地球科学进展 ›› 2019, Vol. 34 ›› Issue (5): 480 -487. doi: 10.11867/j.issn.1001-8166.2019.05.0480

综述与评述 上一篇    下一篇

海草床食物链有机碳传递过程的研究进展
黄小平 1, 2( ),江志坚 1   
  1. 1. 中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室, 广东 广州 510301
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2019-01-30 修回日期:2019-03-20 出版日期:2019-05-10
  • 基金资助:
    国家自然科学基金重点项目“热带海草床食物链有机碳传递过程及其对富营养化的响应机制”(编号:41730529)

Research Progress of the Transfer Process of Organic Carbon Through Food Chain in Seagrass Bed

Xiaoping Huang 1, 2( ),Zhijian Jiang 1   

  1. 1. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-01-30 Revised:2019-03-20 Online:2019-05-10 Published:2019-07-04
  • About author:Huang Xiaoping(1965-), male, Shaoyang City, Hunan Province, Professor. Research areas include marine environment.E-mail: xphuang@scsio.ac.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “The transfer process of organic carbon through food chain in tropical seagrass bed and its response to eutrophication”(No. 41730529)

海草床是重要的近海生态系统,生产力极高,可为海洋动物提供良好的栖息地和丰富的有机碳食源;人类活动引起近岸海域的富营养化,可能会改变海草床有机碳源组成和性质,进而影响植食动物和次级消费者的摄食过程及其食物链能量传递效率,从而影响海草床的生物资源产出功能。归纳总结了国内外海草床食物链碳传递过程各方面的研究进展,主要包括: 海草床有机碳源组成及食源贡献; 海草床初级消费者对有机碳源的摄食; 海草床食物网营养级结构及其能量传递; 富营养化对海草床有机碳源组分结构及其成分的影响; 海草床食物链能量传递效率对富营养化的响应。在此基础上,提出了未来的研究重点: 联合运用总有机物的稳定同位素比值法、脂肪酸标志法和特定化合物稳定同位素分析方法,加强定量研究海草床各有机碳源的贡献、食物网营养结构图谱、关键碳流途径及其季节性变化规律;探究关键消费者成体和幼体的有机碳源差异,弄清生长阶段的食性转化过程。 结合野外观测、原位围隔实验和室内模拟实验,深入探讨富营养化对海草床有机碳源组成(海草与附生藻类等)及其化学成分(营养质量和次生化合物)的影响,海草等初级生产者成分变化对植食动物和次级消费者摄食过程的影响,以及牧食食物链和碎屑食物链的组成和碳传递效率等的响应机制。

Seagrass beds are highly productive coastal ecosystems, which provide good nursery habitat and abundant Organic Carbon Sources (OCS) as food for marine animals. Human activities have led to widespread eutrophication in coastal areas. Eutrophication may alter the composition and properties of OCS, thereby affecting the feeding process of herbivores and secondary consumer, and energy transfer efficiency in food chain. This may affect the production function of biological resource in seagrass beds. Based on the summary of the foreign and domestic researches, primary achievements were systematically reviewed in this paper in five aspects: the composition of OCS and their contribution, feeding process of herbivore, food web structure and energy transfer efficiency, and their responses to eutrophication. Future researches that should be emphasized were also prospected. With the combined application of stable isotope analysis for bulks and tissues, fatty acid biomarkers and compound-specific stable isotope analysis, the quantitative study of the contribution of OCS, food web structure, key carbon flow pathway and their seasonal change patterns should be enhanced. Meanwhile, the differences of OCS between larval and adult stages of key consumers will need to be further examined to clarify the transformation of their feeding habits. Through field investigation, in-situ mesocosm and laboratory simulation experiments, the effects of nutrient increase on the structure (seagrass and epiphyte, etc.) and chemical composition (nutritional quality and secondary compounds, etc.) of OCS, the response of feeding process of herbivore and secondary consumer to the alteration of chemical compounds in primary producers, and the response mechanism of carbon transfer efficiency of the grazing food chain and detritus food chain need to be further studied.

