地球科学进展 ›› 2011, Vol. 26 ›› Issue (5): 475 -481. doi: 10.11867/j.issn.1001-8166.2011.05.0475

综述与评述 上一篇    下一篇

草莓状黄铁矿与古海洋环境恢复
常华进 1,2,储雪蕾 3   
  1. 1.青海师范大学生命与地理科学学院,青海西宁810008;2.青藏高原环境与资源教育部重点实验室,青海西宁810008;3.中国科学院地质与地球物理研究所,北京100029
  • 收稿日期:2010-09-01 修回日期:2010-11-02 出版日期:2011-05-10
  • 通讯作者: 常华进 E-mail:changhj@163.com
  • 基金资助:

    国家自然科学基金项目“华南埃迪卡拉纪—寒武纪过渡时期硅岩的铁组分与深水环境指示”(编号:41002011)和“晚寒武世的SPICE事件和古海洋”(编号:40873007);青海师范大学中青年教师科研基金项目“西宁盆地记录的始新世—渐新世转折期古气候演化”资助.

Pyrite Framboids and Palaeo ocean Redox Condition Reconstruction

Chang Huajin 1,2, Chu Xuelei 3   

  1. 1. School of Life and Geography Sciences, Qinghai Normal University, Xining810008, China; 2. Key Laboratory of Tibetan Plateau Environment and Resources (Ministry of Education), Xining810008, China; 3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
  • Received:2010-09-01 Revised:2010-11-02 Online:2011-05-10 Published:2011-05-10

草莓状黄铁矿是指由等粒度的亚微米级黄铁矿晶体或微晶体紧密堆积而成,形似草莓的黄铁矿球形集合体。它们在氧化和缺氧海洋环境中形成的机理不同,沉积岩中草莓状黄铁矿的粒径分布特征是恢复古海洋的氧化还原状态行之有效的方法之一。然而,草莓状黄铁矿粒径统计仅能区分出氧化和缺氧硫化的环境,不能进一步区分缺氧程度及状态(如次氧化、缺氧含铁等)。桂北泗里口老堡组硅岩沉积于埃迪卡拉纪末期,它们所记录的草莓状黄铁矿粒径分布特征指示了硫化的深水古环境,这与用氧化还原敏感元素等方法获得的深水是缺氧含铁的结论矛盾。这可能是由于当时盆地水体中硫酸盐含量低,细菌硫酸盐还原生成的H2S少,导致形成了粒径小的黄铁矿。在运用草莓状黄铁矿恢复古海洋环境时,还应与其他地球化学手段,如沉积岩中Fe组分、氧化还原敏感元素、稳定同位素等结合才能获得确切的古海洋氧化还原状态。

Framboidal pyrites are denselypacked, raspberrylike, spherical aggregates of equigranular, micronsized crystals or microcrysts. Because of the difference principle in framboidal pyrites formation between oxic and euxinic depositional conditions, size distribution of framboids is indicative of oxygen levels for palaeo-ocean water column. However, only oxic and euxinic conditions can be definitely distinguished but suboxic or ferruginous conditions (anoxic and containing dissolved Fe2+) using the framboidal pyrites, and framboids formed in ferruginous condition may indicate euxinic environment. Therefore, incompatible results for deepwater redox conditions of the terminal Ediacaran Nanhua Basin have been achieved using framboidal pyrites size statistics and other available methods, respectively. We consider that the euxinic deepwater condition implied by framboids was incorrect, and the small pyrites may be formed due to limited sulfate concentrations in the basin and accordingly little H2S supply. In order to get credible results, other proxies, such as iron species, redox sensitive trace elements and stable isotope methods should be applied simultaneously when using framboidal pyrites to reconstruct palaeoocean environments.

