地球科学进展 ›› 2002, Vol. 17 ›› Issue (3): 402 -410. doi: 10.11867/j.issn.1001-8166.2002.03.0402

全球变化研究 上一篇    下一篇

古海洋研究中的地球化学新指标
陈建芳 1,2   
  1. 1.国家海洋局海底科学重点实验室,国家海洋局第二海洋研究所,浙江 杭州 310012;2. 同济大学海洋地质教育部重点实验室,上海 200092
  • 收稿日期:2001-04-23 修回日期:2001-07-06 出版日期:2002-12-20
  • 通讯作者: 陈建芳(1968-),男,浙江余姚人,研究员,主要从事海洋有机地球化学与古环境研究. E-mail: jfchen@mail.hz.zj.cn E-mail:jfchen@mail.hz.zj.cn
  • 基金资助:

    国家重点基础研究发展规划项目“地球圈层相互作用中的深海过程和深海记录”(编号:G2000078500);国家自然科学基金项目“UK37古温度估算的水柱校正”(编号:40106004)资助.

NEW GEOCHEMICAL PROXIES IN PALEOC-EANOGRAPHY STUDIES 

CHEN Jian-fang 1,2   

  1. 1.Key Lab of Submarine Geosciences, Second Institute of Oceanography, SOA, Hangzhou 310012,China;2.Laboratory of Marine Geology of MOE,Tongji University, Shanghai 200092,China
  • Received:2001-04-23 Revised:2001-07-06 Online:2002-12-20 Published:2002-06-01

有机地球化学与微量元素地球化学古环境指标及其相关的同位素指标已成为追溯古全球变化与古海洋生物地球化学演化的有力工具。从古环境替代指标的示踪原理和应用的角度,综述了有孔虫碳同位素、有机地球化学整体指标、生物标志化合物、单体有机分子同位素、微量元素等在古海洋古环境研究中的应用及相关的研究动态与进展。指出古海洋研究正从以恢复古海洋的物理参数(温度、盐度、古洋流等)为主,向着揭示古水团演化、古生产力、古营养状况、碳贮库及碳循环等古生物地球化学演化过程方向纵深发展。

Organic geochemistry and trace metal geochemistry provide a variety of indicators, or proxies, that can be used to reconstruct records of paleo-global changes as well as paleo-biogeochemical cycles. Here in this review paper the author introduces and outlines some important progresses in paleo-proxies on organic geochemistry and trace metal geochemistry with focusing on principals and applications of these proxies. Usually, the carbon isotope and oxygen isotope of foraminifera can simultaneously be analyzed, but few carbon isotope data were presented and interpreted, because we did not clearly know the mechanism of δ13C  fractionation during the formation of foraminifera. Recent researches show that δ13C fractionation of foraminifera growth depends on (ΣCO2)δ13C  in the sea water, which is controlled by photosynthesis, decomposition of organic matter, air-sea exchanges and fresh water input. These progresses lead to the multiple applications of foraminifera δ13C  on estimating forest-vegetation area, indicating fresh water input during the transit of glacial to interglacial period, reflecting paleo-productivity, monitoring deep waters evolution etc. Organic matter constitutes a minor fraction of marine sediments, yet it is the residue of past biota, so the amounts and types of organic matter present in sediments consequently reflect different biota source of organic matter and environmental conditions that impacted ecosystems at different past time. These organic paleo-indicators include bulk parameters of organic geochemistry, molecular biomarkers, compound-specific δ13Corg etc. Generally, the sources of organic matter are inferred from bulk properties such as C/N, Rock-Eval pyrolysis index, bulk δ13Corg, δ15Norg etc., while details of specific organic matter origins are refined by analyses of molecular compositions. Source changes of organic matter reflect the fluctuations in oceanic environment such as sea level, currents and climates. Compound-specific carbon isotope analysis provides a powerful source of paleoenvironmental information. This analytical combination of gas chromatography and isotope ratio mass spectrometry offers ways to explore the origins of organic matter, the effects of diagenesis, and the types of depositional settings that neither bulk organic matter parameters nor traditional biomarker can individually provide. Following the enormous success of carbonate oxygen isotope paleoclimatology, several other tracers in calcareous micro-fossils have been explored. In particular, foraminiferal Cd/Ca was used as an indicator of past nutrient levels. With the development of geochemical analysis technology, paleoceanograpy will not only reconstruct physical parameter such as paleo-temperature and salinity, but also study paleo-biogeochemical proxies such as paleo-pH, paleo-nutrients, paleo-prodctivity, paleo-oxygen condition etc.