中图分类号: 

表1 不同海草床的有机碳源组成及研究方法
Table 1 Composition of organic carbon source and research method in different seagrass beds
海草 研究地点 有机碳源组成 研究方法 参考文献
鳗草(Zostera marina 日本 鳗草、附生藻类、浮游植物、浮游动物和沉积物有机质等 13C,34S和脂肪酸 [ 15 ]
小丝粉草(Cymodocea nodosa 地中海 附生藻类、大型藻类、底栖硅藻、悬浮颗粒有机质和沉积物有机质 13C [ 16 ]
大洋波喜荡草(Posidonia oceanica 地中海西部 大洋波喜荡草、附生藻类、悬浮颗粒有机质和地中海囊链藻(Cystoseira balearica 13C [ 4 ]
卷轴川蔓草(Ruppia cirrhosa 地中海西北部潟湖 卷轴川蔓草、附生藻类、悬浮颗粒有机质、沉积物有机质和盐沼植物等 13C [ 14 ]
海菖蒲(Enhalus acoroides)、泰来草(Thalassia hemprichii)、圆叶丝粉草(Cymodocea rotundata)和单脉二药草(Halodule uninervis 印度尼西亚 海草、悬浮颗粒有机质、大型藻类、附生藻类和沉积物有机质等 13C [ 17 ]
鳗草 波罗的海西部 鳗草、附生藻类、浮游植物、沉积物和大型藻类 13C和脂肪酸 [ 18 ]
诺氏鳗草(Zostera noltii 法国大西洋海岸 诺氏鳗草、附生藻类、悬浮颗粒有机质和沉积物有机质 13C和脂肪酸 [ 19 ]
海菖蒲、泰来草和圆叶丝粉草 中国海南 海草、附生藻类、悬浮颗粒有机质和沉积物有机质 13C [ 20 ]
鳗草属海草(Zostera sp.) 中国海南 海草、红树林、马尾藻属大型海藻和悬浮颗粒有机物 13C和脂肪酸 [ 21 ]
诺氏鳗草 葡萄牙 诺氏鳗草、附生藻类、悬浮颗粒有机质、沉积物有机质和底栖微藻 13C [ 2 ]
鳗草属海草 法国 海草、附生藻类、大型藻类、底栖微藻、浮游植物和陆源有机物 13C和脂肪酸 [ 22 ]
龟裂泰来草(Thalassia testudinum 加勒比海海域 海草、附生藻类和大型藻类等 13C和胃含物 [ 23 ]
小喜盐草(Halophila minor 中国香港 小喜盐草、沉积物有机质、颗粒有机物和底栖微藻 13C [ 24 ]
1 Bertelli C M , Unsworth R K . Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat[J]. Marine Pollution Bulletin, 2014, 83(2): 425-429.
2 A-M Vafeiadou , Materatski P , Ad?o H , et al . Food sources of macrobenthos in an estuarine seagrass habitat (Zostera noltii) as revealed by dual stable isotope signatures[J]. Marine Biology, 2013, 160: 2 517-2 523.
3 Scott A L , York P H , Duncan C , et al . The role of herbivory in structuring tropical seagrass ecosystem service delivery[J]. Frontiers in Plant Science, 2018, 9:127.
4 Cardona L , Revelles M , Sales M , et al . Meadows of the seagrass Posidonia oceanica are a significant source of organic matter for adjoining ecosystems[J]. Marine Ecology Progress Series, 2007, 335:123-131.
5 Kennedy H , Beggins J , Duarte C M , et al . Seagrass sediments as a global carbon sink: Isotopic constraints[J]. Global Biogeochemical Cycles, 2010,24: GB4026.
