地球科学进展 ›› 2020, Vol. 35 ›› Issue (5): 452 -464. doi: 10.11867/j.issn.1001-8166.2020.044

综述与评述 上一篇    下一篇

超深金刚石包裹体:对深部地幔物理化学环境的指示
郑昕雨 1( ),丘志力 1, 2, 3( ),邓小芹 1,马瑛 1,陆太进 2   
  1. 1.中山大学地球科学与工程学院 广东省地球动力作用与地质灾害重点实验室 广东省地质过程与矿产 资源探查重点实验室,广东 广州 510275
    2.自然资源部珠宝玉石首饰管理中心北京珠宝研究所 自然资源部珠宝玉石首饰检测评价创新技术中心,北京 100013
    3.广西隐伏金属矿产勘查 重点实验室 桂林理工大学地球科学学院,广西 桂林 541006
  • 收稿日期:2020-02-05 修回日期:2020-04-05 出版日期:2020-05-10
  • 通讯作者: 丘志力 E-mail:zhengxy68@mail2.sysu.edu.cn;qiuzhili@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目“扬子克拉通深部作用过程:沅水流域砂矿大金刚石及其包裹体记录”(41473030);国家自然科学基金青年科学基金项目“黔东南与金刚石有关的石榴石精细地球化学研究”(41703028)

The Inclusions in Superdeep Diamonds: Indication and Response to Deep Mantle Physical and Chemical Environment

Xinyu Zheng 1( ),Zhili Qiu 1, 2, 3( ),Xiaoqin Deng 1,Ying Ma 1,Taijin Lu 2   

  1. 1.Guangdong Key Laboratory of Geodynamic and Geological Hazards, Guangdong Key Laboratory of Geological Process and Mineral Resources Exploration, School of Earth Science and Engineering,Sun Yat-sen University, Guangzhou 510275, China
    2.NGTC Gems&Jewelry Institute of Beijing, Technology Innovation Center of Gems & Jewelry Inspection and Appraisal, MNR, Beijing 100013, China
    3.Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration,College of Earth Sciences, Guilin University of Technology,Guilin Guangxi 541006, China
  • Received:2020-02-05 Revised:2020-04-05 Online:2020-05-10 Published:2020-06-05
  • Contact: Zhili Qiu E-mail:zhengxy68@mail2.sysu.edu.cn;qiuzhili@mail.sysu.edu.cn
  • About author:Zheng Xinyu (1995-), female, Lishui City, Zhejiang Province, Master student. Research areas include gemology and mineralogy. E-mail: zhengxy68@mail2.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “The deep geologic process beneath the Yangtze craton: Constraints of monocrystalline diamonds from Ruan River basin and their inclusions”(41473030);“Detailed geochemistry of garnets related to the diamond in Southeastern Guizhou”(41703028)

超深金刚石及其包裹体是探究深部地幔组成及物理化学环境的重要样本。梳理了超深金刚石中新发现的典型矿物包裹体及其组合,并结合前人高精度原位分析、高温高压合成金刚石实验的研究成果,综述分析了超深金刚石矿物包裹体及其组合指示的深度范围、微量元素与温压条件之间的关系,超深地幔水的赋存矿物相、金属相以及强还原环境新认识,残留的俯冲洋壳可能是深部地幔水的重要储库,超深金刚石及其包裹体对深俯冲及深部碳循环的指示等研究进展。指出我国学者虽然在华北、扬子克拉通金刚石中也发现了指示超深来源的矿物包裹体,在超高压金刚石形成及蛇绿岩型金刚石成因研究方面获得了某些重要进展,但对超深金刚石包裹体的研究仍然有待深入。

