1 |
Stachel T, Brey G P, Harris J W. Inclusions in sublithospheric diamonds: Glimpses of deep Earth [J]. Elements, 2015, 1(2):73-78.
|
2 |
Harte B. Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones [J]. Mineralogical Magazine, 2010, 74(2):189-215.
|
3 |
Walter M J, Kohn S C, Araujo G P,et al. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions [J]. Science, 2011, 334(6 052):54-57.
|
4 |
Pearson D G, Brenker F E, Nestola F, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond[J]. Nature, 2014,507(7 491): 221-224.
|
5 |
Smith E M, Shirey S B, Wuyi W. The very deep origin of the world’s biggest diamonds[J]. Gems&Gemology, 2017, 53(4):388-401.
|
6 |
Nestola F, Korolev N, Kopylova M, et al. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle [J]. Nature, 2018, 555(7 695):237-241.
|
7 |
Kaminsky F, Wirth R, Matsyuk S. Carbonate and halide inclusions in diamond and deep-seated carbonatitic magma [J]. Geochmica et Cosmochimica Acta, 2009, 73(13). DOI:10.1016/j.gca.2009.03.006.
doi: 10.1016/j.gca.2009.03.006
|
8 |
Kaminsky F. Iron carbide inclusions in lower-mantle diamond from Juina, Brazil[J]. The Canadian Mineralogist, 2011,49(2):555-572.
|
9 |
Moore R O, Gumey J J. Pyroxene solid solution in garnets included in diamonds[J]. Nature,1985,318 (6 046): 553-555.
|
10 |
Lu Fengxiang. Mantle window:Diamonds [J]. Chinese Journal of Nature, 2011,33(3): 161-165.
|
|
路凤香.地幔的窗口:金刚石[J].自然杂志, 2011, 33(3): 161-165.
|
11 |
Harte B. Lower mantle mineral associations preserved in diamonds [J]. Mineralogical Magazine, 1994, 58(1):384-385.
|
12 |
Stachel T, Brey G P, Harris J W. Kankan diamonds (Guinea) I: From the lithosphere down to the transition zone [J]. Contributions to Mineralogy & Petrology, 2000, 140(1):1-15.
|
13 |
Stachel T, Harris J W, Brey G P, et al. Kankan diamonds (Guinea) Ⅱ: Lower mantle inclusion parageneses[J]. Contributions to Mineralogy & Petrology, 2000, 140(1):16-27.
|
14 |
Tappert R, Stachel T, Harris J W, et al. Diamonds from the asthenosphere and transition zone: Remnants of subducted crustal material in the Deep Earth's Mantle [C]// AGU Fall Meeting Abstracts, 2005.
|
15 |
Harte B, Cayzer N. Decompression and unmixing of crystals included in diamonds from the mantle transition zone [J]. Physics & Chemistry of Minerals, 2007, 34(9):647-656.
|
16 |
Bulanova G P, Walter M J, Smith C B, et al. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism[J]. Contributions to Mineralogy and Petrology, 2010, 160(4):489-510.
|
17 |
Lu Qi, Shi Nicheng, Liu Huifang, et al. TiC inclusion first found in diamond from Fuxian, Liaoning of China[J]. Geological Science and Technology Information, 2011,30(2):1-5.
|
|
陆琦,施倪承,刘惠芳,等.中国辽宁复县金刚石中新发现的碳化钛矿物[J].地质科技情报,2011,30(2):1-5.
|
18 |
Lu Qi, Liu Huifang, Xiao Ping, et al. Discovery and geological significance of majorite inclusion in diamond from Liaoning Province, China[J]. Geological Science and Technology Information, 2012,31(5):1-7.
|
|
陆琦,刘惠芳,肖平,等.中国辽宁金刚石中高硅钙铁榴石(Majorite)等超高压矿物包裹体的发现及地质意义[J].地质科技情报,2012,31(5): 1-7.
|
19 |
Tappert R, Stachel T, Harris J W, et al. Subducting oceanic crust: The source of deep diamonds [J]. Geology, 2015, 33(7): 565-568.
