地球科学进展 ›› 2019, Vol. 34 ›› Issue (4): 399 -413. doi: 10.11867/j.issn.1001-8166.2019.04.0399

固体地球科学 上一篇    下一篇

胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示
林祖苇( ),赵新福( ),熊乐,朱照先   
  1. 中国地质大学(武汉)资源学院,湖北 武汉 430074
  • 收稿日期:2018-12-12 修回日期:2019-02-10 出版日期:2019-04-10
  • 通讯作者: 赵新福 E-mail:linzw@cug.edu.cn;xfzhao@cug.edu.cn
  • 基金资助:
    国家重点研发计划项目“华北东部巨量金来源、迁移与富集机理”(编号:2016YFC0600104)

In-situ Trace Element Analysis Characteristics of Pyrite in Sanshandao Gold Deposit in Jiaodong Peninsula: Implications for Ore Genesis

Zuwei Lin( ),Xinfu Zhao( ),Le Xiong,Zhaoxian Zhu   

  1. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China
  • Received:2018-12-12 Revised:2019-02-10 Online:2019-04-10 Published:2019-05-27
  • Contact: Xinfu Zhao E-mail:linzw@cug.edu.cn;xfzhao@cug.edu.cn
  • About author: Lin Zuwei (1993-), male, Yantai City, Shandong Province, Master student. Research areas include geochemical study of gold deposits. E-mail: linzw@cug.edu.cn | Lin Zuwei (1993-), male, Yantai City, Shandong Province, Master student. Research areas include geochemical study of gold deposits. E-mail: linzw@cug.edu.cn
  • Supported by:
    Project supported by the National Key R&D Program of China "Origin, transporation and enrichment mechanism of giant gold in eastern North China Craton"(No. 2016YFC0600104)

胶东地区是我国最大金成矿聚集区,其金矿床的成因长期以来一直存在很大争议,三山岛金矿床是胶东地区最大的金矿床,通过采用LA-ICP-MS分析不同阶段黄铁矿中微量元素组成,可以探讨成矿流体演化及成矿物质来源。根据野外地质特征及岩相学观察,结合SEM结构分析将三山岛金矿床的黄铁矿分为3个阶段,6个亚类,即黄铁绢英岩化带(Py1)中包裹大量绢云母和石英的Py1-a和表面光滑的Py1-b,石英—黄铁矿±菱铁矿脉(Py2)中富含矿物包裹体的Py2-a和与菱铁矿共生且表面光滑的Py2-b,石英—多金属硫化物脉(Py3)中有很多细粒多金属硫化物包裹体的Py3-a和表面光滑的Py3-b。3个阶段黄铁矿晶格中金含量均很低,大部分小于1×10-6,金主要以可见金形式存在。从早阶段到晚阶段黄铁矿中Au与Ag,Cu,Pb,Sb有较好的正相关性,且含量有逐渐增加的趋势。最早阶段黄铁矿中Co+Ni的含量很高(最高为9 268×10-6),反映了早期黄铁矿可能来源于岩浆岩源区,后期Co/Ni值逐渐降低,暗示了成矿流体温度逐渐降低。结合地质特征和黄铁矿微量元素研究,表明三山岛金矿床成矿物质可能来源于深部岩浆热液储库,通过地震泵机制沿断裂构造多次侵位成矿。

There are controversies about the genesis of the lode gold deposits in Jiaodong area. The Sanshandao gold deposit is the largest one in Jiaodong area. To better understand the genesis of the gold deposit, it is necessary to know the evolution of ore-forming fluid and the source of ore-forming material for the Sanshandao gold deposit. In this paper, the trace element composition of pyrite at different metallogenic stages in the Sanshandao gold deposit was analyzed by using LA-ICP-MS. Based on geological characteristics and petrography observation and SEM analysis, pyrite can be divided into three stages and six classes, including porous Py1-a and smooth Py1-b in pyrite-sericite-quartz alteration (Py1), many mineral inclusions in the Py2-a and smooth Py2-b associated with carbonate in the quartz-pyrite ± siderite veins (Py2), a lot of polymetallic sulfide inclusions hosted Py3-a and Py3-b with smooth and oscillation band in the quartz-polymetallic sulfide vein (Py3). The experimental results show that the gold content is very low in the lattice of pyrite, most of which is less than 1×10-6, and gold mainly occurs in the form of visible gold. The contents of Au, Ag, Cu, Pb and Sb of pyrite gradually increase from early stage to late stage. The high content of Co+Ni in the earliest stage (up to 9268×10-6) reflects that pyrite in the early stage is likely derived from magma, and the Co/Ni ratio gradually decreases, suggesting the decrease of ore forming fluid temperature. Combined with the geological observations and trace elements component of pyrite, the study shows that the genesis of the Sanshandao gold deposit is related to the evolution of magmatic hydrothermal reservoir. The ore-forming fluid is transported several times along the fault by seismic pumping.

