地球科学进展 ›› 2019, Vol. 34 ›› Issue (5): 471 -479. doi: 10.11867/j.issn.1001-8166.2019.05.0471

综述与评述 上一篇    下一篇

地球关键带视角理解生态系统碳生物地球化学过程与机制
温学发 1, 2( ),张心昱 1, 2,魏杰 1,吕斯丹 1,王静 1,陈昌华 1,宋贤威 1,王晶苑 1,戴晓琴 1   
  1. 1. 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101
    2. 中国科学院大学资源与环境学院, 北京 100190
  • 收稿日期:2018-11-22 修回日期:2019-02-27 出版日期:2019-05-10
  • 基金资助:
    国家自然科学基金重点项目“南方红壤丘陵关键带碳及其同位素的关键生物地球化学过程与控制机制”(编号:41830860);国家自然科学基金国际(地区)合作与交流项目“喀斯特关键带岩石—土壤—生物—大气连续体的碳过程及其控制机制”(编号:41571130043)

Understanding the Biogeochemical Process and Mechanism of Ecosystem Carbon Cycle from the Perspective of the Earth's Critical Zone

Xuefa Wen 1, 2( ),Xinyu Zhang 1, 2,Jie Wei 1,Sidan Lü 1,Jing Wang 1,Changhua Chen 1,Xianwei Song 1,Jingyuan Wang 1,Xiaoqin Dai 1   

  1. 1. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2018-11-22 Revised:2019-02-27 Online:2019-05-10 Published:2019-07-04
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Biogeochemical process and control mechanism of carbon and its isotopes in the critical zone of red soil hills in Southern China” (No. 41830860) and “Soil carbon processes and their underlying mechanism in the vertical dimension of Karst critical zone of Southwest China”(No. 41571130043)

陆地生态系统研究通常未考虑影响整个岩石风化层——土壤剖面的生物地球化学过程,而关键带科学则强调从冠层到基岩重新认识整个生态系统的结构和功能,在流域尺度上应该强调大气和植物之间、植物和土壤之间、小流域土壤和溪流之间物质和元素循环的相互联系等。植物碳固定及分配、从地表到基岩的土壤碳库分解和转化以及小流域碳迁移与平衡是碳生物地球化学循环的起始、周转和迁移过程的关键环节,应该加强流域尺度上从冠层到基岩的生态系统碳循环过程、机制及其生态功能研究。同位素技术具有指示、示踪和整合功能,通过δ13C自然示踪和人工标记技术,可以辅助解析碳生物地球化学过程与机制。

Previous research rarely considers the biogeochemistry process of the whole rock weathering layer-soil profile. The aim of Critical Zone science is re-understanding the structure and function of ecosystems from the canopy to bedrock, which emphasizes the relationship of material and energy between atmosphere and plant, between plant and soil, between soil and river in small watershed on the watershed scale. Carbon fixation and allocation are the key starting processes. Decomposition and transformation of soil carbon are the key turnover processes. Carbon migration and balance in small watershed are the key transfer processes. Further research is needed in the process, mechanism and ecology function of ecosystem carbon cycle from the canopy to bedrock based on the watershed scale. Carbon isotope technology has the function of indication, tracing and integration. Based on the 13C natural tracing and artificial labelling methods, we can further understand the process and mechnism of carbon biogeochemistry.

中图分类号: 