|
20 |
Ragozin A, Zedgenizov D, Shatsky V, et al. Deformation features of super‐deep diamonds [J]. Minerals, 2020, 10(1):18.
|
21 |
Shi Nicheng, Lu Qi, Li Guowu, et al. A species of high pressure mineral:The high-chromium corundum(ruby) as an inclusion in diamond from the Yuanshui, Hunan, China[J]. Earth Science Frontiers, 2011, 18(6):341-346.
|
|
施倪承,陆琦,李国武,等.高铬刚玉:湖南沅水金刚石包裹体中发现的一种高压矿物[J].地学前缘, 2011, 18(6):341-346.
|
22 |
Shirey S B, Shigley J E. Recent advances in understanding the geology of diamonds [J]. Gems & Gemology, 2013, 49(4):188-222.
|
23 |
Shirey S B, Cartigny P, Frost D J, et al. Diamonds and the geology of mantle carbon [J]. Reviews in Mineralogy and Geochemistry, 2013, 75:355-421.
|
24 |
Nestola F, Smyth J R. Diamonds and water in the deep Earth: A new scenario [J]. International Geology Review, 2016, 58(3):263-276.
|
25 |
Yang Jingsui, Xu Xiangzhen, Zhang Zhongming, et al. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientica Sinica,2013,34(6):643-653.
|
|
杨经绥, 徐向珍, 张仲明, 等. 蛇绿岩型金刚石和铬铁矿深部成因[J]. 地球学报, 2013,34(6):643-653.
|
26 |
Stachel T, Harris J W. The origin of cratonic diamonds— Constraints from mineral inclusions [J]. Ore Geology Reviews, 2008, 34(1/2):5-32.
|
27 |
Lian Dongyang, Yang Jingsui, Liu Fei, et al. Diamond classification, compositional characteristics, and research progress: A review[J]. Earth Science, 2019,(10):3 409-3 453.
|
|
连东洋,杨经绥,刘飞,等.金刚石分类、组成特征以及我国金刚石研究展望[J].地球科学,2019,(10):3 409-3 453.
|
28 |
Anzolini C, Angel R J, Merlini M, et al. Depth of formation of CaSiO3-walstromite included in super-deep diamonds[J]. Lithos, 2016, 265:138-147.
|
29 |
Anzolini C, Nestola F, Mazzucchelli M L, et al. Depth of diamond formation obtained from single periclase inclusions [J]. Geology, 2019, 47(3):219-222.
|
30 |
Meyer H O A. Inclusions in Diamond [M]//Nixon P H. Mantle Xenoliths. Chichester: Wiley, 1987: 501-523.
|
31 |
Zhao Xin,Shi Guanghai,Zhang Ji. Review of lithospheric diamonds and their mineral inclusions [J]. Advances in Earth Science,2015,30(3):310-322.
|
|
赵欣,施光海,张骥.岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J].地球科学进展,2015,30(3):310-322.
|
32 |
Angel R J, Alvaro M, Nestola F, et al. Diamond thermoelastic properties and implications for determining the pressure of formation of diamond-inclusion systems[J]. Russian Geology and Geophysics, 2015, 56(1/2):211-220.
|
33 |
Angel R J, Nimis P, Mazzucchelli M L, et al. How large are departures from lithostatic pressure?Constraints from host-inclusion elasticity [J]. Journal of Metamorphic Geology, 2015, 33(8):801-813.
|
34 |
Angel R J, Mazzucchelli M L, Alvaro M, et al. EosFit-Pinc: A simple GUI for host-inclusion elastic thermo barometry [J]. American Mineral, 2017, 102: 1 957-1 960.
|
35 |
Stachel T. Diamonds from the asthenosphere and the transition zone [J]. European Journal of Mineralogy, 2001, 13(5): 883-892.
|
36 |
Zhang Zhou, Zhang Hongfu. Diamond and deep carbon cycle [J]. Earth Science Frontiers, 2011,18(3):268-283.
|
|
张舟,张宏福.金刚石与深部碳循环[J].地学前缘,2011,18(3):268-283.
|
37 |
Kaminsky F. Lower-Mantle Mineral Associations [M]//The Earth's Lower Mantle, 2017.