中图分类号: 

图1 华北克拉通与胶东地区区域地质图(据参考文献[ 45 ]修改)
Fig 1 Simplified geological map of the North China craton and Jiaodong Penisula (modifed after reference [ 45 ])
图2 三山岛金矿床区域地质图(据参考文献[ 34 ]修改)
Fig 2 Generalized geological map of the Sanshandao gold deposit modified after reference [ 34 ])
图3 三山岛金矿矿脉切穿关系及典型蚀变特征
Fig.3 The crosscutting relationships of gold ore-bodies and typical hydrothermal alteration in the Sanshandao gold deposit
图4 三山岛金矿床成矿期次与阶段划分
Fig.4 Paragenesis sequence of ore and gangue minerals of the Sanshandao gold deposit of the Sanshandao gold deposit
图5 不同世代黄铁矿镜下结构(a,d,f,g,i)和BSE图像(b,c,e,h)特征
Fig.5 Photomicrographs(a,d,f,g,i) and BSE images(b,c,e,h) of different pyrite generations
表1 三山岛金矿床不同亚类黄铁矿特征
Table 1 The features of different pyrite generations
图6 不同亚类典型黄铁矿激光剥蚀曲线
Fig.6 Representative time-resolved depth profiles for pyrite grains of different generations
表2 不同亚类黄铁矿 LA-ICP-MS微量元素分析结果( ×10 - 6
Table 2 Trace elements analysis on pyrites of different generations using LA-ICP-MS( ×10 - 6 )
黄铁矿世代 分析编号 Co Ni Cu Zn As Ag Sb Te Au Pb Bi Co/Ni Pb/Bi
检测限 0.01 0.14 0.41 1.05 0.41 0.05 0.02 0.23 0.02 0.06 0.01
Py1-a SSD-2-1 374 210 0.33 0.96 627 0.10 0.05 0.48 0.02 1.34 1.05 1.78 1.28
SSD-2-2 456 137 5.04 1.26 34.53 3.15 0.38 5.14 0.08 21.51 49.32 3.32 0.44
SSD-2-3 437 442 11.51 0.62 256 2.26 0.48 3.69 0.17 17.66 23.07 0.99 0.77
SSD-2-4 431 198 5.65 0.97 208 2.77 0.83 5.00 0.16 45.24 47.07 2.18 0.96
SSD-2-5 360 245 7.80 1.14 55.50 14.00 0.61 8.44 0.10 48.36 49.25 1.47 0.98
SSD-17-1 9 074 194 7.07 0.39 36.45 0.05 0.01 1.59 0.00 1.33 3.70 46.69 0.36
SSD-17-2 2 263 1 141 2.62 0.03 1 045 0.07 0.23 2.84 0.12 1.64 5.25 1.98 0.31
Py1-b SSD-2-6 21.66 212 1.75 0.67 1 914 1.57 0.83 1.85 0.22 13.53 6.74 0.10 2.01
SSD-2-7 110 355 1.20 0.49 1 366 0.35 0.20 0.49 0.05 4.26 2.07 0.31 2.06
SSD-2-8 33.43 51.69 0.41 0.47 1 727 0.27 0.17 0.27 0.07 6.29 0.99 0.65 6.37
SSD-9-1 109 28.48 1.68 0.63 1 116 0.74 0.44 0.58 0.15 10.55 6.92 3.82 1.52
SSD-9-2 137 37.69 4.92 0.48 274 2.24 0.73 0.92 0.19 22.31 10.63 3.63 2.10
SSD-9-3 13.93 33.40 6.38 0.61 447 11.86 2.97 1.71 0.35 3 902 38.07 0.42 102
SSD-9-4 0.48 1.62 1.17 0.64 1 064 49.61 0.49 4.68 0.08 1 973 93.36 0.29 21.13
SSD-9-5 14.13 14.71 3.92 0.72 208 2.79 0.86 0.76 0.26 32.70 9.82 0.96 3.33