6 Belicka L L , Burkholder D , Fourqurean J W , et al . Stable isotope and fatty acid biomarkers of seagrass, epiphytic, and algal organic matter to consumers in a pristine seagrass ecosystem[J]. Marine and Freshwater Research, 2012, 63(11): 1 085-1 097.
7 Jiménez-Ramos R , Brun F G , Egea L G , et al . Food choice effects on herbivory: Intra-specific seagrass palatability and inter-specific macrophyte palatability in seagrass communities[J]. Estuarine, Coastal and Shelf Science, 2018,204:31-39.
8 Ouisse V , Riera P , Migné A , et al . Food web analysis in intertidal Zostera marina and Zostera noltii communities in winter and summer[J]. Marine Biology, 2012, 159(1): 165-175.
9 Coll M , Schmidt A , Romanuk T , et al . Food-web structure of seagrass communities across different spatial scales and human impacts[J]. PloS ONE, 2011, 6(7): 1-13.
10 Schmidt A L , Wysmyk J K , Craig S E , et al . Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds[J]. Limnology and Oceanography, 2012, 57(5): 1 389-1 402.
11 Schmidt A L , Coll M , Lotze H K . Regional-scale differences in eutrophication effects on Eelgrass-associated (Zostera marina) macrofauna[J]. Estuaries and Coasts, 2017, 40(4):1 096-1 112.
12 Leoni V , Vela A , Pasqualini V , et al . Effects of experimental reduction of light and nutrient enrichments (N and P) on seagrasses: A review[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2008, 18(2): 202-220.
13 Vergés A , Alcoverro T , Romero J . Plant defences and the role of epibiosis in mediating within-plant feeding choices of seagrass consumers[J]. Oecologia, 2011, 166(2): 381-390.
14 Carlier A , Riera P , Amouroux J M , et al . Food web structure of two Mediterranean lagoons under varying degree of eutrophication[J]. Journal of Sea Research, 2008, 60(4): 264-275.
15 Kharlamenko V , Kiyashko S , Imbs A , et al . Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses[J]. Marine Ecology Progress Series, 2001, 220: 103-117.
16 Vizzini S , Mazzola A . Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: Evidence for spatial variability[J]. Estuarine, Coastal and Shelf Science, 2006, 66(3): 459-467.
17 Vonk J A , Christianen M J , Stapel J . Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows[J]. Estuarine, Coastal and Shelf Science, 2008, 79(4): 653-660.
18 Jaschinski S , Brepohl D C , Sommer U . Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses[J]. Marine Ecology Progress Series, 2008, 358: 103-114.
19 Lebreton B , Richard P , Galois R , et al . Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: Evidence from stable isotope and fatty acid analyses[J]. Estuarine, Coastal and Shelf Science, 2011, 92(1): 140-153.
20 Fan Minling , Huang Xiaoping , Zhang Dawen , et al . Food sources of fish and macro-invertebrates in a tropical seagrass bed at Xincun Bay,Southern China[J]. Acta Ecologica Sinica, 2011, 31(1): 31-38.
樊敏玲, 黄小平, 张大文, 等 . 海南新村湾海草床主要鱼类及大型无脊椎动物的食源[J]. 生态学报, 2011, 31(1): 31-38.
21 Cui Ying , Wu Ying , Zhang Jing . Identification of diet sources of Siganus in Qinlan Bay of Hainan Province with biomarkers[J]. Journal of Applied Oceanography, 2013, 32(4): 540-548.
崔莹, 吴莹, 张经 . 生物标志物对海南清澜湾水域篮子鱼食物来源的表征[J]. 应用海洋学学报, 2013, 32(4): 540-548.
22 Dubois S , Blanchet H , Garcia A , et al . Trophic resource use by macrozoobenthic primary consumers within a semi-enclosed coastal ecosystem: Stable isotope and fatty acid assessment[J]. Journal of Sea Research, 2014, 88: 87-99.