|
38 |
Wirth R, Vollmer C, Brenker F, et al. Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil)[J]. Earth & Planetary Science Letters, 2007, 259(3/4): 384-399.
|
39 |
Kaminsky F. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond [J]. Earth-Science Reviews, 2012, 110(1):127-147.
|
40 |
Theetso M, Harris J W, Thomas S, et al. Mineral inclusions in diamonds from Karowe Mine, Botswana: Super-deep sources for super-sized diamonds?[J]. Mineralogy and Petrology, 2018, 112:169-180.
|
41 |
Smith E M, Shirey S B, Nestola F, et al. Blue boron-bearing diamonds from Earth’s lower mantle [J]. Nature, 2018, 560(7 716): 84-88.
|
42 |
Kyaw S M, Yang J S, Johnson P, et al. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite[J]. Lithosphere, 2017, 10(1):133-141.
|
43 |
Dilek Y, Yang J. Ophiolites, diamonds, and ultrahigh-pressure minerals: New discoveries and concepts on upper mantle petrogenesis[J]. Lithosphere, 2018, 10(1):3-13.
|
44 |
Huang Z, Yang J, Zhu Y, et al. The discovery of diamonds in chromitite of the Hegenshan ophiolite, Inner Mongolia[J]. Acta Geologica Sinica, 2015, 89(Suppl.2):32-32.
|
45 |
Tschauner O, Huang S, Greenberg E, et al. Ice-Ⅶ inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle[J]. Science, 2018, 359(6 380):1 136-1 139.
|
46 |
Smith E M, Shirey S B, Nestola F, et al. Large gem diamonds from metallic liquid in Earth’s deep mantle[J]. Science, 2016, 354(6 318):1 403-1 405.
|
47 |
Shatsky V S, Ragozin A L, Logvinova A M, et al. Diamond-rich placer deposits from iron-saturated mantle beneath the northeastern margin of the Siberian Craton[J]. Lithos, 2020,364/365:105514. DOI:10.1016/j.lithos.2020.105514.
doi: 10.1016/j.lithos.2020.105514
|
48 |
Navon O, Wirth R, Schmidt C, et al. Solid molecular nitrogen (δ-N2) inclusions in Juina diamonds: Exsolution at the base of the transition zone[J]. Earth and Planetary Science Letters, 2017, 464:237-247.
|
49 |
Agrosìa G, Tempesta G, Mele D, et al. Multiphase inclusions associated with residual carbonate in a transition zone diamond from Juina (Brazil)[J]. Lithos, 2019, 350/351:1-8.
|
50 |
Anzolini C, Nestola F, Harris J W. Depth of formation of super-deep diamonds[C]//11th International Kimberlite Conference Extended Abstract, 2017, No. 11IKC-4548.
|
51 |
Anzolini C. Depth of formation of super-deep diamonds [J]. Plinius, 2018, 44:1-7.
|
52 |
Thomson A R, Walter M J, Kohn S C, et al. Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7 584):76-79.
|
53 |
Harte B, Harris J W, Hutchison M T, et al. Lower mantle mineral associations in diamonds from Sao Luiz, Brazil [J]. Mantle Petrology, 1999, 6:125-153.
|
54 |
Palot M, Jacobsen S D, Townsend J P, et al. Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion [J]. Lithos, 2016, 265: 237-243.
|
55 |
Hayman P C, Kopylova M G, Kaminsky F V. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil)[J]. Contributions to Mineralogy & Petrology, 2005, 149(4):430-445.
|
56 |
Stachel T, Luth R W. Diamond formation—Where, when and how?[J]. Lithos, 2015, 220/223: 200-220.
|
57 |
Armstrong L S, Walter M J, et al. Tetragonal almandine pyrope phase (TAPP): Retrograde Mg-perovskite from subducted oceanic crust?[J]. European Journal of Mineralogy, 2012, 24: 587-597.
|
58 |
Nestola F, Burnham A D, Peruzzo L, et al. Tetragonal Almandine-Pyrope Phase, TAPP: Finally a name for it, the new mineral jeffbenite[J]. Mineralogical Magazine, 2016, 80(7):1 219-1 232.