图1 关键带小流域尺度碳循环的关键生物地球化学过程的示意图
Fig.1 Schematic diagram of key biogeochemical processes of carbon cycle at the watershed scale in Critical Zones
1 Jordan T H , Ashley G M , Barton M D . Basic Research Opportunities in Earth Science [M]. Washington DC:National Academy Press, 2001.
2 Brantley S L , White T S , White A F . Frontiers in Exploration of the Critical Zone[R].Newark:National Science Foundation, 2006.
3 Banwart S A , Chorver J , Gaillardet G , et al . Sustaining Earth's Critical Zone Basic Science and Interdisciplinary Solutions for Global Challenges [R].United Kingdom:The University of Sheffield, 2013.
4 Sullivan P , Wymore A , Mcdowell W H , et al . New Opportunities for Critical Zone Science[Z]. 2017 CZO Arlington Meeting White Booklet, 2017: 36.
5 Richter D D , Billings S A . One physical system: Tansley's ecosystem as Earth's critical zone, Tansley review [J]. New Phytologist, 2015, 206(3): 900-912.
6 Epron D , Cabral O M R , Laclau J P , et al . In situ (CO2)-C-13 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon [J]. Tree Physiology, 2016, 36(1): 6-21.
7 Schmidt M W , Torn M S , Abiven S , et al . Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7 367): 49-56.
8 Yue Y , Ni J R , Ciais P , et al . Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(24): 6 617-6 622.
9 Morford S L , Houlton B Z , Dahlgren R A . Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock [J]. Nature, 2011, 477(7 362): 78-81.
10 Galy V , Peuckerehrenbrink B , Eglinton T . Global carbon export from the terrestrial biosphere controlled by erosion [J]. Nature, 2015, 521(7 551): 204-207.
11 Lin Guanghui . Stable Isotope Ecology [M]. Beijing: Higher Education Press, 2013.
林光辉 . 稳定同位素生态学 [M]. 北京:高等教育出版社, 2013.
12 Wen X F , Meng Y , Zhang X Y , et al . Evaluating calibration strategies for isotope ratio infrared spectroscopy for atmospheric 13CO2/12CO2 measurement [J]. Atmospheric Measurement Techniques, 2013, 6(6): 1 491-1 501.
13 Werner C , Gessler A . Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources: A review of dynamics and mechanisms [J]. Biogeosciences, 2011, 8(2): 2 437-2 459.
14 Wang J , Wen X F , Li S G . Differentiated correction on the signal intensity dependence of GasBench Ⅱ-IRMS from blank effect and instrument nonlinear effect [J]. International Journal of Mass Spectrometry, 2017, 422: 80-87.
15 Desalme D , Priault P , Gérant D , et al . Seasonal variations drive short-term dynamics and partitioning of recently assimilated carbon in the foliage of adult beech and pine [J]. New Phytologist, 2017, 213(1): 140-153.
16 Veromann-Jurgenson L L , Tosens T , Laanisto L , et al . Extremely thick cell walls and low mesophyll conductance: Welcome to the world of ancient living [J]. Journal of Experimental Botany, 2017, 68(7): 1 639-1 653.
17 Buckley T N , Warren C R . The role of mesophyll conductance in the economics of nitrogen and water use in photosynthesis [J]. Photosynthesis Research, 2014, 119(1/2): 77-88.
18 Flexas J , Barbour M M , Brendel O , et al . Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis [J]. Plant Science, 2012, 193/194: 70-84.
19 Wingate L , Ogée J , Burlett R , et al . Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration [J]. New Phytologist, 2010, 188(2): 576-589.
20 Saez P L , Bravo L A , Cavieres L A , et al . Photosynthetic limitations in two Antarctic vascular plants: Importance of leaf anatomical traits and Rubisco kinetic parameters [J]. Journal of Experimental Botany, 2017, 68(11): 2 871-2 883.
21 Peguero-Pina J J , Sisó S , Flexas J , et al . Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks [J]. New Phytologist, 2017, 214(2): 585-596.
22 Wang J , Wen X F , Zhang X Y , et al . The strategies of water-carbon regulation of plants in a subtropical primary forest on karst soils in China [J]. Biogeosciences, 2018, 15(13): 4 193-4 203.
23 Guan L L , Wen D Z . More nitrogen partition in structural proteins and decreased photosynthetic nitrogen-use efficiency of Pinus massoniana under in situ polluted stress [J]. Journal of Plant Research, 2011, 124(6): 663-673.