Superdeep diamonds and their inclusions are important samples to probe the physical and chemical environment and constitution of Earth’s deep mantle. By combining the studies of high-precision in-situ analysis and HPHT synthetic diamond experiments, and by reviewing the new discovery of classical mineral inclusions and their combinations, the ranges of different inclusion combinations, as well as the relationship between trace elements and temperature-pressure conditions were reoriented. The so-called nominally anhydrous minerals combinations, metal phases and redox environments in superdeep mantle were also affirmed. Meanwhile,the recent findings of inclusions and isotopes in superdeep diamonds support the fact that the remaining subduction ocean crust may be a significant reservoir of the deep mantle’s water and the deep mantle carbon cycle is closely related to oceanic subduction. Furthermore, although Chinese scholars have discovered some kinds of superdeep inclusions in diamonds from North China Craton and Yangtze Craton, and made considerable progress in the study of the formation of UHP diamonds and the genesis of ophiolite diamonds, there are still many scientific questions about superdeep diamonds that require further research.

中图分类号: 

图1 全球超深金刚石分布示意图(据参考文献[ 17 , 18 , 20 , 21 , 22 , 23 , 24 , 25 ]修改)
Fig.1 Distribution of superdeep diamonds over the worldmodified after references [17,18,20~25])
表1 超深金刚石中新近发现包裹体组合一览表
Table 1 Inclusion assemblage is newly found in superdeep diamonds
金刚石产地/类型 包裹体组合 指示地幔深度
西藏罗布莎、俄罗斯Polar Urals、内蒙古贺根山/蛇绿岩型超深金刚石(Ⅰb型金刚石) 主要含有Ni-Mn-Co合金,部分存在水+碳酸盐+硅酸盐+烃类及流体包裹体+铬铁矿+磁铁矿碳化硅+褐铁矿+云母+镁铬铁矿微包裹体组合 350~660 km[ 42 , 43 , 44 ]
博兹瓦纳奥拉柏矿区、中国山东、非洲西南部的Namaqualand/ⅠaAB型金刚石 冰-Ⅶ+硅酸盐+镁质方解石+氧化物+卤化物+钛铁矿

400~550 km

/610~800 km[ 45 ]

南非,与库里南类似的贫包裹体,相对较纯净,不规则形态大金刚石(3~35克拉)/Ⅱ型金刚石 53颗中的15颗含有CH4+H2或CH4包裹体,如金属包裹体(铁镍合金)+CH4+H2;硅钙钡石+ CH4;贫铬超硅石榴石+ CH4 360~750 km[ 46 ]
蓝色金刚石(3分至24克拉)/Ⅱb型金刚石 46颗中有13颗含有CH4+H2或CH4包裹体,如硅钙钡石+斜硅钙石+ CH4+H2;硅钙钡石+斜方辉石+TAPP+尖晶石+钛铁矿+霞石+橄榄石+ CH4+FeS+铁碳酸盐+FeO;硅钙钡石+铁方镁石+ CH4 >410 km[ 41 ]
俄罗斯西伯利亚东北部地区/ⅠaB型/Ⅱa型金刚石 铁的碳化物 >410 km[ 47 ]
南非Gauteng地区Cullinan 矿/Ⅱ型金刚石 钙钛矿结构CaSiO3 >660 km[ 6 ]
巴西Juina地区/Ⅱ型金刚石 纳米级/微米级高浓度的全聚集固态氮δ-N2 410~630 km[ 48 ]
巴西Juina地区/Ⅰ型金刚石 铁方镁石+镁铁矿+碳酸盐+毛河光矿/谢氏超晶石 >410 km[ 49 ]
巴西Juina地区/ⅠaB型金刚石 铁的碳化物(陨碳铁Fe3C、碳铁陨矿Fe2C、碳镍铁矿Fe23C6)+自然铁+磁铁矿+石墨

核幔边界/D layer

2 700~2 900 km[ 8 ]

巴西Juina地区/Ⅰ型金刚石 方铁矿+方镁石

核幔边界/D layer

2 700~2 900 km[ 7 ]