|
59 |
Smyth J R, Wang F, Elizabeth C, et al. Crystal structure and compressibility of Fe-Mg jeffbenite synthesized at 15GPa and 1200°C[C]// American Geophysical Union Fall Meeting, 2019.
|
60 |
Nestola F. Inclusions in super-deep diamonds: windows on the very deep Earth [J]. Rendiconti Lincei, 2017, 28:595-604.
|
61 |
Smyth J R, Frost D J, Nestola F, et al. Olivine hydration in the deep upper mantle: Effects of temperature and silica activity [J]. Geophysical Research Letters, 2006, 33(15):311-324.
|
62 |
Hirschmann M M. Water, melting, and the deep Earth H2O cycle [J]. Annual Review of Earth and Planetary Sciences, 2006, 2 334(34):54 629-54 653.
|
63 |
Keppler H. Geology: Earth's deep water reservoir [J].Nature, 2014, 507(7 491):174-175.
|
64 |
Schmandt B, Jacobsen S D, Becker T W, et al. Dehydration melting in the top of the lower mantle[C]// Agu Fall Meeting. AGU Fall Meeting Abstracts, 2014.
|
65 |
Lin Y, Hu Q, Meng Y, et al. Evidence for the stability of ultrahydrous stishovite in Earth’s lower mantle [J]. Proceedings of the National Academy of Sciences, 2020, 117(1): 184-189.
|
66 |
Niu Yaoling, Gong Hongmei, Wang Xiaohong, et al. Some key problems onthe petrogenesis of seafloor basalts, abyssal peridotites and geodynamics—A non-traditional isotope approach[J]. Advances in Earth Science,2017,32(2):111-127.
|
|
牛耀龄,龚红梅,王晓红,等. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J].地球科学进展,2017,32(2):111-127.
|
67 |
Jacob D E, Kronz A, Viljoen K S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates[J]. Contributions to Mineralogy and Petrology, 2004, 146:566-576.
|
68 |
Jones A, Dobson D, Beard A, et al. Iron carbide and metallic inclusions in diamond from Jagersfontein[C]//International Kimberlite Conference:Extended Abstracts, 2008. DOI:10.29173/ikc3577.
doi: 10.29173/ikc3577
|
69 |
Yang Jingsui, Xu Xiangzhen, Rong He. Deep minerals in ophiolitic mantle peridotites: Discovery and progress[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2):159-170.
|
|
杨经绥, 徐向珍, 戎合, 等. 蛇绿岩地幔橄榄岩中的深部矿物:发现与研究进展[J]. 矿物岩石地球化学通报, 2013, 32(2):159-170.
|
70 |
Smith E M, Wang W. Fluid CH4 and H2 trapped around metallic inclusions in HPHT synthetic diamond [J]. Diamond and Related Materials, 2016, 68: 10-12.
|
71 |
Lu T J, Ke J, Lan Y, et al. Current status of Chinese synthetic diamonds[J]. The Journal of Gemmology,2019, 36(8):642-651.
|
72 |
Zhimulev E I, Chepurov A I, Sinyakova E F, et al. Diamond crystallization in the Fe-Co-S-C and Fe-Ni-S-C systems and the role of sulfide-metal melts in the genesis of diamond[J]. Geochemistry International, 2012, 50(3):205-216.
|
73 |
Zhimulev E I, Sonin V M, Mironov A M, et al. Effect of sulfur concentration on diamond crystallization in the Fe-C-S system at 5.3-5.5 GPa and 1300-1370 °C[J]. Geochemistry International, 2016, 54(5):415-422.
|
74 |
Yang Zhijun, Huang Shanshan, Chen Yaoming,et al. Progresses and perspectives of research of the evolution of Kimberliteand evaluation for diamond potential[J]. Advances in Earth Science,2016,31(7):700-707.
|
|
杨志军,黄珊珊,陈耀明,等. 金伯利岩演化过程及金刚石含矿性评价的研究进展[J]. 地球科学进展,2016,31(7):700-707.
|
75 |
Dasgupta R, Hirschmann M M. The deep carbon cycle and melting in Earth’s interior[J]. Earth & Planetary Science Letters, 2010, 298(1/2):0-13.