23 Dromard C R , Vaslet A , Gautier F , et al . Resource use by three juvenile scarids (Cryptotomus roseus, Scarus iseri, Sparisoma radians) in Caribbean seagrass beds[J]. Aquatic Botany, 2017, 136: 1-8.
24 Xu W Z , Cheung S G , Zhang Z N , et al . Dual isotope assessment of trophic dynamics of an intertidal infaunal community with seasonal shifts in food sources[J]. Marine Biology, 2018, 165(1): 21.
25 Mittermayr A , Fox S E , Sommer U . Temporal variation in stable isotope composition (δ13C, δ15N and δ34S) of a temperate Zostera marina food web[J]. Marine Ecology Progress Series, 2014, 505: 95-105.
26 Connolly R M , Hindell J S , Gorman D . Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats[J]. Marine Ecology Progress Series, 2005, 286: 69-79.
27 Olsen Y S , Fox S E , Hofmann L , et al . Benthic community composition and faunal stable isotopic signatures differ across small spatial scales in a temperate estuary[J]. Marine Environmental Research, 2013, 86: 12-20.
28 Park H J , Choy E J , Lee K S , et al . Trophic transfer between coastal habitats in a seagrass-dominated macrotidal embayment system as determined by stable isotope and fatty acid signatures[J]. Marine and Freshwater Research, 2013, 64: 1 169-1 183.
29 Xu Qiang , Yang Hongsheng . Fatty acid biomarker and its application in marine trophic relation studies[J]. Acta Oceanologica Sinica, 2011,33(1): 1-6.
许强, 杨红生 . 脂肪酸标志物在海洋生态系统营养关系研究中的应用[J]. 海洋学报, 2011, 33(1): 1-6.
30 Wu Y , Wang N , Zhang J , et al . Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem[J]. Chinese Journal of Oceanology and Limnology, 2016, 34: 1 085-1 096.
31 Williams C J , Jaffé R , Anderson W T , et al . Importance of seagrass as a carbon source for heterotrophic bacteria in a subtropical estuary (Florida Bay)[J]. Estuarine, Coastal and Shelf Science, 2009, 85(3): 507-514.
32 Heck Jr K L , Valentine J F . Plant-herbivore interactions in seagrass meadows[J]. Journal of Experimental Marine Biology and Ecology, 2006, 330(1): 420-436.
33 Smit A J , Brearley A , Hyndes G A , et al . δ15N and δ13C analysis of a Posidonia sinuosa seagrass bed[J]. Aquatic Botany, 2006, 84(3): 277-282.
34 Liu Songlin , Jiang Zhijian , Wu Yunchao , et al . Nursery function of seagrass beds and its mechanisms[J]. Acta Ecologica Sinica, 2015, 35(24): 7 931-7 940.
刘松林, 江志坚, 吴云超, 等 . 海草床育幼功能及其机理[J]. 生态学报, 2015, 35(24): 7 931-7 940.
35 Perkins-Visser E , Wolcott T G , Wolcott D L . Nursery role of seagrass beds: Enhanced growth of juvenile blue crabs (Callinectes sapidus Rathbun)[J]. Journal of Experimental Marine Biology and Ecology, 1996, 198(2): 155-173.
36 Verwey M , Nagelkerken I , Graaff D , et al . Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: A field experiment[J]. Marine Ecology Progress Series, 2006, 306: 257-268.
37 Leduc D , Probert P K . Small-scale effect of intertidal seagrass (Zostera muelleri) on meiofaunal abundance, biomass, and nematode community structure[J]. Journal of the Marine Biological Association of the United Kingdom, 2011, 91(3): 579-591.
38 Dethier M , Sosik E , Galloway A , et al . Addressing assumptions: Variation in stable isotopes and fatty acids of marine macrophytes can confound conclusions of food web studies[J]. Marine Ecology Progress Series, 2013, 478: 1-14.