中图分类号: 

[1] Wakeham S G, Lee C. Organic geochemistry of particulate matter in the ocean: The role of particles in oceanic sedimentary cycles[J]. Organic Geochemistry, 1989, 14:83-96.
[2] Chen Jianfang, Zheng Lianfu. Sediment trap and global change study[J]. Marine Science Bulletin, 1996, 15(1): 41-47. [陈建芳, 郑连福. 沉积物捕获器与全球变化研究[J]. 海洋通报, 1996, 15(1):41-47.]
[3] Department of Marine Geology of Tongji University. Introduction to Paleoceanography[M]. Shanghai: Tongji University Press, 1989. [同济大学海洋地质系.古海洋概论[M]. 上海:同济大学出版社, 1989.]
[4] Cang Shuxi, Yan Jun. Paleoceanography of Specific Area in the West Pacific Ocean[M]. Qingdao: Qingdao Ocean University Press, 1992. [苍树溪, 阎军. 西太平洋特定海域古海洋学[M]. 青岛: 青岛海洋大学出版社, 1992.]
[5] Ye Zhizheng, Wang Pinxian. Contributions to Late Quaternary Paleoceanography of the South China Sea[M]. Qingdao: Qingdao Ocean University Press, 1992. [业治铮, 汪品先. 南海晚第四纪古海洋学研究[M]. 青岛: 青岛海洋大学出版社, 1992.]
[6] Qian Jianxing. A Study of Paleoceanography in the South China Sea During the Late Quaternary[M]. Beijing: Science Press, 1999. [钱建兴. 南海第四纪以来古海洋学研究[M]. 北京: 科学出版社, 1999.]
[7] Fischer G, Wefer G. Use of Proxies in Paleoceanography: Examples from the South Atlantic[M]. Berlin:Springer-Verlag,1999.
[8] Boyle E A. Quaternary ocean paleochemistry[J]. Reviews of Geophysics, 1991, (Supp): 634-638.  
[9] Schulz H D, Zabel M. Marine Geochemistry[M]. Berlin: Springer-Verlag, 2000.
[10] Brassell S C. Application of biomarkers for delineating marine paleoclimatic fluctuations during the pleistocene[A]. In: Engel M H, Macko S A, eds. Organic geochemistry: Principles and Applications[C]. New York, London: Plenum Press, 1993.
[11] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes[J]. Org Geochem, 1997, 27(5/6): 213-250.
[12] Spero H J. Do planktonic foraminifera accurately record shifts in the carbon isotopic composition of sea water ∑CO2 ? [J]. Marine Micropaleontology,1992,19:275-285.
[13] Broecker W S, Maier-Reimer. The influence of air and sea exchange on the carbon isotope distribution in the sea [J]. Global Biogeochemical Cycles, 1992,6:315-320.
[14] Mook W G, Bommerson J C, Staverman W H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide[J]. Earth and Planetary Science Letters, 1974, 22: 169-176.
[15] Hitchon B, Krouse H R. Hydrogeochemistry of the surface waters of the Machenzie River drainage basin, Canada, Ⅲ. Stable isotopics of oxygen, carbon and sulfur[J]. Geochim Cosmochim Acta, 1972, 36:1 377-1 385.
[16] Shackleton N J. Tropical rain forest history and equatorial Pacific Carbonate dissolution cycles[A]. In: Anderson N R, Malahoff A, eds. Fate of Fossil Fuel CO2 in the Oceans[C]. New York: Plenum Press, 1977. 401-427.
[17] Popp B N, Tagiku R, Hayes J M, et al. The post-paleozonic chronology and Mechanism of δ13C depletion in primary marine organic matter[J]. American Journal of Science,1989,289: 436-454.
[18] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994,144:289-302.
[19] Peters K E, Moldowan J M, Priscole A R, et al. Petroleum isotopic and biomarker composition related to source rock organic matter and depositional environment[J]. Organic Geochemistry, 1986, 10: 17-27.
[20] Hayes J M. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence[J]. Marine Geology, 1993,113: 111-125.
[21] O'Leary M H. Carbon isotopes in photosynthesis[J]. Bioscience, 1988, 38:328-336.
[22] Peters K E, Sweeney R E, Kaplan I R. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter[J]. Limnology and Oceanography, 1978, 23:598-604.
[23] Fogel M L, Cifuentes L A. Isotope fractionation during primary production[A]. In: Engel M H, Macko S A, eds. Organic Geochemistry[M]. New York: Plenum Press, 1993. 73-98.