|
76 |
He Detao, Liu Yongsheng, Chen Chunfei. The deep mantle recycling of sedimentary carbonate during subduction process: Evidence and effect[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(2):228-236.
|
|
何德涛, 刘勇胜, 陈春飞. 俯冲作用过程中沉积碳酸盐岩的深部地幔再循环:证据和作用[J]. 矿物岩石地球化学通报, 2017, 36(2): 228-236.
|
77 |
Walter M J,Bulanova G P, Armstrong L S, et al. Primary carbonatite melt from deeply subducted oceanic crust[J].Nature,2008,454(7 204):622-625.
|
78 |
Cerantola V, Bykova E, Kupenko I, et al. Stability of iron-bearing carbonates in the deep Earth’s interior [J]. Nature Communications, 2017, 8:15 960.
|
79 |
Zhang Guoliang, Zhan Mingjun.Carbon cycle and deep carbon storage during subduction and magamatic processes[J]. Marine Geology & Quaternary Geology,2019,39(5):36-45.
|
|
张国良, 战明君. 板块俯冲和岩浆过程中碳循环及深部碳储库[J].海洋地质与第四纪地质, 2019,39(5):36-45.
|
80 |
Gao Jing, Wu Xiang, Qin Shan. The stability of carbonate and the origin of diamond during subduction of oceanic crust [J]. Journal of Jilin University, 2015, (Suppl.1):340-341.
|
|
高静, 巫翔, 秦善. 洋壳深俯冲过程中碳酸盐的稳定性与金刚石成因初探[J]. 吉林大学学报:地球科学版, 2015,(增刊1):340-341.
|
81 |
Gao J, Chen B, Wu X. Super-deep diamond genesis at redox conditions of slab-mantle boundary[C]//Agu Fall Meeting. AGU Fall Meeting Abstracts, 2017.
|
82 |
Chen Ming, Mao Heguang. No melting, no reducing agent: Natural diamond formation "self-sustaining" [J]. Frontiers of Science, 2019, (1):71-73.
|
|
陈鸣, 毛河光. 无熔融、无还原剂:天然金刚石形成“自食其力”[J].前沿科学, 2019,(1):71-73.
|
83 |
Chen M, Shu J F, Xian X D. Natural diamond formation by self-redox of ferromagnesian carbonate [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11):2 676-2 680.
|
84 |
Chen Ming, Shu Jinfu, Mao Heguang. Xieite, a new mineral of high-pressure FeCr2O4 polymorph [J]. Chinese Science Bulletin, 2008, 53(17):2 060-2 063.
|
|
陈鸣,束今赋,毛河光.谢氏超晶石:一种FeCr2O4高压多形新矿物[J].科学通报,2008, 53(17):2 060-2 063.
|
85 |
Ickert R, Stachel T, Stern R A, et al. Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds[J]. Geochemical Perspectives Letters, 2015, (1): 65-74.
|
86 |
Sobolev N V, Logvinova A M, Zedgenizov D A, et al. Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: A comparative study[J]. Lithos, 2004, 77(1/4):225-242.
|
87 |
Brenker F E, Vollmer C, Vincze L, et al. Carbonates from the lower part of transition zone or even the lower mantle[J]. Earth and Planetary Science Letters, 2007, 260(1/2):1-9.
|
88 |
Thomson A R, Kohn S C, Bulanova G P, et al. Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion compositions[J]. Contributions to Mineralogy & Petrology, 2014, 168(6):1 081-1 081.
|
89 |
Karen V S, Steven B S. Diamonds from the deep: How do diamonds form in the deep Earth?[J]. Gems&Gemology, 2018, 54(4): 440-445.
|
90 |
Smit K V, Shirey S B, Hauri E H, et al. Sulfur isotopes in diamonds reveal differences in continent construction[J]. Science, 2019, 364(6 438): 383-385.
|
91 |
Kemppinen L I M, Thomassot E, Kohn S C, et al. Sulphide inclusions in sub-lithospheric diamonds[C]//11th International Kimberlite Conference, 2017.
|
92 |
Yang J, Robinson P T, Dilek Y. Diamonds in ophiolites[J]. Elements, 2014, 10(2): 127-130.
|