24 Augusto L , Achat D L , Jonard M , et al . Soil parent material—A major driver of plant nutrient limitations in terrestrial ecosystems [J]. Global Change Biology, 2017, 23(9): 3 808-3 824.
25 Hohmann-Marriott M F , Blankenship R E . Evolution of Photosynthesis [J]. Annual Review of Plant Biology, 2011, 62(1): 515-548.
26 Myers J A , Kitajima K . Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest [J]. Journal of Ecology, 2007, 95(2): 383-395.
27 Würth M K , Pel?ez-Riedl S , Wright S J , et al . Non-structural carbohydrate pools in a tropical forest [J]. Oecologia, 2005, 143(1): 11-24.
28 Galiano L , Timofeeva G , Saurer M , et al . The fate of recently fixed carbon after drought release: Towards unravelling C storage regulation in Tilia platyphyllos and Pinus sylvestris [J]. Plant Cell Environment., 2017, 40(9): 1 711-1 724.
29 Hoch G , Richter A , Korner C . Non-structural carbon compounds in temperate forest trees [J]. Plant Cell & Environment, 2003, 26(7): 1 067-1 081.
30 Palacio S , Millard P , Maestro M , et al . Non-structural carbohydrates and nitrogen dynamics in mediterranean sub-shrubs: An analysis of the functional role of overwintering leaves [J]. Plant Biology, 2007, 9(1): 49-58.
31 Klein T , Siegwolf R T , K?rner C . Belowground carbon trade among tall trees in a temperate forest [J]. Science, 2016, 352(6 283): 342-344.
32 Pickles B J , Wilhelm R , Asay A K , et al . Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas [J]. New Phytologist, 2017, 214(1): 400-411.
33 Epron D , Bahn M , Derrien D , et al . Pulse-labelling trees to study carbon allocation dynamics: A review of methods, current knowledge and future prospects [J]. Tree Physiology, 2012, 32(6): 776-798.
34 Burns R G , Deforest J L , Marxsen J , et al . Soil enzymes in a changing environment: Current knowledge and future directions [J]. Soil Biology & Biochemistry, 2013, 58(2): 216-234.
35 Jansson J K , Prosser J I . Microbiology: The life beneath our feet [J]. Nature, 2013, 494(7 435): 40-41.
36 Carney K M , Hungate B A , Drake B G , et al . Altered soil microbial community at elevated CO2 leads to loss of soil carbon [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12): 4 990-4 995.
37 Piao S , Fang J , Ciais P , et al . The carbon balance of terrestrial ecosystems in China [J]. China Basic Science, 2009, 458 (7 241): 1 009-1 013.
38 Jian S Y , Li J W , Chen J , et al . Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis [J]. Soil Biology & Biochemistry, 2016, 101: 32-43.
39 Wallenstein M D , Mcnulty S , Fernandez I J , et al . Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments [J]. Forest Ecology & Management, 2006, 222(1): 459-468.
40 Liang C , Schimel J P , Jastrow J D . The importance of anabolism in microbial control over soil carbon storage [J]. Nature Microbiology, 2017, 2: 17 105. DOI: 10.1038/nmicrobiol.2017.105 .
doi: 10.1038/nmicrobiol.2017.105    
41 Post W M , Kwon K C . Soil carbon sequestration and land‐use change: Processes and potential [J]. Global Change Biology, 2000, 6(3): 317-327.
42 West T O , Post W M . Soil organic carbon sequestration rates by tillage and crop rotation [J]. Soil Science Society of America Journal, 2002, 66(6): 1 930-1 946.
43 Mobley M L , Lajtha K , Kramer M G , et al . Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development [J]. Global Change Biology, 2014, 21(2): 986-996.
44 Bernal B , Mckinley D C , Hungate B A , et al . Limits to soil carbon stability: Deep, ancient soil carbon decomposition stimulated by new labile organic inputs [J]. Soil Biology & Biochemistry, 2016, 98: 85-94.
45 Bornyasz M A , Graham R C , Allen M F . Ectomycorrhizae in a soil-weathered granitic bedrock regolith: Linking matrix resources to plants [J]. Geoderma, 2005, 126(1): 141-160.
46 Pold G , Grandy A S , Melillo J M , et al . Changes in substrate availability drive carbon cycle response to chronic warming [J]. Soil Biology & Biochemistry, 2017, 110: 68-78.
47 Schrumpf M , Kaiser K , Guggenberger G , et al . Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals [J]. Biogeosciences, 2013, 10(3): 1 675-1 691.