中图分类号: 

[1]Canfield D E. A new model for Proterozoic Ocean chemistry[J]. Nature, 1998, 396(6 710): 450-453.    
[2]Canfield D E, Poulton S W, Narbonne G M. LateNeoproterozoic deepocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5 808): 92-95.
[3]Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran Ocean[J]. Nature, 2006, 444(7 120): 744-747.
[4]Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J]. Science, 2002, 297(5 584): 1 137-1 142.
[5]Turgeon S, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the CenomanianTuronian boundary event (Cretaceous) in the UmbriaMarche Basin of central Italy[J]. Chemical Geology, 2006, 234(3/4): 321-339.
[6]Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deepsea circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 83(1/3): 65-85.
[7]Kaiho K, Kajiwara Y, Tazaki K, et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: Their decrease, subsequent warming, and recovery[J]. Paleoceanography,1999, 14(4): 511-524.
[8]Isozaki Y. Permotriassic boundary superanoxia and stratified superocean: Records from lost deep sea[J]. Science, 1997, 276(5 310): 235-238.
[9]Bratton J F, Berry W B N, Morrow J R. Anoxia pre-dates FrasnianFamennian boundary mass extinction horizon in the Great Basin, USA
[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 154(3): 275-292.
[10]Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
[11]Chang Huajin, Chu Xuelei, Feng Lianjun, et al.Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.[常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1): 91-99.]
[12]Raiswell R, Buckley F, Berner R A, et al. Degree of pyritization of iron as a paleoenvironmental indicator of bottomwater oxygenation[J]. Journal of Sedimentary Petrology,1988, 58(5): 812-819.
[13]Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
[14]Arnold G L, Anbar A D, Barling J, et al. Molybdenum isotope evidence for widespread anoxia in midProterozoic oceans[J]. Science, 2004, 304(5 667):87-90.
[15]Wille M, Nagler T F, Lehmann B, et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J].Nature, 2008, 453(7 196): 767-769.
[16]Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3 897-3 912.
[17]Zhou C, Jiang S Y. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in south China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3/4): 279-286.
[18]Love L G, Amstutz G C. Review of microscopic pyrite from the Devonian Chattan ooga Shale and Rammelsberg Banderz[J]. Fortschrift Mineralogie,1966, 43: 273-309.
[19]Rickard D T. The origin of framboids[J]. Lithos, 1970, 3(3): 269-293.
[20]Wilkin R T, Barnes H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 167-4 179.
[21]Canfield D E, Thamdrup B. The production of 34S depleted sulfide during bacterial disproportiontion of elemental sulfur[J]. Science, 1994, 266(5 193): 1 973-1975.
[22]Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8): 1 244-1 263.
[23]Fisher I S J, Hudson J D. Pyrite formation in Jurassic shales of contrasting biofacies[J]. Geological Society London Special Publications, 1987, 26(1): 69-78.
[24]Yan D, Chen D, Wang Q, et al. Carbon and sulfur isotopic anomalies across the Ordovician Silurian boundary on the Yangtze Platform, South China
[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 274(1/2): 32-39.
[25]Wilkin R T, Arthur M A, Dean W E. History of watercolumn anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148(3/4): 517-525.
[26]Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygenpoor deposition during the PermianTriassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4): 183-188.
[27]Lüning S, Kolonic S, Loydell D K, et al. Reconstruction of the original organic richness in weathered Silurian shale outcrops (Murzuq and Kufra basins, southern Libya)[J]. GeoArabia, 2003, 8: 299-308.
[28]Passier H F, Middelburg J J, deLange G J, et al. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel[J]. Geology, 1997, 25(6): 519-522.
[29]Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298(7): 537-552.
[30]Hofmann P, Ricken W, Schwark L, et al. Carbonsulfuriron relationships and δ13C of organic matter for late Albian sedimentary rocks from the North Atlantic Ocean: Paleoceanographic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 163 (3/4): 97-113.