图2 Egg相、水合林伍德石、铁方镁石拉曼/红外谱图(据参考文献[ 4 , 38 , 54 ]修改)
Fig.2 Raman / FTIR spectra of phase Egg/ ringwoodite/ ferropericlase inclusion modified after references [4,38,54])
图3 超深金刚石及HPHT合成金刚石中CH4+H2拉曼光谱(据参考文献[ 5 , 46 , 70 ]修改)
(a)CLIPPIR 金刚石中CH 4+H 2拉曼光谱;(b)HPHT合成金刚石中CH 4+H 2拉曼光谱
Fig.3 Raman spectra of CH4+H2 in superdeep diamond and HPHT synthetic diamond (modified after references [5, 46, 70])
(a) Raman spectra of CH 4+H 2 in CLIPPIR;(b) Raman spectra of CH 4+H 2 in HPHT synthetic diamond
图4 巴西Juina地区超深金刚石中疑似毛河光矿/谢氏超晶石包裹体拉曼光谱(据参考文献[ 49 ]修改)
毛河光矿拉曼峰为602 cm -1,谢氏超晶石拉曼峰为605 cm -1
Fig.4 Raman spectra of suspected maohokite/ xieite inclusion in superdeep diamond in Juina, Brazil(modified after reference[ 49 ])
Raman shift of maohokite is 602 cm -1,Raman shift of xieite is 605 cm -1
图5 洋壳俯冲带入硼元素及轻碳同位素示意图(据参考文献[ 41 , 88 ]修改)
Fig.5 Schematic diagram of subduction of oceanic crust with boron element and light carbon isotope (modified after references [41,88])
1 Stachel T, Brey G P, Harris J W. Inclusions in sublithospheric diamonds: Glimpses of deep Earth [J]. Elements, 2015, 1(2):73-78.
2 Harte B. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones [J]. Mineralogical Magazine, 2010, 74(2):189-215.
3 Walter M J, Kohn S C, Araujo G P,et al. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions [J]. Science, 2011, 334(6 052):54-57.
4 Pearson D G, Brenker F E, Nestola F, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature, 2014,507(7 491): 221-224.
5 Smith E M, Shirey S B, Wuyi W. The very deep origin of the world’s biggest diamonds[J]. Gems&Gemology, 2017, 53(4):388-401.
6 Nestola F, Korolev N, Kopylova M, et al. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle [J]. Nature, 2018, 555(7 695):237-241.
7 Kaminsky F, Wirth R, Matsyuk S. Carbonate and halide inclusions in diamond and deep-seated carbonatitic magma [J]. Geochmica et Cosmochimica Acta, 2009, 73(13). DOI:10.1016/j.gca.2009.03.006.
doi: 10.1016/j.gca.2009.03.006    
8 Kaminsky F. Iron carbide inclusions in lower-mantle diamond from Juina, Brazil[J]. The Canadian Mineralogist, 2011,49(2):555-572.
9 Moore R O, Gumey J J. Pyroxene solid solution in garnets included in diamonds[J]. Nature,1985,318 (6 046): 553-555.
10 Lu Fengxiang. Mantle window:Diamonds [J]. Chinese Journal of Nature, 2011,33(3): 161-165.
路凤香.地幔的窗口:金刚石[J].自然杂志, 2011, 33(3): 161-165.
11 Harte B. Lower mantle mineral associations preserved in diamonds [J]. Mineralogical Magazine, 1994, 58(1):384-385.
12 Stachel T, Brey G P, Harris J W. Kankan diamonds (Guinea) I: From the lithosphere down to the transition zone [J]. Contributions to Mineralogy & Petrology, 2000, 140(1):1-15.
13 Stachel T, Harris J W, Brey G P, et al. Kankan diamonds (Guinea) Ⅱ: Lower mantle inclusion parageneses[J]. Contributions to Mineralogy & Petrology, 2000, 140(1):16-27.
14 Tappert R, Stachel T, Harris J W, et al. Diamonds from the asthenosphere and transition zone: Remnants of subducted crustal material in the Deep Earth's Mantle [C]// AGU Fall Meeting Abstracts, 2005.