39 Spivak A C , Canuel E A , Duffy J E , et al . Nutrient enrichment and food web composition affect ecosystem metabolism in an experimental seagrass habitat[J]. PloS ONE, 2009, 4(10): e7473.
40 Kirsch K D , Valentine J F , Heck K L . Parrotfish grazing on turtlegrass Thalassia testudinum: Evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary[J]. Marine Ecology Progress Series, 2002, 227: 71-85.
41 Holzer K , Rueda J , McGlathery K . Differences in the feeding ecology of two seagrass-associated snails[J]. Estuaries and Coasts, 2011, 34(6): 1 140-1 149.
42 Vergés A , Becerro M , Alcoverro T , et al . Experimental evidence of chemical deterrence against multiple herbivores in the seagrass Posidonia oceanica [J]. Marine Ecology Progress Series, 2007, 343: 107-114.
43 Del Río L , Vidal J , Betancor S , et al . Differences in herbivory intensity between the seagrass Cymodocea nodosa and the green alga Caulerpa prolifera inhabiting the same habitat[J]. Aquatic Botany, 2016, 128: 48-57.
44 Goecker M , Heck Jr K , Valentine J . Effects of nitrogen concentrations in turtlegrass Thalassia testudinum on consumption by the bucktooth parrotfish Sparisoma radians [J]. Marine Ecology Progress Series, 2005, 286: 239-248.
45 Holzer K K , Seekell D A , McGlathery K J . Bucktooth parrotfish Sparisoma radians grazing on Thalassia in Bermuda varies seasonally and with background nitrogen content[J]. Journal of Experimental Marine Biology and Ecology, 2013, 443: 27-32.
46 Valentine J F , Duffy J E . The central role of grazing in seagrass ecology[M] //Larkum A W , Orth R R J , Duarte C M , eds . Seagrasses: Biology, Ecology, and Conservation. Dordrecht: Springer, 2006: 463-501.
47 Hixson S M , Arts M T . Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton[J]. Global Change Biology, 2016, 22(8): 2 744-2 755.
48 Steele L , Valentine J F . Seagrass deterrence to mesograzer herbivory: Evidence from mesocosm experiments and feeding preference trials[J]. Marine Ecology Progress Series, 2015, 524: 83-94.
49 Darnell K M , Heck K L . Species-specific effects of prior grazing on the palatability of turtlegrass[J]. Journal of Experimental Marine Biology and Ecology, 2013, 440: 225-232.
50 Marco-Méndez C , Ferrero-Vicente L M , Prado P , et al . Epiphytes and nutrient contents influence Sarpa salpa herbivory on Caulerpa spp vs. seagrass species in Mediterranean meadows[J]. Estuarine, Coastal and Shelf Science, 2017, 184: 54-66.
51 Qiu Guanglong , Zhou Haolang , Qin Qiurong , et al . Interactions between seagrass ecosystem and the endangered marine mammal dugong[J]. Marine Environmental Science, 2013, 32(6): 970-974.
邱广龙, 周浩郎, 覃秋荣, 等 . 海草生态系统与濒危海洋哺乳动物儒艮的相互关系[J]. 海洋环境科学, 2013, 32(6): 970-974.
52 Wang Feng , Zhou Yi . Seagrass-herbivore interactions in seagrass seabed: A review[J].Chinese Journal of Ecology, 2014, 33(3): 843-848.
王峰, 周毅 . 海草床中的海草—草食动物相互作用[J]. 生态学杂志, 2014, 33(3): 843-848.
53 Cohen J , Beaver R , Cousins S , et al . Improving food webs[J]. Ecology, 1993, 74: 252-258.
54 Minagawa M , Wada E . Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 1 135-1 140.
55 Zanden M J V , Rasmussen J B . Primary consumer δ13C and δ15N and the trophic position of aquatic consumers[J]. Ecology, 1999, 80(4): 1 395-1 404.
