地球科学进展 ›› 2021, Vol. 36 ›› Issue (1): 83 -94. doi: 10.11867/j.issn.1001-8166.2021.005

全球变化研究 上一篇    下一篇

模型揭示的浅水湖泊稳态转换影响因素分析
邓文文 1 , 2( ), 王荣 2( ), 刘正文 1 , 2 , 3, 郑文秀 2 , 4, 张晨雪 2 , 5   
  1. 1.暨南大学生态学系水生生物研究所,广东 广州 510632
    2.中国科学院南京地理与湖泊研究所,江苏 南京 210008
    3.中国—丹麦科研教育中心,北京 100190
    4.中国科学院大学,北京 100049
    5.安徽师范大学地理与旅游学院,安徽 芜湖 241003
  • 收稿日期:2020-11-28 修回日期:2020-12-29 出版日期:2021-03-19
  • 通讯作者: 王荣 E-mail:dww_running@163.com;rwang@niglas.ac.cn
  • 基金资助:
    中国科学院南京地理与湖泊研究所“一三五”自主部署项目“气候变化对典型浅水湖泊生态系统弹性的影响及机理”(NIGLAS2017GH01);中国科学院青年创新促进会(Award 2017364)

The Influencing Factors of Critical Transition in Shallow Lakes Revealed by Model

Wenwen DENG 1 , 2( ), Rong WANG 2( ), Zhengwen LIU 1 , 2 , 3, Wenxiu ZHENG 2 , 4, Chenxue ZHANG 2 , 5   

  1. 1.Department of Ecology and Institute of Hydrobiology,Jinan University,Guangzhou 510632,China
    2.Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing 210008,China
    3.Sino-Danish Center for Education and Research,Beijing 100190,China
    4.University of Chinese Academy of Sciences,Beijing 100049,China
    5.School of Geography and Tourism,Anhui Normal University,Wuhu Anhui 241003,China
  • Received:2020-11-28 Revised:2020-12-29 Online:2021-03-19 Published:2021-03-19
  • Contact: Rong WANG E-mail:dww_running@163.com;rwang@niglas.ac.cn
  • About author:DENG Wenwen (1995-), female, Huizhou City, Guangdong Province, Master student. Research areas include eutrophication process. E-mail: dww_running@163.com
  • Supported by:
    the Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences "One Three Five" Independent Deployment Project "The impact and mechanism of climate change on the resilience of typical shallow lake ecosystem"(NIGLAS2017GH01);The Youth Innovation Promotion Association, CAS(Award 2017364)

富营养化会导致浅水湖泊发生稳态转换,生态系统服务严重受损。磷是驱动湖泊发生稳态转换的重要环境因子,探究湖水磷浓度的变化规律是湖泊管理的关键。通过磷动力学模型,从影响湖水磷浓度的主要参数入手,探讨了每种参数变化对磷浓度的具体影响。结合前人研究结果,详细讨论了不同类型气候变化和人类活动对湖泊稳态转换时间、滞后时长、修复速率等的影响。研究认为,气候变化所导致的温度升高、光强减弱、风浪增强等和人类活动所导致的生物扰动、水位波动增强等因素变化虽不会改变湖泊稳态转换突变时间,但会推迟湖泊修复时间,造成突变阈值减小,滞后时间延长,稳态增大。在湖泊保护中要重点考虑主要外力驱动对湖泊稳态转换过程影响的区别,避免有害突变的发生。

Eutrophication can cause critical transitions in shallow lakes and severely impair ecosystem services. Phosphorus is one of important environmental factors that cause critical transitions in lake ecosystems. Exploring the mechanisms of phosphorus dynamics in lakes is a key to lake management. This paper simulated the phosphorus concentration variations in lakes using a phosphorus kinetic model, and discussed the specific impacts of main model parameters on simulation output. Based on literature reviews, we discussed in detail the effects of different types of climate change and human activities on the critical transition time, hysteresis length, and restoration rate of lakes. The paper indicated that changes in factors such as climate change induced temperature warming, weakened light intensity, increased wind/waves and human activities caused biological disturbances and water level fluctuations would not change the threshold of transition or the time of transition, but would significantly delay the recovery time, decrease the recovery threshold and extend the lag period and the steady state. For the management of lake ecosystems, we suggested that it be important to consider the different impacts from different external perturbations on the process of critical transitions to avoid harmful tipping point.