[24] Cline J D, Kaplan I R. Isotopic fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific[J]. Marine Chemistry, 1975, 3: 271-299.
[25] Meyes P A, Silliman J E, Shaw T J. Effects of turbiditic sedimentation on organic matter accumulation, sulfate reduction, and methane generation on the Iberia Abyssal Plain[J]. Organic Geochemistry, 1996, 25: 69-78.
[26] Rieley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U K- I: Source correlation of leaf wax inputs to the sedimentary record[J]. Organic Geochemistry, 1991, 17: 901-912.
[27] Hedges J I, Mann D C. The characterization of plant tissues by their lignin oxidation products[J]. Geochimica Cosmochimica Acta, 1979, 43: 1 803-1 807.
[28] Fu Tianbao, Chen Song, Jiang Shanchun. Lignin analysis by gas chromatography[J]. Acta Oceanologica Sinica, 1995, 17(1): 59-64. [傅天保, 陈松, 姜善春. 气相色谱法测定沉积物中的木质素[J]. 海洋学报, 1995, 17(1): 59-64.]
[29] Leopold E B, Nickman R, Hedges J I, et al. Pollen and lignin records of late Quaternary vegetation in lake Washington[J]. Science, 1982, 218: 1 305-1 307. 
[30] Hedges J I, Ertel J R, Leopold E B. Lignin geochemistry of a Late Quaternary core from Lake Washington[J]. Geochimica Cosmochimica Acta , 1982, 46: 1 869-1 877.
[31] Collister J W, Rieley G, Stern B, et al. Compound specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms[J]. Organic Geochemistry, 1994, 21: 619-627. 
[32] Bird M I, Summons R E, Gagan M K. Terrestrial vegetation change inferred from n-alkane δ13C analysis in the marine environment[J]. Geochimica Cosmochimica Acta, 1995, 59: 2 853-2 857.
[33] Rieley G, Collier R J, Jones D M, et al. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds[J]. Nature, 1991, 352: 425-427.
[34] Schoell M, Schouten S, Sinninghe D J S, et al. A molecular organic carbon record of Miocene climate changes[J]. Science, 1994, 263: 1 122-1 125. 
[35] Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy: A new tool for climatic assessment[J]. Nature, 1986, 320: 129-133.
[36] Kennedy J A, Brassell S C. Molecular stratigraphy of the Santa Barbara Basin: Comparison with historical records of annual climate change[J]. Org Geochem, 1992, 19: 235-244.
[37] Chen Jianfang, Zheng Liangfu. Molecular thermometer—A new tool for studies of paleoceanography and paleoclimate[J]. Advance in Earth Sciences, 1996, 11(4): 404-408. [陈建芳, 郑连福. 古海洋、古气候研究的新工具——分子温度计[J]. 地球科学进展, 1996,11(4): 404-408.]
[38] Epstein B L, Hondt S D, Quinn J G. An effect of dissolved nutrient concentrations on alkenone based temperature estimates[J]. Paleoceanography, 1998, 13(2):122-126.
[39] Hoefs M J L, Versteegh G J M, Rijpstra W I C, et al. Postdepositional oxic degradation of alkenones: Implications for the measurement of palaeo sea surface temperature[J]. Paleoceanography, 1998, 13(1):42-49.
[40] Volkman J K, Barrett S M, Blacburn S I. Alkenones in gephyrocapsa oceanica: Implications for the studies of paleoclimate[J]. Geochim Cosmochim Acta, 1995,59:513-520.
[41] Popp B N, Takigiku R, Hayes J M, et al. The post-paleozoic chronology and mechanism of 13C depletion in marine organic matter[J]. America Journal of Science, 1989, 289: 436-454.
[42] Jasper J P, Hayes J M. A carbon isotope record of CO2 levels during the Quaternary[J]. Nature, 1990, 347: 462-464.
[43] Jasper J P, Hayes J M. Reconstraction of paleoceanic pCO2 levels from carbon isotopic compositions of sedimentary biogenic components[A]. In: Zahn R, et al, eds. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Climate. NATO ASI Series[C]. Berlin: Springer-Verlag, 1994. 323-342.