56 Jephson T , Nystr?m P , Moksnes P O , et al . Trophic interactions in Zostera marina beds along the Swedish coast[J]. Marine Ecology Progress Series, 2008, 369: 63-76.
57 Mukai H , Iijima A . Grazing effects of a gammaridean Amphipoda, Ampithoe sp., on the seagrass, Syringodium isoetifolium, and epiphytes in a tropical seagrass bed of Fiji[J]. Ecological Research, 1995, 10(3): 243-257.
58 Patrício J , Marques J C . Mass balanced models of the food web in three areas along a gradient of eutrophication symptoms in the south arm of the Mondego estuary (Portugal)[J]. Ecological Modelling, 2006, 197(1): 21-34.
59 Jankowska E , Michel L N , Lepoint G , et al . Stabilizing effects of seagrass meadows on coastal water benthic food webs[J]. Journal of Experimental Marine Biology and Ecology, 2019, 510: 54-63.
60 Burkholder J M , Tomasko D A , Touchette B W . Seagrasses and eutrophication[J]. Journal of Experimental Marine Biology and Ecology, 2007, 350(1): 46-72.
61 Zhang J , Huang X , Jiang Z . Physiological responses of the seagrass Thalassia hemprichii (Ehrenb.) Aschers as indicators of nutrient loading[J]. Marine Pollution Bulletin, 2014, 83: 508-515.
62 Olsen Y , Fox S , Teichberg M , et al . δ15N and δ13C reveal differences in carbon flow through estuarine benthic food webs in response to the relative availability of macroalgae and eelgrass[J]. Marine Ecology Progress Series, 2011, 421: 83-96.
63 Duarte C M , Kennedy H , Marbà N , et al . Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies[J]. Ocean & Coastal Management, 2013, 83: 32-38.
64 Hardison A , Canuel E , Anderson I , et al . Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments[J]. Biogeosciences, 2013, 10: 5 571-5 588.
65 Hernán G , Castejón I , Terrados J , et al . Herbivory and resource availability shift plant defense and herbivore feeding choice in a seagrass system[J]. Oecologia, 2019, 189(3): 719-732.
66 Buchsbaum R N , Short F T , Cheney D P . Phenolic-nitrogen interactions in eelgrass, Zostera marina L.: Possible implications for disease resistance[J]. Aquatic Botany, 1990, 37(3): 291-297.
67 Tewfik A , Rasmussen J B , McCann K S . Simplification of seagrass food webs across a gradient of nutrient enrichment[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64(7): 956-967.
68 Reusch T B , Williams S L . Macrophyte canopy structure and the success of an invasive marine bivalve[J]. Oikos, 1999, 84: 398-416.
69 York P H , Kelaher B P , Booth D J , et al . Trophic responses to nutrient enrichment in a temperate seagrass food chain[J]. Marine Ecology Progress Series, 2012, 449: 291-296.
[1] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[2] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[3] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[4] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[5] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[6] 邹银洪, 张润宇, 陈敬安, 王立英, 陆顶盘. 黏土矿物在富营养化水体和底泥磷污染控制中的应用研究进展[J]. 地球科学进展, 2018, 33(6): 578-589.
[7] 林晓娟, 高姗, 仉天宇, 刘桂梅. 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 2018, 33(4): 373-384.
[8] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[9] 王莹, 刘同旭, 李芳柏. 微生物—矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31(4): 347-356.
[10] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[11] 陈小梅, 闫俊华, 林媚珍, 褚国伟, 吴建平, 张德强. 南亚热带森林植被恢复演替中土壤有机碳组分及其稳定[J]. 地球科学进展, 2016, 31(1): 86-93.
[12] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
[13] 曹芳, 章炎麟. 碳质气溶胶的放射性碳同位素( 14C)源解析:原理、方法和研究进展[J]. 地球科学进展, 2015, 30(4): 425-432.
[14] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[15] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
阅读次数
全文


摘要