中图分类号: 

表1 磷动力学模型参数含义及参数设置
Table 1 Meaning and setting of phosphorus kinetic model parameters
表1 磷动力学模型参数含义及参数设置
Table 1 Meaning and setting of phosphorus kinetic model parameters
图1 磷动力学模型参数示意图及湖泊生态系统稳态转换
(a)模型参数的物理意义;(b)模型输出的湖泊生态系统折叠交叉模式及湖泊生态系统稳态转换
Fig.1 Schematic diagram of phosphorus kinetic model parameters and critical transition of lake ecosystem
(a)Schematic diagram of the model formula;(b)Collapsed catastrophe model of the lake ecosystem and critical transition of lake ecosystem
图1 磷动力学模型参数示意图及湖泊生态系统稳态转换
(a)模型参数的物理意义;(b)模型输出的湖泊生态系统折叠交叉模式及湖泊生态系统稳态转换
Fig.1 Schematic diagram of phosphorus kinetic model parameters and critical transition of lake ecosystem
(a)Schematic diagram of the model formula;(b)Collapsed catastrophe model of the lake ecosystem and critical transition of lake ecosystem
图2 磷动力学模型结果示意图
(a) 湖水磷浓度随时间变化的曲线( P-t图);(b) 湖水磷浓度和外源驱动的关系( P-α图)
Fig.2 Schematic diagram of phosphorus kinetic model results
(a) The curve of lake water phosphorus concentration with time ( P-t diagram); (b) The relationship between lake water phosphorus concentration and external driving force ( P-α diagram)
图2 磷动力学模型结果示意图
(a) 湖水磷浓度随时间变化的曲线( P-t图);(b) 湖水磷浓度和外源驱动的关系( P-α图)
Fig.2 Schematic diagram of phosphorus kinetic model results
(a) The curve of lake water phosphorus concentration with time ( P-t diagram); (b) The relationship between lake water phosphorus concentration and external driving force ( P-α diagram)
图3 磷动力学模型结果
(a) ~ (c)分别是指改变 α的斜率后对应的磷输入速率随时间变化的图( α-t图)、湖水磷浓度随时间变化的图( P-t图)、湖水磷浓度随磷输入速率变化的图( P-α图);(d)和(e)分别是指改变 r值大小所对应的湖水磷浓度随时间变化的图( P-t图)、湖水磷浓度随磷输入速率变化的图( P-α图);(f)和(g)分别是指改变 s值大小所对应的湖水磷浓度随时间变化的图( P-t图)、湖水磷浓度随磷输入速率变化的图( P-α图);(h)和(i)分别是指改变 σ值大小所对应的湖水磷浓度随时间变化的图( P-t图)、湖水磷浓度随磷输入速率变化的图( P-α图)
Fig.3 Results of the phosphorus kinetic model
(a)~(c) Respectively refer to the graph of the change of phosphorus input rate with time after changing the slope of α ( α- t graph), the graph of the change of water phosphorus concentration with time ( P- t graph), and the phosphorus concentration of water graph of change with phosphorus input rate ( P- α graph);(d) and (e) Respectively refer to the graph of changes in water phosphorus concentration with time ( P- t graph) and the graph of changes in water phosphorus concentration with phosphorus input rate ( P- α graph) corresponding to changes in the value of r; (f) and (g) Respectively refer to the graph of the change of phosphorus concentration in water with time ( P- t graph) and the graph of the change of phosphorus concentration in water with phosphorus input rate ( P- α graph) when the value of s is changed;(h) and (i) Respectively refer to the graph of the change of phosphorus concentration in water with time ( P- t graph) and the graph of the change of phosphorus concentration in water with the phosphorus input rate ( P- α graph) corresponding to the size of σ value
图3 磷动力学模型结果
(a) ~ (c)分别是指改变 α的斜率后对应的磷输入速率随时间变化的图( α-t图)、湖水磷浓度随时间变化的图( P-t图)、湖水磷浓度随磷输入速率变化的图( P-α图);(d)和(e)分别是指改变 r值大小所对应的湖水磷浓度随时间变化的图( P-t图)、湖水磷浓度随磷输入速率变化的图( P-α图);(f)和(g)分别是指改变 s值大小所对应的湖水磷浓度随时间变化的图( P-t图)、湖水磷浓度随磷输入速率变化的图( P-α图);(h)和(i)分别是指改变 σ值大小所对应的湖水磷浓度随时间变化的图( P-t图)、湖水磷浓度随磷输入速率变化的图( P-α图)