15 Harte B, Cayzer N. Decompression and unmixing of crystals included in diamonds from the mantle transition zone [J]. Physics & Chemistry of Minerals, 2007, 34(9):647-656.
16 Bulanova G P, Walter M J, Smith C B, et al. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism[J]. Contributions to Mineralogy and Petrology, 2010, 160(4):489-510.
17 Lu Qi, Shi Nicheng, Liu Huifang, et al. TiC inclusion first found in diamond from Fuxian, Liaoning of China[J]. Geological Science and Technology Information, 2011,30(2):1-5.
陆琦,施倪承,刘惠芳,等.中国辽宁复县金刚石中新发现的碳化钛矿物[J].地质科技情报,2011,30(2):1-5.
18 Lu Qi, Liu Huifang, Xiao Ping, et al. Discovery and geological significance of majorite inclusion in diamond from Liaoning Province, China[J]. Geological Science and Technology Information, 2012,31(5):1-7.
陆琦,刘惠芳,肖平,等.中国辽宁金刚石中高硅钙铁榴石(Majorite)等超高压矿物包裹体的发现及地质意义[J].地质科技情报,2012,31(5): 1-7.
19 Tappert R, Stachel T, Harris J W, et al. Subducting oceanic crust: The source of deep diamonds [J]. Geology, 2015, 33(7): 565-568.
20 Ragozin A, Zedgenizov D, Shatsky V, et al. Deformation features of super‐deep diamonds [J]. Minerals, 2020, 10(1):18.
21 Shi Nicheng, Lu Qi, Li Guowu, et al. A species of high pressure mineral:The high-chromium corundum(ruby) as an inclusion in diamond from the Yuanshui, Hunan, China[J]. Earth Science Frontiers, 2011, 18(6):341-346.
施倪承,陆琦,李国武,等.高铬刚玉:湖南沅水金刚石包裹体中发现的一种高压矿物[J].地学前缘, 2011, 18(6):341-346.
22 Shirey S B, Shigley J E. Recent advances in understanding the geology of diamonds [J]. Gems & Gemology, 2013, 49(4):188-222.
23 Shirey S B, Cartigny P, Frost D J, et al. Diamonds and the geology of mantle carbon [J]. Reviews in Mineralogy and Geochemistry, 2013, 75:355-421.
24 Nestola F, Smyth J R. Diamonds and water in the deep Earth: A new scenario [J]. International Geology Review, 2016, 58(3):263-276.
25 Yang Jingsui, Xu Xiangzhen, Zhang Zhongming, et al. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientica Sinica,2013,34(6):643-653.
杨经绥, 徐向珍, 张仲明, 等. 蛇绿岩型金刚石和铬铁矿深部成因[J]. 地球学报, 2013,34(6):643-653.
26 Stachel T, Harris J W. The origin of cratonic diamonds— Constraints from mineral inclusions [J]. Ore Geology Reviews, 2008, 34(1/2):5-32.
27 Lian Dongyang, Yang Jingsui, Liu Fei, et al. Diamond classification, compositional characteristics, and research progress: A review[J]. Earth Science, 2019,(10):3 409-3 453.
连东洋,杨经绥,刘飞,等.金刚石分类、组成特征以及我国金刚石研究展望[J].地球科学,2019,(10):3 409-3 453.
28 Anzolini C, Angel R J, Merlini M, et al. Depth of formation of CaSiO3-walstromite included in super-deep diamonds[J]. Lithos, 2016, 265:138-147.
29 Anzolini C, Nestola F, Mazzucchelli M L, et al. Depth of diamond formation obtained from single periclase inclusions [J]. Geology, 2019, 47(3):219-222.
30 Meyer H O A. Inclusions in Diamond [M]//Nixon P H. Mantle Xenoliths. Chichester: Wiley, 1987: 501-523.
