J].Gold, 1990, 11(3):45-47.[季曼 E.H. 金在水中的高温溶解和金矿床的成因(续)[J]. 黄金, 1990, 11(3):45-47.]
[41] Sheng, Liu Yushan. Experiment research of gold solution and geology significance[J]. Geochemistry, 1995, 24(Suppl.): 168-176.[张生, 刘玉山. 金溶解度实验研究及地质意义[J]. 地球化学, 1995, 24(增刊): 168-176.]
[42] T W. Transport and deposit of gold in hydrothermal system[J]. Foreign Precambrian Geology, 1985, (2):59-72.[Seward T W. 金在热液系统中的搬运和沉淀[J]. 国外前寒武纪地质,1985, (2):59-72.]
[43] A E, Bowell Robert, Migdisov A A. Gold in solution[J]. Elements, 2009, 5: 281-287.
[44] Ralph G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85 (22):3 533-3 539.
[45] Dimitrios, Wood Scott A. Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution[J]. Geochimica et Cosmochimica Acta, 1990, 54: 3-12.
[46] Qingcheng, Lü Xinbiao, Gao Qi, et al. Dissolution and migration of Au in hydrothermal ore deposit: A review[J]. Advances in Earth Science, 2012, 27(8):847-856.[胡庆成,吕新彪,高奇,等. 热液金矿金的溶解和迁移研究进展[J].地球科学进展,2012, 27(8):847-856.]
[47] J A. The speciation of gold in aqueous solution: A theoretical study[J]. Geochimica et Cosmochimica Acta, 1996, 60:17-29.
[48] Xiandong, Lu Xiancai, Wang Rucheng, et al. Speciation of gold in hydrosulphide-rich ore-forming fluids: Insights from first-principles molecular dynamics simulations[J].Geochimica et Cosmochimica Acta, 2011, 75: 185-194.
[49] C H, Williams-Jones A E. The disproportionation of gold(I)chloride complexes at 25 to 200 ℃[J]. Geochimica et Cosmochimica Acta, 1997, 61: 1 971-1 983.
[50] T, Guenther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature, 1999, 399:676-679.
[51] C A, Ryan C G, Mernagh T P, et al. Segregation of ore metals between magatic brine and vapor: A fluid inclusion study using PIXE microanalysis[J]. Economic Geology, 1992, 87: 1 566-1 583.
[52] C A, Günther D, Audétat A. Metal fraction between magmatic brine and vapor, determinded by microanalysis of fluid inclusions[J]. Geology, 1999, 87:755-758.
[53] Chengbiao, Zhang Xingchun, Wang Shouxu, et al. Advances of researches on the evolution of ore-forming fluids and vapor transport of metals in magmatic-hydrothermal systems[J]. Geological Review, 2009, 55(1): 100-112.[冷成彪, 张兴春, 王守旭,等.岩浆—热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质论评, 2009, 55(1): 100-112.]
[54] D Y, Migdisov A A, Williams-Jones A E. The solubility of gold in H2O-H2S vapour at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5 140-5 153.
[55] Ronghua, Hu Shumin, Zhang Xuetong. Transportation of Au and Cu by vapor andrelated ore genesis[J]. Mineral Deposits, 2006, 25(6): 705-714.[张荣华, 胡书敏, 张雪彤. 金铜在气相中的迁移实验及矿石的成因[J]. 矿床地质, 2006, 25(6): 705-714.]
[56] D Y, Migdisov A A, Williams-Jones A E. The solubility of gold in hydrogen sulphide gas: An experimental study[J]. Geochimica et Cosmochimica Acta, 2007, 71: 3 070-3 081.
[57] A C, Pettke T, Candela P A, et al. Magnetite solubility and iron transport in magmatic-hydrothermal environment[J]. Geochimica et Cosmochimica Acta, 2004, 68: 4 905-4 914.
[58] Z, Halter W E, Pettke T, et al. Determination of fluid/melt partition coefficients in volatile saturated magmatic systems by LA-ICP-MS analysis of coexistent fluid and silicate melt inclusions[J]. Geochimica et Cosmochimica Acta, 2008, 72:2 169-2 179.
[59] Jun, Wang Henian. Geochemistry[M]. Beijing: Science Press, 2004.[陈俊,王鹤年. 地球化学[M]. 北京:科学出版社, 2004.]
[60] Katherine A, Noble D C, Bussey Steven D, et al. Initial gold contents silicic volcanic rocks: Bearing on the behavior of gold in magmatic systems[J]. Geology, 1993, 21: 937-940.
[61] Leyla. Solubility of Gold in Granitic Melts and Partitioning of Au between Melt and NaCl-Saturated Fluid or Sulfides[D]. Montreal: McGill University, 1999.
[62] H St C, Dingwell D B, Borisov A, et al. Experimental petrochemistry of some highly siderophile elements at high temperatures, and some implications for core formation and the mantle’s early history[J]. Chemical Geology, 1995, 120:255-273.