48 Jiang L , Zhu J , Qi Y , et al . Increasing molecular structural complexity and decreasing nitrogen availability depress the mineralization of organic matter in subtropical forest soils [J]. Soil Biology & Biochemistry, 2017, 108: 91-100.
49 He N P , Wang R M , Gao Y , et al . Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration [J]. Ecology & Evolution, 2013, 3(15): 5 045-5 054.
50 Lehmann J , Kleber M . The contentious nature of soil organic matter [J]. Nature, 2015, 528(7 580): 60-68.
51 Song Changqing , Wu Jinshui , Lu Yahai , et al . Advances of soil microbiology in the last decade in China [J]. Advances in Earth Science, 2013, 28(10): 1 087-1 105.
宋长青, 吴金水, 陆雅海,等 .中国土壤微生物学研究10年回顾 [J]. 地球科学进展, 2013, 28(10): 1 087-1 105.
52 Barbi F , Prudent E , Vallon L , et al . Tree species select diverse soil fungal communities expressing different sets of lignocellulolytic enzyme-encoding genes [J]. Soil Biology & Biochemistry, 2016, 100: 149-159.
53 Sanaullah M , Razavi B S , Blagodatskaya E , et al . Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface [J]. Biology & Fertility of Soils, 2016, 52(4): 505-514.
54 Zhang X Y , Yang Y , Zhang C , et al . Contrasting responses of phosphatase kinetic parameters to nitrogen and phosphorus additions in forest soils [J]. Functional Ecology, 2018, 32(1): 106-116.
55 Li D D , Zhang X Y , Green S M , et al . Nitrogen functional gene activity in soil profiles under progressive vegetative recovery after abandonment of agriculture at the Puding Karst Critical Zone Observatory, SW China [J]. Soil Biology & Biochemistry, 2018, 125: 93-102.
56 Schmidt P A , Bálint M , Greshake B , et al . Illumina metabarcoding of a soil fungal community [J]. Soil Biology & Biochemistry, 2013, 65(5): 128-132.
57 Mosher J J , Bowman B , Bernberg E L , et al . Improved performance of the PacBio SMRT technology for 16S rDNA sequencing [J]. Journal of Microbiological Methods, 2014, 104: 59-60.
58 Neufeld J D , Vohra J , Dumont M G , et al . DNA stable-isotope probing [J]. Nature Protocols, 2007, 2(4): 860-866.
59 Chorover J , Kretzschmar R , Garcia-Pichel F , et al . Soil biogeochemical processes within the critical zone [J]. Elements, 2007, 3(5): 321-326.
60 Clemmensen K E , Lindahl B D . Roots and associated fungi drive long-term carbon sequestration in boreal forest [J]. Science, 2013, 339(6 127): 1 615-1 618.
61 Midwood A J , Thornton B , Millard P . Measuring the 13C content of soil‐respired CO2 using a novel open chamber system [J]. Rapid Communications in Mass Spectrometry, 2008, 22(13): 2 073-2 081.
62 Albanito F , McAllister J , Smith P , et al . In Dual-Chamber Measurements of δ13C of Soil-respired CO2 Partitioned Using a Field-based Three End-member Model [R]. EGU General Assembly Conference, 2012.
63 Genereux D P , Nagy L A , Osburn C L , et al . A connection to deep groundwater alters ecosystem carbon fluxes and budgets: Example from a Costa Rican rainforest [J]. Geophysical Research Letters, 2013, 40(10): 2 066-2 070.
64 Huang T H , Chen C T A , Tseng H C , et al . Riverine carbon fluxes to the South China Sea [J]. Journal of Geophysical Research Biogeosciences, 2017, 122(5): 1 239-1 259.
65 Brunet F , Dubois K , Veizer J , et al . Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong Basin, Cameroon [J]. Chemical Geology, 2009, 265(3): 563-572.
66 Stielstra C M , Lohse K A , Chorover J , et al . Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems [J]. Biogeochemistry, 2015, 123(3): 447-465.
67 Gao Y , Yu G , He N . Equilibration of the terrestrial water, nitrogen, and carbon cycles: Advocating a health threshold for carbon storage [J]. Ecological Engineering, 2013, 57(57): 366-374.
68 Haei M , Oquist M G , Buffam I , et al . Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water [J]. Geophysical Research Letters, 2010, 37(81): L08501. DOI:10.1029/2010GL042821 .
doi: 10.1029/2010GL042821    
69 Evans C . Old carbon mobilized [J]. Nature Geoscience, 2015, 8: 85-86.
70 Kindler R , Siemens J , Kaiser K , et al . Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance [J]. Global Change Biology, 2011, 17(2): 1 167-1 185.