31 Zhao Xin,Shi Guanghai,Zhang Ji. Review of lithospheric diamonds and their mineral inclusions [J]. Advances in Earth Science,2015,30(3):310-322.
赵欣,施光海,张骥.岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J].地球科学进展,2015,30(3):310-322.
32 Angel R J, Alvaro M, Nestola F, et al. Diamond thermoelastic properties and implications for determining the pressure of formation of diamond-inclusion systems[J]. Russian Geology and Geophysics, 2015, 56(1/2):211-220.
33 Angel R J, Nimis P, Mazzucchelli M L, et al. How large are departures from lithostatic pressure?Constraints from host-inclusion elasticity [J]. Journal of Metamorphic Geology, 2015, 33(8):801-813.
34 Angel R J, Mazzucchelli M L, Alvaro M, et al. EosFit-Pinc: A simple GUI for host-inclusion elastic thermo barometry [J]. American Mineral, 2017, 102: 1 957-1 960.
35 Stachel T. Diamonds from the asthenosphere and the transition zone [J]. European Journal of Mineralogy, 2001, 13(5): 883-892.
36 Zhang Zhou, Zhang Hongfu. Diamond and deep carbon cycle [J]. Earth Science Frontiers, 2011,18(3):268-283.
张舟,张宏福.金刚石与深部碳循环[J].地学前缘,2011,18(3):268-283.
37 Kaminsky F. Lower-Mantle Mineral Associations [M]//The Earth's Lower Mantle, 2017.
38 Wirth R, Vollmer C, Brenker F, et al. Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil)[J]. Earth & Planetary Science Letters, 2007, 259(3/4): 384-399.
39 Kaminsky F. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond [J]. Earth-Science Reviews, 2012, 110(1):127-147.
40 Theetso M, Harris J W, Thomas S, et al. Mineral inclusions in diamonds from Karowe Mine, Botswana: Super-deep sources for super-sized diamonds?[J]. Mineralogy and Petrology, 2018, 112:169-180.
41 Smith E M, Shirey S B, Nestola F, et al. Blue boron-bearing diamonds from Earth’s lower mantle [J]. Nature, 2018, 560(7 716): 84-88.
42 Kyaw S M, Yang J S, Johnson P, et al. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite[J]. Lithosphere, 2017, 10(1):133-141.
43 Dilek Y, Yang J. Ophiolites, diamonds, and ultrahigh-pressure minerals: New discoveries and concepts on upper mantle petrogenesis[J]. Lithosphere, 2018, 10(1):3-13.
44 Huang Z, Yang J, Zhu Y, et al. The discovery of diamonds in chromitite of the Hegenshan ophiolite, Inner Mongolia[J]. Acta Geologica Sinica, 2015, 89(Suppl.2):32-32.
45 Tschauner O, Huang S, Greenberg E, et al. Ice-Ⅶ inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle[J]. Science, 2018, 359(6 380):1 136-1 139.
46 Smith E M, Shirey S B, Nestola F, et al. Large gem diamonds from metallic liquid in Earth’s deep mantle[J]. Science, 2016, 354(6 318):1 403-1 405.
47 Shatsky V S, Ragozin A L, Logvinova A M, et al. Diamond-rich placer deposits from iron-saturated mantle beneath the northeastern margin of the Siberian Craton[J]. Lithos, 2020,364/365:105514. DOI:10.1016/j.lithos.2020.105514.
doi: 10.1016/j.lithos.2020.105514    
48 Navon O, Wirth R, Schmidt C, et al. Solid molecular nitrogen (δ-N2) inclusions in Juina diamonds: Exsolution at the base of the transition zone[J]. Earth and Planetary Science Letters, 2017, 464:237-247.
