[1]Canfield D E. A new model for Proterozoic Ocean chemistry[J]. Nature, 1998, 396(6 710): 450-453. [2]Canfield D E, Poulton S W, Narbonne G M. LateNeoproterozoic deepocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5 808): 92-95. [3]Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran Ocean[J]. Nature, 2006, 444(7 120): 744-747. [4]Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J]. Science, 2002, 297(5 584): 1 137-1 142. [5]Turgeon S, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the CenomanianTuronian boundary event (Cretaceous) in the UmbriaMarche Basin of central Italy[J]. Chemical Geology, 2006, 234(3/4): 321-339. [6]Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deepsea circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 83(1/3): 65-85. [7]Kaiho K, Kajiwara Y, Tazaki K, et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: Their decrease, subsequent warming, and recovery[J]. Paleoceanography,1999, 14(4): 511-524. [8]Isozaki Y. Permotriassic boundary superanoxia and stratified superocean: Records from lost deep sea[J]. Science, 1997, 276(5 310): 235-238. [9]Bratton J F, Berry W B N, Morrow J R. Anoxia pre-dates FrasnianFamennian boundary mass extinction horizon in the Great Basin, USA [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(3): 275-292. [10]Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [11]Chang Huajin, Chu Xuelei, Feng Lianjun, et al.Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.[常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99.] [12]Raiswell R, Buckley F, Berner R A, et al. Degree of pyritization of iron as a paleoenvironmental indicator of bottomwater oxygenation[J]. Journal of Sedimentary Petrology,1988, 58(5): 812-819. [13]Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245. [14]Arnold G L, Anbar A D, Barling J, et al. Molybdenum isotope evidence for widespread anoxia in midProterozoic oceans[J]. Science, 2004, 304(5 667):87-90. [15]Wille M, Nagler T F, Lehmann B, et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J].Nature, 2008, 453(7 196): 767-769. [16]Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3 897-3 912. [17]Zhou C, Jiang S Y. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in south China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3/4): 279-286. [18]Love L G, Amstutz G C. Review of microscopic pyrite from the Devonian Chattan ooga Shale and Rammelsberg Banderz[J]. Fortschrift Mineralogie,1966, 43: 273-309. [19]Rickard D T. The origin of framboids[J]. Lithos, 1970, 3(3): 269-293. [20]Wilkin R T, Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 167-4 179. [21]Canfield D E, Thamdrup B. The production of 34S depleted sulfide during bacterial disproportiontion of elemental sulfur[J]. Science, 1994, 266(5 193): 1 973-1975. [22]Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8): 1 244-1 263. [23]Fisher I S J, Hudson J D. Pyrite formation in Jurassic shales of contrasting biofacies[J]. Geological Society London Special Publications, 1987, 26(1): 69-78. [24]Yan D, Chen D, Wang Q, et al. Carbon and sulfur isotopic anomalies across the Ordovician Silurian boundary on the Yangtze Platform, South China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(1/2): 32-39. [25]Wilkin R T, Arthur M A, Dean W E. History of watercolumn anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 517-525. [26]Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygenpoor deposition during the PermianTriassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4): 183-188. [27]Lüning S, Kolonic S, Loydell D K, et al. Reconstruction of the original organic richness in weathered Silurian shale outcrops (Murzuq and Kufra basins, southern Libya)[J]. GeoArabia, 2003, 8: 299-308. [28]Passier H F, Middelburg J J, deLange G J, et al. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel[J]. Geology, 1997, 25(6): 519-522. [29]Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298(7): 537-552. [30]Hofmann P, Ricken W, Schwark L, et al. Carbonsulfuriron relationships and δ13C of organic matter for late Albian sedimentary rocks from the North Atlantic Ocean: Paleoceanographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 163 (3/4): 97-113. [31]Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1 399-1 416. [32]Nielsen J K, Shen Y. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin[J]. Geology, 2004, 32(12): 1 037-1 040. [33]Chen X, Li D, Ling H F, et al. Carbon and sulfur isotopic compositions of basal Datangpo Formation, northeastern Guizhou, South China: Implications for depositional environment[J]. Progress in Natural Science,2008,18(4): 421-429. [34]Algeo T J, Shen Y A, Zhang T G, et al. Association of 34Sdepleted pyrite layers with negative carbonate δ13C excursions at the PermianTriassic boundary: Evidence for upwelling of sulfidic deepocean water masses[J]. Geochemistry Geophysics Geosystems,2008, 9: doi: 10.1029/2007GC001823. [35]de Koff J P, Anderson M A, Amrhein C. Geochemistry of iron in the Salton Sea, California[J]. Hydrobiologia, 2008, 604: 111-121. [36]Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deepwater shalegas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. [37]Payne J L, Lehrmann D J, Follett D, et al. Erosional truncation of uppermost Permian shallowmarine carbonates and implications for PermianTriassic boundary events[J]. Geological Society of America Bulletin,2007,119(7/8):771-784. [38]Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Framboidal pyrites in cherts of the Laobao Formation, South China: Evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 25(4): 1 001-1 007.[常华进, 储雪蕾, 冯连君, 等. 华南老堡组硅质岩中草莓状黄铁矿——埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报, 2009, 25(4): 1 001-1 007.] [39]Chang Huajin, Chu Xuelei, Feng Lianjun, et al. The major and REE geochemistry of the Silikou chert in northern Guangxi province[J]. Acta Sedimentologica Sinica,2010, 28(6): 1 098-1 107.[常华进, 储雪蕾, 冯连君, 等. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示[J]. 沉积学报, 2010, 28(6): 1 098-1 107.] [40]Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Iron speciation in cherts from the Laobao Formation, South China: Implications for anoxic and ferruginous deepwater conditions[J]. Chinese Science Bulletin, 2010, 55(27/28):3 189-3 196.[常华进, 储雪蕾, 冯连君,等. 桂北老堡组硅岩中的铁组分——指示缺氧含铁的盆地深水古环境[J]. 科学通报, 2010, 55(20): 2 010-2 017.] [41]Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deepwater chemistry[J]. Science, 2008, 321(5 891):949-952. [42]Chang H J, Chu X L, Feng L J, et al. Terminal Ediacaran anoxia in deepocean: Trace element evidence from cherts in the Liuchapo Formation, south China[J]. Science in China (Series D), 2009, 52(6): 807-822. [43]Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5 974): 80-83. [44]Shen Y, Zhang T G, Chu X L. Cisotopic stratification in a Neoproterozoic postglacial ocean[J]. Precambrian Research, 2005, 137(3/4): 243-251. [45]Jiang G Q, Kaufman A J, ChristieBlick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surfacetodeep ocean δ13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320. [46]McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3 197-3 202. [47]Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society London Special Publications, 1991, 58(1): 1-26. |