SSD-9-6 7.09 20.72 7.17 1.08 278 2.39 2.58 0.56 0.38 51.74 11.34 0.34 4.56
SSD-9-7 5.70 23.25 1.52 0.55 497 48.77 0.90 5.19 0.06 430 240.00 0.25 1.79
SSD-9-8 5.58 31.96 0.68 0.62 459 4.54 0.13 2.34 0.10 88.62 22.20 0.17 3.99
Py2-a SSD-7-1 0.10 3.87 19.55 2.64 202 13.64 8.32 0.46 0.38 65.52 0.95 0.02 68.95
SSD-7-2 0.16 92.55 77.91 2.73 185 2.92 1.27 0.47 0.12 17.35 0.24 0.00 71.79
SSD-7-3 0.10 8.22 462 19.94 3.59 4.69 0.59 0.10 0.01 32.06 0.08 0.01 423
SSD-7-4 0.34 0.32 9.89 0.34 1 288 10.23 3.81 0.21 0.20 15.71 0.12 1.06 127
Py2-b SSD-7-5 14.75 138 2.40 1.79 2 263 0.52 1.06 0.24 0.09 10.45 0.23 0.11 45.24
SSD-7-6 1.34 221 0.46 0.19 2 566 0.08 0.06 0.11 0.03 1.48 0.02 0.01 69.42
SSD-7-7 2.87 938 0.46 0.53 3 211 0.01 0.18 0.05 0.01 2.07 0.03 0.00 75.96
Py3-a SSD-17-3 2.14 242 1 005 232 30.53 92.78 8.80 1.66 0.84 2 848 0.02 0.01 1.23×105
SSD-17-4 31.16 675 32.81 6.10 1 508 1.37 2.82 0.05 0.13 39.54 0.01 0.05 3 990
SSD-17-5 8.82 211 8.56 1.88 175 4.92 4.49 0.05 0.22 76.18 0.02 0.04 4 441
SSD-17-6 0.06 9.39 165 16 737 6.24 37.61 3.67 0.00 0.38 43.18 0.01 0.01 4 374
SSD-17-7 1.43 50.59 241 18 904 69.97 37.14 5.74 0.07 0.68 124 0.03 0.03 3 597
Py3-b SSD-17-8 1.39 9.21 227 9 073 743 32.08 10.08 0.00 0.87 101 0.02 0.15 4 367
SSD-17-9 2.52 63.09 201 214 64.45 4.00 2.72 0.05 0.04 36.47 0.00 0.04
SSD-17-10 46.55 27.83 28.07 3.28 8 320 19.68 1.65 0.19 7.80 408 0.00 1.67
SSD-17-11 5.63 74.39 0.90 3.38 2.84 1.38 0.01 0.00 0.00 0.23 0.00 0.08
SSD-17-12 0.16 22.96 367 14 262 2.54 120 3.96 0.07 3.10 68.50 0.02 0.01 4 424
SSD-17-13 0.21 14.09 678 17 412 1.93 280 7.21 0.06 36.55 118 0.02 0.01 7 358
图7 三山岛金矿各亚类黄铁矿微量元素含量特征蛛网图
Fig. 7 Spider diagram of trace element concentration in pyrites of main mineralization stages
图8 黄铁矿微量元素相关图解
Fig.8 Binary plots of selected trace elements in pyrites of different generations
图9 三山岛金矿不同阶段黄铁矿Co vs Ni 含量关系
Fig 9 Relationship between pyrite Co and Ni contents of different generations at Sanshandao gold deposit
1 Song Mingchun , Li Sanzhong , Santosh M , et al . Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton[J]. Ore Geology Reviews, 2015, 65(Part3):612-625.
2 Chen Yanjing , Fu Shigu , Lu Bing , et al . Classification of metallogenic series and types of gold deposits[J]. Advances in Earth Science,1992, 7(3): 73-79.