49 Agrosìa G, Tempesta G, Mele D, et al. Multiphase inclusions associated with residual carbonate in a transition zone diamond from Juina (Brazil)[J]. Lithos, 2019, 350/351:1-8.
50 Anzolini C, Nestola F, Harris J W. Depth of formation of super-deep diamonds[C]//11th International Kimberlite Conference Extended Abstract, 2017, No. 11IKC-4548.
51 Anzolini C. Depth of formation of super-deep diamonds [J]. Plinius, 2018, 44:1-7.
52 Thomson A R, Walter M J, Kohn S C, et al. Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7 584):76-79.
53 Harte B, Harris J W, Hutchison M T, et al. Lower mantle mineral associations in diamonds from Sao Luiz, Brazil [J]. Mantle Petrology, 1999, 6:125-153.
54 Palot M, Jacobsen S D, Townsend J P, et al. Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion [J]. Lithos, 2016, 265: 237-243.
55 Hayman P C, Kopylova M G, Kaminsky F V. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil)[J]. Contributions to Mineralogy & Petrology, 2005, 149(4):430-445.
56 Stachel T, Luth R W. Diamond formation—Where, when and how?[J]. Lithos, 2015, 220/223: 200-220.
57 Armstrong L S, Walter M J, et al. Tetragonal almandine pyrope phase (TAPP): Retrograde Mg-perovskite from subducted oceanic crust?[J]. European Journal of Mineralogy, 2012, 24: 587-597.
58 Nestola F, Burnham A D, Peruzzo L, et al. Tetragonal Almandine-Pyrope Phase, TAPP: Finally a name for it, the new mineral jeffbenite[J]. Mineralogical Magazine, 2016, 80(7):1 219-1 232.
59 Smyth J R, Wang F, Elizabeth C, et al. Crystal structure and compressibility of Fe-Mg jeffbenite synthesized at 15GPa and 1200°C[C]// American Geophysical Union Fall Meeting, 2019.
60 Nestola F. Inclusions in super-deep diamonds: windows on the very deep Earth [J]. Rendiconti Lincei, 2017, 28:595-604.
61 Smyth J R, Frost D J, Nestola F, et al. Olivine hydration in the deep upper mantle: Effects of temperature and silica activity [J]. Geophysical Research Letters, 2006, 33(15):311-324.
62 Hirschmann M M. Water, melting, and the deep Earth H2O cycle [J]. Annual Review of Earth and Planetary Sciences, 2006, 2 334(34):54 629-54 653.
63 Keppler H. Geology: Earth's deep water reservoir [J].Nature, 2014, 507(7 491):174-175.
64 Schmandt B, Jacobsen S D, Becker T W, et al. Dehydration melting in the top of the lower mantle[C]// Agu Fall Meeting. AGU Fall Meeting Abstracts, 2014.
65 Lin Y, Hu Q, Meng Y, et al. Evidence for the stability of ultrahydrous stishovite in Earth’s lower mantle [J]. Proceedings of the National Academy of Sciences, 2020, 117(1): 184-189.
66 Niu Yaoling, Gong Hongmei, Wang Xiaohong, et al. Some key problems onthe petrogenesis of seafloor basalts, abyssal peridotites and geodynamics—A non-traditional isotope approach[J]. Advances in Earth Science,2017,32(2):111-127.
牛耀龄,龚红梅,王晓红,等. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J].地球科学进展,2017,32(2):111-127.