[44] Fontugne M R, Calvert S E. Late Pleistocene variability of the carbon isotopic composition of organic matter in the eastern Mediterranean: Monitor of changes in carbon sources and atmospheric CO2 levels[J]. Paleoceanography, 1992,7: 1-20.
[45] Müller P J, Schneider R, Ruhland G. Late quaternary pCO2 variations in the Angola current: Evidence from organic carbon d13C and alkenone temperature[A]. In: Zahn R, et al, eds. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Climate. NATO ASI Series[C]. Berlin: Springer-Verlag, 1994. 343-361.
[46] Bidigare R R, Fluegge A, Freeman K H, et al. Consistance fractionation of 13C in nature and in laboratory: Growth rate effects in some haptophyte algae[J]. Global Biogeochemical Cycles, 1997, 11: 279-292.
[47] Popp B N, Laws E A, Bidigare R R. Effect of phytoplankton cell geometry on carbon isotopic fractionation[J]. Geochimica Cosmochimica Acta, 1998, 62: 69-77.
[48] Rau G H, Riebesell U, Wolf-Gladrow D. CO2aq dependent photosynthetic 13C fractionation in the ocean: A model versus measurements[J]. Global Biogeochemical Cycles, 1997, 11: 267-278.
[49] Boyle E A, Huested S S, Jones S P. On the distrabution of Copper Nickel and Cadmium in the surface waters of the North Atlantic and North Pacific Ocean[J]. J Geophys Res, 1981, 86: 8 048-8 061.
[50] Hester R, Boyle E A. Water chemistry control of the Cd content of benthic foraminifera[J]. Nature, 1982, 298: 260-261.
[51] Boyle E A. Carbon isotope and Cadmium data from benthic foraminifera: Implications for changes in oceanic phosphorus ,oceanic circulation and atmospheric carbon dioxide[J]. Geochim Cosmochim Acta, 1986, 50: 165-276. 
[52] Boyle E A, Keigwin L. North Atlantic thermohaline during the past 20,000 years linked to high-latitude surface temperature[J]. Nature , 1987, 330 : 35-40.
[53] Boyle E A. Cadmium: Chemical Tracer of deepwater paleoceanography[J]. Paleoceanography, 1988, 3(4): 471-489.
[54] Bruland K W, Knauer GA, Martin J A. Cadmium in north east pacific waters[J]. Liminology and Oceanography, 1980, 23: 618-625.
[55] Keigwin L D, Boyle E A. Late quaternary Paleo-chemistry of high-latitude surface water[J]. Paleogeogra Paleoclimatol Paleoecol, 1989, 73 : 85-106.
[56] Elderfield, Rickby. Oceanic Cd/P ratio and nutrient utilization in the glacial South Ocean[J]. Nature, 405: 305-310.
[57] Boyle E A. Ocean Paleochemistry: Progress during the last three decades[A]. In: ANSF, ed. Focus: What, When, How, and Why? ANSF-sponsored Workshop on the Future of Ocean Chemistry (further information at focus@joss.ucar.edu). 
[58] Wang Pinxian. Deep-sea research and earth sciences in new millennium[A]. In: Lu Yongxiang, ed. Keynote Speeches of Distinguished Scientists from China and Overseas on  Ceremony of 50 Anniversary of Chinese Academy of Sciences[C]. Beijing: Science Press, 2000. [汪品先. 深海研究与新世纪的地球科学[A]. 见:路甬祥主编.中国科学院成立50周年中外著名学者报告会文集[C]. 上海:上海教育出版社, 2000.]

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[3] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[4] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[5] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[6] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[7] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[8] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[9] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[10] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[11] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[12] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[13] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[14] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[15] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
阅读次数
全文


摘要