陈衍景,富士谷,卢冰,等 . 金矿成因类型和系列的划分[J]. 地球科学进展, 1992, 7(3): 73-79.
3 Jiang Shaoyong , Dai Baozhang , Jiang Yaohui , et al . Jiaodong and Xiaoqinling: Two orogenic gold provinces formed in different teconic settings [J]. Acta Petrologica Sinica,2009, 25(11): 2 727-2 738.
蒋少涌,戴宝章,姜耀辉,等 . 胶东和小秦岭:两类不同构造环境中的造山型金矿省[J]. 岩石学报, 2009, 25(11): 2 727-2 738.
4 Goldfarb R , Baker T , Dube B , et al . Distribution, character and genesis of gold deposits in metamorphic terranes[M] // Hedenquist J W , Thompson J F H , Goldfarb R G , al et , eds .Economic Geology 100th Anniversary Volume. Littleton, Colorado, USA:Society of Economic Geologists,2015: 407-450.
5 Richard Goldfarb , David Groves . Orogenic gold: Common or evolving fluid and metal sources through time[J]. Lithos, 2015, 233:2-26.
6 Groves D , Goldfarb R , Santosh M . The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings[J]. Geoscience Frontiers, 2016, 7(3): 303-314.
7 Yang Liqiang , Deng Jun , Wang Zhongliang , et al . Relationships between gold and pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111: 105-126.
8 Li Jianwei , Bi Shijian , David Selby , et al . Giant Mesozoic gold provinces related to the destruction of the North China craton[J]. Earth and Planetary Science Letters, 2012, 349/350:26-37.
9 Zhu Rixiang , Fan Hongrui , Li Jianwei , et al . Decratonic gold deposits[J]. Science in China(Series D), 2015, 45(8): 1 153-1 168.
朱日祥,范宏瑞,李建威,等 . 克拉通破坏型金矿床[J]. 中国科学:D辑, 2015, 45(8): 1 153-1 168.
10 Cai Yachun , Fan Hongrui , Santosh M , et al . Decratonic gold mineralization: Evidence from the Shangzhuang gold deposit, eastern North China Craton[J]. Gondwana Research, 2018, 54:1-22.
11 Zhang Chao , Liu Yu , Liu Xiangdong , et al . Characteristics of sulfur isotope geochemistry of the Xincheng gold deposit,Northwest Jiaodong[J]. Acta Petrologica Sinica,2014, 30(9): 2 495-2 506.
张潮,刘育,刘向东,等 . 胶西北新城金矿床硫同位素地球化学[J]. 岩石学报, 2014, 30(9): 2 495-2 506.
12 Yang Liqiang , Deng Jun , Wang Zhongliang , et al . Mesozoic gold metallogenic system of the Jiaodong gold province,Eastern China[J]. Acta Petrologica Sinica ,2014, 30(9): 2 447-2 467.
杨立强,邓军,王中亮,等 . 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2 447-2 467.
13 Li Lin , Santosh M , Li Shengrong . The "Jiaodong type" gold deposits: Characteristics, origin and prospecting[J]. Ore Geology Reviews, 2015, 65:589-611.
14 Fontboté L , Kouzmanov K , Chiaradia M , et al . Sulfide minerals in hydrothermal deposits[J]. Elements, 2017, 13(2): 97-103.
15 Ross Large , Valeriy Maslennikov , Francois Robert , et al . Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Lena gold province, Russia[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2007, 102(7): 1 233-1 267.
16 Chang Zhaoshan , Ross Large , Valeriy Maslennikov . Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source[J]. Geology, 2008, 36(12): 971.
17 Nigel Cook , Cristiana Ciobanu , Mao Jingwen . Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China)[J]. Chemical Geology, 2009, 264(1/4): 101-121.
18 Sung Y H , Brugger J , Ciobanu C L , et al . Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia[J]. Mineralium Deposita, 2009, 44(7): 765-791.
19 Daniel Gregory , Ross Large , Jacqueline Halpin . Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110:1 389-1 410.
20 Large R , Gregory D , Steadman J , et al . Gold in the oceans through time[J]. Earth and Planetary Science Letters, 2015, 428:139-150.
21 Fougerouse D , Micklethwaite S , Tomkins A , et al . Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite[J]. Geochimica et Cosmochimica Acta, 2016, 178:143-159.