67 Jacob D E, Kronz A, Viljoen K S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates[J]. Contributions to Mineralogy and Petrology, 2004, 146:566-576.
68 Jones A, Dobson D, Beard A, et al. Iron carbide and metallic inclusions in diamond from Jagersfontein[C]//International Kimberlite Conference:Extended Abstracts, 2008. DOI:10.29173/ikc3577.
doi: 10.29173/ikc3577    
69 Yang Jingsui, Xu Xiangzhen, Rong He. Deep minerals in ophiolitic mantle peridotites: Discovery and progress[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2):159-170.
杨经绥, 徐向珍, 戎合, 等. 蛇绿岩地幔橄榄岩中的深部矿物:发现与研究进展[J]. 矿物岩石地球化学通报, 2013, 32(2):159-170.
70 Smith E M, Wang W. Fluid CH4 and H2 trapped around metallic inclusions in HPHT synthetic diamond [J]. Diamond and Related Materials, 2016, 68: 10-12.
71 Lu T J, Ke J, Lan Y, et al. Current status of Chinese synthetic diamonds[J]. The Journal of Gemmology,2019, 36(8):642-651.
72 Zhimulev E I, Chepurov A I, Sinyakova E F, et al. Diamond crystallization in the Fe-Co-S-C and Fe-Ni-S-C systems and the role of sulfide-metal melts in the genesis of diamond[J]. Geochemistry International, 2012, 50(3):205-216.
73 Zhimulev E I, Sonin V M, Mironov A M, et al. Effect of sulfur concentration on diamond crystallization in the Fe-C-S system at 5.3-5.5 GPa and 1300-1370 °C[J]. Geochemistry International, 2016, 54(5):415-422.
74 Yang Zhijun, Huang Shanshan, Chen Yaoming,et al. Progresses and perspectives of research of the evolution of Kimberliteand evaluation for diamond potential[J]. Advances in Earth Science,2016,31(7):700-707.
杨志军,黄珊珊,陈耀明,等. 金伯利岩演化过程及金刚石含矿性评价的研究进展[J]. 地球科学进展,2016,31(7):700-707.
75 Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth’s interior[J]. Earth & Planetary Science Letters, 2010, 298(1/2):0-13.
76 He Detao, Liu Yongsheng, Chen Chunfei. The deep mantle recycling of sedimentary carbonate during subduction process: Evidence and effect[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(2):228-236.
何德涛, 刘勇胜, 陈春飞. 俯冲作用过程中沉积碳酸盐岩的深部地幔再循环:证据和作用[J]. 矿物岩石地球化学通报, 2017, 36(2): 228-236.
77 Walter M J,Bulanova G P, Armstrong L S, et al. Primary carbonatite melt from deeply subducted oceanic crust[J].Nature,2008,454(7 204):622-625.
78 Cerantola V, Bykova E, Kupenko I, et al. Stability of iron-bearing carbonates in the deep Earth’s interior [J]. Nature Communications, 2017, 8:15 960.
79 Zhang Guoliang, Zhan Mingjun.Carbon cycle and deep carbon storage during subduction and magamatic processes[J]. Marine Geology & Quaternary Geology,2019,39(5):36-45.
张国良, 战明君. 板块俯冲和岩浆过程中碳循环及深部碳储库[J].海洋地质与第四纪地质, 2019,39(5):36-45.
80 Gao Jing, Wu Xiang, Qin Shan. The stability of carbonate and the origin of diamond during subduction of oceanic crust [J]. Journal of Jilin University, 2015, (Suppl.1):340-341.
高静, 巫翔, 秦善. 洋壳深俯冲过程中碳酸盐的稳定性与金刚石成因初探[J]. 吉林大学学报:地球科学版, 2015,(增刊1):340-341.
81 Gao J, Chen B, Wu X. Super-deep diamond genesis at redox conditions of slab-mantle boundary[C]//Agu Fall Meeting. AGU Fall Meeting Abstracts, 2017.