[31]Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1 399-1 416.
[32]Nielsen J K, Shen Y. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin[J]. Geology, 2004, 32(12): 1 037-1 040.
[33]Chen X, Li D, Ling H F, et al. Carbon and sulfur isotopic compositions of basal Datangpo Formation, northeastern Guizhou, South China: Implications for depositional environment[J]. Progress in Natural Science,2008,18(4): 421-429.
[34]Algeo T J, Shen Y A, Zhang T G, et al. Association of 34Sdepleted pyrite layers with negative carbonate δ13C excursions at the PermianTriassic boundary: Evidence for upwelling of sulfidic deepocean water masses[J]. Geochemistry Geophysics Geosystems,2008, 9: doi: 10.1029/2007GC001823.
[35]de Koff J P, Anderson M A, Amrhein C. Geochemistry of iron in the Salton Sea, California[J]. Hydrobiologia, 2008, 604: 111-121.
[36]Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deepwater shalegas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
[37]Payne J L, Lehrmann D J, Follett D, et al. Erosional truncation of uppermost Permian shallowmarine carbonates and implications for PermianTriassic boundary events[J]. Geological Society of America Bulletin,2007,119(7/8):771-784.
[38]Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Framboidal pyrites in cherts of the Laobao Formation, South China: Evidence for anoxic deep ocean in the terminal Ediacaran[J]. Acta Petrologica Sinica, 25(4): 1 001-1 007.[常华进, 储雪蕾, 冯连君, 等. 华南老堡组硅质岩中草莓状黄铁矿——埃迪卡拉纪末期深海缺氧的证据[J]. 岩石学报, 2009, 25(4): 1 001-1 007.]
[39]Chang Huajin, Chu Xuelei, Feng Lianjun, et al. The major and REE geochemistry of the Silikou chert in northern Guangxi province[J]. Acta Sedimentologica Sinica,2010, 28(6): 1 098-1 107.[常华进, 储雪蕾, 冯连君, 等. 桂北泗里口老堡组硅质岩的常量、稀土元素特征及成因指示[J]. 沉积学报, 2010, 28(6): 1 098-1 107.]
[40]Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Iron speciation in cherts from the Laobao Formation, South China: Implications for anoxic and ferruginous deepwater conditions[J]. Chinese Science Bulletin, 2010, 55(27/28):3 189-3 196.[常华进, 储雪蕾, 冯连君,等. 桂北老堡组硅岩中的铁组分——指示缺氧含铁的盆地深水古环境[J]. 科学通报, 2010, 55(20): 2 010-2 017.]
[41]Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deepwater chemistry[J]. Science, 2008, 321(5 891):949-952.
[42]Chang H J, Chu X L, Feng L J, et al. Terminal Ediacaran anoxia in deepocean: Trace element evidence from cherts in the Liuchapo Formation, south China[J]. Science in China (Series D), 2009, 52(6): 807-822.
[43]Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5 974): 80-83.
[44]Shen Y, Zhang T G, Chu X L. Cisotopic stratification in a Neoproterozoic postglacial ocean[J]. Precambrian Research, 2005, 137(3/4): 243-251.
[45]Jiang G Q, Kaufman A J, ChristieBlick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surfacetodeep ocean δ13C gradient[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320.
[46]McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3 197-3 202.
[47]Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society London Special Publications, 1991, 58(1): 1-26.

[1] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[2] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[3] 王萍, 谭先锋, 陈浩, 王佳, 梁迈, 罗龙, 冉天. 早志留世埃隆期上扬子海洋生物礁发育过程及制约机制——以渝南—黔北地区石牛栏组为例[J]. 地球科学进展, 2018, 33(6): 623-640.
[4] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[5] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[6] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[7] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[8] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[9] 崔豪,周炼,李超,彭兴芳,金承胜,石炜,张子虎,罗根明,谢树成. Fe-Mo同位素与古海洋化学演化[J]. 地球科学进展, 2013, 28(9): 1049-1056.
[10] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[11] 梁丹,刘传联. 颗石藻元素地球化学研究进展[J]. 地球科学进展, 2012, 27(2): 217-223.
[12] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
[13] 张兰兰,陈木宏,向荣,张丽丽. 放射虫现代生态学的研究进展及其应用前景——利用放射虫化石揭示古海洋、古环境的基础研究[J]. 地球科学进展, 2006, 21(5): 474-481.
[14] 王汝建. 极地海洋钻探研究进展[J]. 地球科学进展, 2003, 18(5): 697-705.
[15] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3): 402-410.
阅读次数
全文


摘要