22 Hou Lin , Peng Huijuan , Ding Jun . Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao Trend, Youjiang Basin, China: Implications for paragenesis and source of sulfur[J]. Economic Geology, 2016, 111:331-353.
23 Li Zhan , Bi Shijian , Li Jianwei , et al . Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China craton[J]. Ore Geology Reviews, 2017, 82:232-251.
24 Lang James , Timothy Baker . Intrusion-related gold systems: The present level of understanding[J]. Mineralium Deposita, 2001, 36(6): 477-489.
25 Shabani K , Nezafati N , Momenzadeh M , et al . Geology, geochemistry and mineralogy of the Tareek Darreh Gold Deposit, Northeast Irán[J]. Geología Colombiana, 2010, 35:131-142.
26 Jixiang Sui . The Reduced Intrusion-related Gold Mineralization in the Xiahe-Hezuo District, West Qinling Orogeny[D]. Wuhan:China University of Geosciences(Wuhan), 2016.
隋吉祥 . 西秦岭夏河—合作地区与还原性侵入岩有关的金成矿作用[D].武汉:中国地质大学(武汉), 2016.
27 Carl Jones , Gawen Jenkin , Adrian Boyce , et al . Tellurium, magmatic fluids and orogenic gold: An early magmatic fluid pulse at Cononish gold deposit?[J]. Ore Geology Reviews, 2018. DOI:10.1016/j.oregeorev.2018.05.014.
doi: 10.1016/j.oregeorev.2018.05.014    
28 Ross Large . A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits[J]. Economic Geology, 2011,106:331-358.
29 Cook N , Ciobanu C , Meria D , et al . Arsenopyrite-Pyrite association in an Orogenic Gold Ore: Tracing mineralization history from textures and trace[J]. Economic Geology, 2013, 108:1 273-1 283.
30 Zhou Guofa , Guxian Lü , Deng Jun , et al . Study on the fluid inclusions characteristics of the Sanshandao gold deposit, Shandong Province, China and its geological significance[J]. Geoscience,2008, (1): 24-33.
周国发,吕古贤,邓军,等 . 山东三山岛金矿床流体包裹体特征及其地质意义[J]. 现代地质, 2008, (1): 24-33.
31 Jiang Xiaohui , Fan Hongrui , Hu Fangfang , et al . Comparative studies on fluid inclusion in different depths and ore genesis of the Sanshandao gold deposit, Jiaodong Peninsula[J]. Acta Petrologica Sinica,2011, 27(5): 1 327-1 340.
姜晓辉,范宏瑞,胡芳芳,等 . 胶东三山岛金矿中深部成矿流体对比及矿床成因[J]. 岩石学报, 2011, 27(5): 1 327-1 340.
32 Song Mingchun , Zhang Junjin , Zhang Pijian , et al . Discovery and tectonic-magmatic background of superlarge deposit in offshore of northern Sanshandao, Shandong Peninsula, China[J] . Acta Geologica Sinica ,2015,89(2): 365-383.
宋明春,张军进,张丕建,等 . 胶东三山岛北部海域超大型金矿床的发现及其构造——岩浆背景[J]. 地质学报, 2015, 89(2): 365-383.
33 Li Xiaochun , Fan Hongrui , Santosh M , et al . Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China[J]. Ore Geology Reviews, 2013, 53:403-421.
34 Liu Xuan , Fan Hongrui , Noreen Evans , et al . Exhumation history of the Sanshandao Au deposit, Jiaodong: Constraints from structural analysis and (U-Th)/He thermochronology[J]. Scientific Reports, 2017, 7(1):1-12.
35 Fan Hongrui , Zhai Mingguo , Xie Yihan , et al . Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China[J].Ore Geology Review, 2003, 38(6): 739-750.
36 Zhao Guochun , Simon Wilde , Peter Cawood , et al . Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 2001, 107(1/2): 45-73.
37 Wang Changming , Leon Bagas , Deng Jun , et al . Crustal architecture and its controls on mineralisation in the North China Craton[J]. Ore Geology Reviews, 2018. DOI:10.1016/j.oregeorev.2018.05.016.
doi: 10.1016/j.oregeorev.2018.05.016    
38 Simon Wilde , Zhao Guochun . Archean to Paleoproterozoic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5): 519-522.