82 Chen Ming, Mao Heguang. No melting, no reducing agent: Natural diamond formation "self-sustaining" [J]. Frontiers of Science, 2019, (1):71-73.
陈鸣, 毛河光. 无熔融、无还原剂:天然金刚石形成“自食其力”[J].前沿科学, 2019,(1):71-73.
83 Chen M, Shu J F, Xian X D. Natural diamond formation by self-redox of ferromagnesian carbonate [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11):2 676-2 680.
84 Chen Ming, Shu Jinfu, Mao Heguang. Xieite, a new mineral of high-pressure FeCr2O4 polymorph [J]. Chinese Science Bulletin, 2008, 53(17):2 060-2 063.
陈鸣,束今赋,毛河光.谢氏超晶石:一种FeCr2O4高压多形新矿物[J].科学通报,2008, 53(17):2 060-2 063.
85 Ickert R, Stachel T, Stern R A, et al. Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds[J]. Geochemical Perspectives Letters, 2015, (1): 65-74.
86 Sobolev N V, Logvinova A M, Zedgenizov D A, et al. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: A comparative study[J]. Lithos, 2004, 77(1/4):225-242.
87 Brenker F E, Vollmer C, Vincze L, et al. Carbonates from the lower part of transition zone or even the lower mantle[J]. Earth and Planetary Science Letters, 2007, 260(1/2):1-9.
88 Thomson A R, Kohn S C, Bulanova G P, et al. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion compositions[J]. Contributions to Mineralogy & Petrology, 2014, 168(6):1 081-1 081.
89 Karen V S, Steven B S. Diamonds from the deep: How do diamonds form in the deep Earth?[J]. Gems&Gemology, 2018, 54(4): 440-445.
90 Smit K V, Shirey S B, Hauri E H, et al. Sulfur isotopes in diamonds reveal differences in continent construction[J]. Science, 2019, 364(6 438): 383-385.
91 Kemppinen L I M, Thomassot E, Kohn S C, et al. Sulphide inclusions in sub-lithospheric diamonds[C]//11th International Kimberlite Conference, 2017.
92 Yang J, Robinson P T, Dilek Y. Diamonds in ophiolites[J]. Elements, 2014, 10(2): 127-130.
[1] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[2] 侯笛,张俊杰,邢磊,周阳. 长链烷基二醇在海洋环境重建中的研究进展[J]. 地球科学进展, 2019, 34(2): 140-147.
[3] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[4] 赵欣, 施光海, 张骥. 岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J]. 地球科学进展, 2015, 30(3): 310-322.
[5] 王翠芝. 紫金山铜金矿明矾石交代蚀变岩的岩石地球化学特征[J]. 地球科学进展, 2013, 28(8): 897-912.
[6] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[7] 葛云锦,陈勇,周瑶琪,周振柱. 实验模拟碳酸盐岩储层包裹体对油气充注的响应[J]. 地球科学进展, 2011, 26(10): 1050-1056.
[8] 平宏伟,陈红汉. 次生油气藏成藏研究进展[J]. 地球科学进展, 2009, 24(9): 990-1000.
[9] 傅晓明,戴塔根,息朝庄,刘 伟,刘 旭. 青海双朋西金铜矿床的成矿流体特征及流体来源[J]. 地球科学进展, 2009, 24(5): 531-537.
[10] 孙贺,肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121.
[11] 刘兴起;倪培. 表生环境条件形成的石盐流体包裹体研究进展[J]. 地球科学进展, 2005, 20(8): 856-862.
[12] 郑海飞;段体玉;孙樯;乔二伟. 一种潜在的地质压力计:流体包裹体子矿物的激光拉曼光谱测压法[J]. 地球科学进展, 2005, 20(7): 804-808.
[13] 李兆丽;胡瑞忠;彭建堂;毕献武;李晓敏. 稀有气体同位素示踪成矿古流体研究进展[J]. 地球科学进展, 2005, 20(1): 57-063.
[14] 赵孟军;宋岩;潘文庆;韩剑发;柳少波;秦胜飞. 沉积盆地油气成藏期研究及成藏过程综合分析方法[J]. 地球科学进展, 2004, 19(6): 939-946.
[15] 王显东,姜振学,庞雄奇. 古油气水界面恢复方法综述[J]. 地球科学进展, 2003, 18(3): 412-419.
阅读次数
全文


摘要