71 Toosi E R , Doane T A , Horwath W R . Abiotic solubilization of soil organic matter, a less-seen aspect of dissolved organic matter production [J]. Soil Biology & Biochemistry, 2012, 50(5): 12-21.
72 Evans C D , Jones T G , Burden A , et al . Acidity controls on dissolved organic carbon mobility in organic soils [J]. Global Change Biology, 2012, 18(11): 3 317-3 331.
73 Scott E E , Rothstein D E . The dynamic exchange of dissolved organic matter percolating through six diverse soils [J]. Soil Biology & Biochemistry, 2014, 69(1): 83-92.
74 Evaristo J , Jasechko S , Mcdonnell J J . Global separation of plant transpiration from groundwater and streamflow [J]. Nature, 2015, 525(7 567): 91-94.
75 Johnson M S , Lehmann J , Riha S J , et al . CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration [J]. Geophysical Research Letters, 2008, 35(17): L17401. DOI:10.1029/2008GL034619 .
doi: 10.1029/2008GL034619    
76 Boyer E W , Alexander R B , Parton W J , et al . Modeling denitrification in terrestrial and aquatic ecosystems at regional scales [J]. Ecological Applications, 2006, 16(6): 2 123-2 142.
77 Marx A , Dusek J , Jankovec J , et al . A review of CO2 and associated carbon dynamics in headwater streams: A global perspective: Carbon dioxide in headwater streams [J]. Reviews of Geophysics, 2017, 55(2): 560-585.
78 Kandu? T , Szramek K , Ogrinc N , et al . Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes [J]. Biogeochemistry, 2007, 86(2): 137-154.
79 Naiman R J , Turner M G . A future perspective on North America's freshwater ecosystems [J]. Ecological Applications, 2000, 10(4): 958-970.
80 Mendon?a R , Kosten S , Sobek S , et al . Carbon sequestration in a large hydroelectric reservoir: An integrative seismic approach [J]. Ecosystems, 2014, 17(3): 430-441.
81 Zhang S , Lu X X , Sun H , et al . Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China [J]. Science of the Total Environment, 2009, 407(2): 815-825.
82 Westerhoff P , Anning D . Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization [J]. Journal of Hydrology, 2000, 236(3): 202-222.
83 Li Y , Zhang C Q , Wang N A , et al . Substantial inorganic carbon sink in closed drainage basins globally [J]. Nature Geoscience, 2017, 10(7): 501-506.
84 Ainsworth E A , Rogers A . The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions [J]. Plant Cell & Environment, 2007, 30(3): 258-270.
85 Brantley S L , Holleran M E , Jin L X , et al . Probing deep weathering in the Shale Hills Critical Zone Observatory, Pennsylvania (USA): The hypothesis of nested chemical reaction fronts in the subsurface [J]. Earth Surface Processes and Landforms, 2013, 38(11): 1 280-1 298.
86 Song C , Dodds W K , Rüegg J , et al . Continental-scale decrease in net primary productivity in streams due to climate warming [J]. Nature Geoscience, 2018, 11: 415-420.
87 Smith M G , Miller R E , Arndt S K , et al . Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees [J]. Tree Physiology, 2018, 38(4): 570-581.
88 Yang B , Peng C H , Harrison S P , et al . Allocation mechanisms of non-structural carbohydrates of robinia pseudoacacia l. Seedlings in response to drought and waterlogging [J]. Forests, 2018, 9: 754. DOI:10.3390/f9120754 .
doi: 10.3390/f9120754    
[1] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[2] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[3] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[4] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[5] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[6] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[7] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[8] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[9] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[10] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[11] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[12] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[13] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[14] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[15] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
阅读次数
全文


摘要