39 Zhang Guowei , Meng Qingren , Yu Zaiping , et al . The orogenic process and its dynamic characteristics in Qinling orogenic belt[J]. Science in China(Series D) ,1996, 26(3): 193-200.
张国伟,孟庆任,于在平,等 . 秦岭造山带的造山过程及其动力学特征[J]. 中国科学:D辑, 1996, 26(3): 193-200.
40 Dong Yunpeng , Zhang Guowei , Franz Neubauer , et al . Tectonic evolution of the Qinling orogen, China: Review and synthesis[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.
41 Zhao Yue , Zhai Mingguo , Chen Hong , et al . Paleozoic-early Jurassic tectonic evolution of North China Craton and its adjacent orogenic belts[J]. Geology in China,2017, 44(1): 44-60.
赵越,翟明国,陈虹,等 . 华北克拉通及相邻造山带古生代—侏罗纪早期大地构造演化[J]. 中国地质, 2017, 44(1): 44-60.
42 Wu Fuyuan , Yang Jinhui , Chinghua Lo , et al . The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China[J]. Island Arc, 2007, 16(1): 156-172.
43 Zhu Rixiang , Chen Ling , Wu Fuyuan , et al . Timing, scale and mechanism of the destruction of the North China Craton[J]. Science in China (Series D),2011, 41(5): 583-592.
朱日祥,陈凌,吴福元,等 . 华北克拉通破坏的时间、范围与机制[J]. 中国科学:D辑, 2011, 41(5): 583-592.
44 Zhu Rixiang , Xu Yigang , Zhu Guang , et al . Destruction of the North China Craton[J]. Science in China (Series D),2012, 42(8): 1 135-1 159.
朱日祥,徐义刚,朱光,等 . 华北克拉通破坏[J]. 中国科学:D辑, 2012, 42(8): 1 135-1 159.
45 Bi Shijian , Zhao Xinfu . 40Ar/39Ar dating of the Jiehe gold deposit in the Jiaodong Peninsula, eastern North China Craton: Implications for regional gold metallogeny[J]. Ore Geology Reviews, 2017, 86:639-651.
46 Wang L G , Qiu Y M , McNaughton N J , et al . Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids[J]. Ore Geology Reviews, 1998, 13(1/5): 275-291.
47 Guo Jinghui , Chen Fukun , Zhang Xiaoman , et al . Evolution of syn-to post collisional magmaitsm from north Sulu UHP belt,eastern China:Zircon U-Pb geochronology[J]. Acta Perrologica Sinica, 2005, 4(21): 1 281-1 301.
郭敬辉,陈福坤,张晓曼,等 . 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学[J]. 岩石学报, 2005, 4(21): 1 281-1 301.
48 Wang Zhongliang , Yang Liqiang , Deng Jun , et al . Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, Jiaodong Peninsula, East China: Petrogenesis and tectonic setting[J]. Journal of Asian Earth Sciences, 2014, 95:274-299.
49 Zhang Tian , Zhang Yueqiao . Geochronological sequence of Mesozoic intrusive magmatism in Jiaodong Peninsula and its tectonic constraints[J]. Geological Journal of China Universities ,2007, 13(2): 323-336.
张田,张岳桥 . 胶东半岛中生代侵入岩浆活动序列及其构造制约[J]. 高校地质学报, 2007,13(2): 323-336.
50 Lu Guxian , Guo Tao , Shu Bin , et al . Study on the multi-level controlling rule for tectonic system in Jiaodong gold-centralized area [J]. Geotectonica et Metallogenia ,2007, 31(2): 193-204.
吕古贤,郭涛,舒斌,等 . 胶东金矿集中区构造体系多层次控矿规律研究[J]. 大地构造与成矿学, 2007, 31(2): 193-204.
51 Sun Weidong , Ding Xing , Hu Yanhua , et al . The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542.
52 Liu Yongsheng , Hu Zhaochu , Gao Shan , et al . In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
53 Reich M , Kesler S , Utsunomiya S , et al . Solubility of gold in arsenian pyrite[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2 781-2 796.
54 S tephanie Mills , Andrew Tomkins , Roberto Weinberg , et al . Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, northeast China[J]. Ore Geology Reviews, 2015, 71:150-168.