[63] G W E , Samis C S. Activities of ions in silicate melts[J]. Transactions of the Metallurgical Society of AIME, 1962, 224: 878-887.
[64] A, Palme H. Experimental determination of the solubility of Au in silicate melts[J]. Mineralogy and Petrology, 1996, 56: 297-312.
[65] Sébastien, Pichavant M, Mavrogenes J A. Controls on gold solubility in arc magmas: An experimental study at 1000 ℃and 4 kbar[J]. Geochimica et Cosmochimica Acta, 2010, 74: 2 165-2 189.
[66] A, Palme H, Spettel B. The solubility of gold in silicate melts: First results[C]∥Proceedings of the 24th Lunar Planetary Sciences Conference. Houston: Lunar and Planetary Institute, 1993: 147-148.
[67] Yinwen, Ma Zhendong. Geochemistry[M]. Beijing: Geological Publishing House, 2003.[韩吟文,马振东. 地球化学[M]. 北京:地质出版社,2003.]
[68] Zhisheng, Huang Zhilong, Zhu Chengming. Silicate melt texture and liquid immiscibility[J]. Geology-Geochemistry, 1997,(1):60-64.[金志升,黄智龙,朱成明.硅酸盐熔体结构与岩浆液态不混溶作用[J].地质地球化学,1997,(1):60-64.]
[69] J D, Holloway J R. Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas[J]. Geological Society of America Special Paper, 1990, 246: 21-34.
[70] S C, Oupree R, Mortuza M G, et al. NMR evidence for five- and six-coordinated aluminum fluoride complexes in Fbearing aluminosilicate glasses[J]. American Mineralogist, 1991, 76: 309-312.
[71] T, Dingwell D B, Keppler H, et al. Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study[J]. Geochimica et Cosmochimica Acta, 1992, 56:701-707.
[72] D R. The effect of F and Cl on the interdiffusion of peralkaline intermediate and silicic melts[J]. American Mineralogist, 1993, 78:316-324.
[73] Xiaoyan, Bi Xianwu, Cai Guosheng, et al. Apreliminary experimental study on the solubility of gold in granitic silicate melts[J]. Acta Mineralogica Sinica, 2012, 32: 22-27.[胡晓燕, 毕献武, 蔡国盛, 等. 金在花岗质熔体中溶解度的初步实验研究[J]. 矿物学报, 2012, 32: 22-27.]
[74] M A, Webster J D. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas[J]. Reviews in Mineralogy, 1994, 30:231-279.
[75] J D. Water solubility and chlorine partitioning in Cl-rich granitic systems: Effects of melt composition at 2 kbar and 800 ℃[J]. Geochimica et Cosmochimica Acta, 1992, 56: 679-687.
[76] S C, Schoifeld P F. The implication of melt composition in controlling trace-element behavior: An experimental study of Mn and Zn partitioning between forsteirte and silicate melts[J]. Chemical Geology, 1994, 117: 73-87.
[77] I, Mysen B O. A possible effect of melt structure on the Mg-Fe partitioning between olivine and melt[J]. Geochimica et Cosmochimica Acta, 2002, 66(12): 2 267-2 272.
[78] V R, Westrenen W V, Fei Y. Expeirmental evidence that potassium is a substantial radioactive heat source in planetary cores[J]. Nature, 2003, 423: 163-165.
[79] J B, Mahood G A, Hervig R L, et al. The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pnatellera, Italy[J].Contributoin to Mienraolgy and Petrology, 1993,114: 119-129.
[1] 陈国松, 孟元林, 郇金来, 肖丽华, 冯丹. 含油气盆地碎屑岩储层异常高孔、渗带成因机制研究进展[J]. 地球科学进展, 2021, 36(9): 922-936.
[2] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[3] 李荣西, 毛景文, 赵帮胜, 陈宝赟, 刘淑文. 烃类流体在 MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.
[4] 王翔宇, 王元慧, 高培超, 宋长青, 程昌秀, 沈石. “可持续社会指数”的研究综述与展望[J]. 地球科学进展, 2021, 36(3): 317-324.
[5] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[6] 郑昕雨,丘志力,邓小芹,马瑛,陆太进. 超深金刚石包裹体:对深部地幔物理化学环境的指示[J]. 地球科学进展, 2020, 35(5): 452-464.
[7] 刘芬良, 高红山, 李宗盟, 潘保田, 苏怀. 金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化[J]. 地球科学进展, 2020, 35(4): 431-440.
[8] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[9] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[10] 何建军,郭郁葱,刘哲,吴捷,李莉. 2020年度大气科学领域项目评审与资助成果简析[J]. 地球科学进展, 2020, 35(11): 1201-1210.
[11] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[12] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[13] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[14] 任建国,陈曦,初航,严兆彬,何雨江,罗情勇,栾晓聪. 2019年度地质科学领域基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1175-1178.
[15] 李积明,刘哲,郭郁葱,彭怡然,闻新宇. 2019年度大气科学领域项目评审与研究成果分析[J]. 地球科学进展, 2019, 34(11): 1212-1217.
阅读次数
全文


摘要