55 Jin Xiaoye . Geology, Mineralization and Genesis of the Nibao, Shuiyindong and Yata Gold Deposits in SW Guizhou Province, China[D]. Wuhan:China University of Geosciences(Wuhan),2017.
靳晓野 . 黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究[D].武汉:中国地质大学(武汉), 2017.
56 Edward Mikucki . Hydrothermal transport and depositional processes in Archean lode-gold systems: A review[J]. Ore Geology Reviews, 1998, 13(1): 307-321.
57 Guo Lingnan , Richard Goldfarb , Wang Zhongliang , et al . A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: Do they differ?[J]. Ore Geology Reviews, 2017, 88:511-533.
58 Sibson R , Robert F , Poulsen H . High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 1988, 16: 551-555.
59 Su Wenchao , Xia Bin , Zhang Hongtao , et al . Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for the environment and processes of ore formation[J]. Ore Geology Reviews, 2008, 33(3/4): 667-679.
60 Li Xinghui , Fan Hongrui , Yang Kuifeng , et al . Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: Implication for ore-forming processes[J]. Contributions to Mineralogy and Petrology, 2018, 173:73-93.
61 Hong Tao , Xu Xingwang , Gao Jun , et al . Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)[J]. Ore Geology Reviews, 2017. DOI:10.1016/j.oregeorev.2017.10.019.
doi: 10.1016/j.oregeorev.2017.10.019    
62 Li Rucao , Chen Huayong , Xia Xiaoping ,et al . Using integrated in-situ sulfide trace element geochemistry and sulfur isotopes to trace ore-forming fluids: Example from the Mina Justa IOCG deposit (southern Perú)[J]. Ore Geology Reviews, 2018. DOI:10.1016/j.oregeorev.2018.06.010.
doi: 10.1016/j.oregeorev.2018.06.010    
63 Zhao Haixiang , Hartwig Frimmel , Jiang Shaoyong , et al . LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis[J]. Ore Geology Reviews, 2011, 43(1): 142-153.
64 Xu Guofeng , Shao Jielian . The standard characteristics and real meaning of pyrite[J]. Geological Review, 1980, (6): 541-546.
徐国风,邵洁涟 . 黄铁矿的标型特征及其实际意义[J]. 地质论评, 1980, (6): 541-546.
65 Luo Dong . Evolution of Ore-forming Fluids of Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China[D]. Beijing:China University of Geosciences(Beijing),2014.
罗栋 . 胶东三山岛金矿床成矿流体演化[D].北京:中国地质大学(北京), 2014.
66 Li Zhanke , Li Jianwei , David Cooke , et al . Textures, trace elements, and Pb isotopes of sulfides from the Haopinggou vein deposit, southern North China Craton: Implications for discrete Au and Ag-Pb-Zn mineralization[J]. Contributions to Mineralogy and Petrology, 2016, 171(12):99-125.
[1] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[2] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[3] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[4] 张鹏, 袁洪林, 徐建, 高莲凤, 张振国, 杨策. 印尼海区浮游有孔虫壳体Mg/Ca值的LA-ICP-MS原位微区分析[J]. 地球科学进展, 2016, 31(5): 494-502.
[5] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[6] 张文媛, 王翠芝, 魏晓灿, 范明森, 陈丽华. 紫金山金铜矿黄铁矿化学成分标型特征及其意义[J]. 地球科学进展, 2014, 29(8): 974-984.
[7] 王新娥, 许东晖, 孙之夫, 孙宗峰, 罗景美. 山东黄金资源钻探井测井资料分析方法与应用[J]. 地球科学进展, 2014, 29(3): 397-403.
[8] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[9] 倪师军,徐争启,张成江,宋 昊,罗 超. 西南地区黑色岩系铀成矿作用及成因模式探讨[J]. 地球科学进展, 2012, 27(10): 1035-1042.
[10] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[11] 常华进,储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展, 2011, 26(5): 475-481.
[12] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[13] 余吉远,李向民,马中平,孙吉明,王建强. 青海省祁连县清水沟-白柳沟矿田含矿火山岩系年代学研究[J]. 地球科学进展, 2010, 25(1): 55-60.
[14] 孙贺,肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121.
[15] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
阅读次数
全文


摘要