Fig.3 Results of the phosphorus kinetic model
(a)~(c) Respectively refer to the graph of the change of phosphorus input rate with time after changing the slope of α ( α- t graph), the graph of the change of water phosphorus concentration with time ( P- t graph), and the phosphorus concentration of water graph of change with phosphorus input rate ( P- α graph);(d) and (e) Respectively refer to the graph of changes in water phosphorus concentration with time ( P- t graph) and the graph of changes in water phosphorus concentration with phosphorus input rate ( P- α graph) corresponding to changes in the value of r; (f) and (g) Respectively refer to the graph of the change of phosphorus concentration in water with time ( P- t graph) and the graph of the change of phosphorus concentration in water with phosphorus input rate ( P- α graph) when the value of s is changed;(h) and (i) Respectively refer to the graph of the change of phosphorus concentration in water with time ( P- t graph) and the graph of the change of phosphorus concentration in water with the phosphorus input rate ( P- α graph) corresponding to the size of σ value
表2 磷动力学模型结果汇总
Table 2 Summary of results of phosphorus kinetic mode
表2 磷动力学模型结果汇总
Table 2 Summary of results of phosphorus kinetic mode
表3 湖泊水体磷浓度的影响要素及机理的相关结论
Table 3 Influencing factors and mechanism of phosphorus concentration in lake water
分类 影响因素 结果 原因 参考文献
气候 变化 降雨模式改变 增加水体营养物质 增加营养负荷面源;改变营养物质的入湖通量和水力停留时间 [ 46 47 ]
风浪扰动 促进底泥磷释放 增加沉积物的再悬浮量;抑制沉水植物生长 [ 48 , 49 ]
水温 水温升高,促进底泥磷释放 水温升高能促进底泥中Fe-P和Ca-P的释放 [ 50 ~ 52 ]
溶解氧 浓度 厌氧条件下,促进底泥磷释放 难溶的(Fe(OH)3)x转化为可溶性的 Fe(OH)2,使 PO 4 3 - 脱离沉积物进入间隙水 [ 53 , 54 ]
光照强度 照度增强抑制底泥磷释放 促进底栖藻类生长,形成阻碍底泥磷释放的屏障 [ 55 ]
pH 酸性和碱性条件下,促进底泥磷释放;中性条件下,抑制底泥磷释放 酸性条件下,促进Ca-P释放;碱性条件下,促进Fe-P释放;中性条件下,有利于底泥的磷吸附 [ 56 ~ 58 ]
沉水植物 吸收水体和沉积物中的营养盐;抑制底泥磷释放 抑制底泥再悬浮;提高湖水—底泥界面的氧化还原电位,从而抑制底泥中Fe-P释放 [ 59 , 60 ]
人类 活动 入湖径流水质 水质差会导致湖泊磷浓度增多 携带大量营养盐进入湖泊 [ 61 ]
水位 水位升高,湖泊富营养化程度降低;水位下降,湖泊富营养化程度增加 水位升高会稀释湖水营养物质,水位降低会加剧底泥的再悬浮和磷的释放 [ 62 , 63 ]
生物扰动 经济鱼类(鲤、鲢和鳙等)和一些底栖动物(水丝蚓)促进底泥磷释放;一些螺类(如田螺、石螺等)和双壳类(如河蚌、河岘等)抑制底泥磷释放 鱼类密度的增加及其摄食活动会促进底泥的再悬浮;双壳类可以降低徜水生境中的悬浮物浓度,提高透明度;螺类能促进沉水植物的生长,降低浮游植物的密度 [ 64 ~ 68 ]
微生物 有微生物促进底泥磷释放;无微生物抑制底泥磷释放 微生物可通过微生物作用将沉积物中的不溶性磷转化为可溶性磷 [ 69 , 70 ]
换水周期 换水周期短,湖泊富营养化程度降低;换水周期长,富营养化程度加深 换水周期短,导致湖泊大量营养盐流出 [ 71 ]
表3 湖泊水体磷浓度的影响要素及机理的相关结论
Table 3 Influencing factors and mechanism of phosphorus concentration in lake water
分类 影响因素 结果 原因 参考文献
气候 变化 降雨模式改变 增加水体营养物质 增加营养负荷面源;改变营养物质的入湖通量和水力停留时间 [ 46 47 ]
风浪扰动 促进底泥磷释放 增加沉积物的再悬浮量;抑制沉水植物生长 [ 48 , 49 ]
水温 水温升高,促进底泥磷释放 水温升高能促进底泥中Fe-P和Ca-P的释放 [ 50 ~ 52 ]
溶解氧 浓度 厌氧条件下,促进底泥磷释放 难溶的(Fe(OH)3)x转化为可溶性的 Fe(OH)2,使 PO 4 3 - 脱离沉积物进入间隙水 [ 53 , 54 ]
光照强度 照度增强抑制底泥磷释放 促进底栖藻类生长,形成阻碍底泥磷释放的屏障 [ 55 ]
pH 酸性和碱性条件下,促进底泥磷释放;中性条件下,抑制底泥磷释放 酸性条件下,促进Ca-P释放;碱性条件下,促进Fe-P释放;中性条件下,有利于底泥的磷吸附 [ 56 ~ 58 ]
沉水植物 吸收水体和沉积物中的营养盐;抑制底泥磷释放 抑制底泥再悬浮;提高湖水—底泥界面的氧化还原电位,从而抑制底泥中Fe-P释放 [ 59 , 60 ]
人类 活动 入湖径流水质 水质差会导致湖泊磷浓度增多 携带大量营养盐进入湖泊 [ 61 ]
水位 水位升高,湖泊富营养化程度降低;水位下降,湖泊富营养化程度增加 水位升高会稀释湖水营养物质,水位降低会加剧底泥的再悬浮和磷的释放 [ 62 , 63 ]
生物扰动 经济鱼类(鲤、鲢和鳙等)和一些底栖动物(水丝蚓)促进底泥磷释放;一些螺类(如田螺、石螺等)和双壳类(如河蚌、河岘等)抑制底泥磷释放 鱼类密度的增加及其摄食活动会促进底泥的再悬浮;双壳类可以降低徜水生境中的悬浮物浓度,提高透明度;螺类能促进沉水植物的生长,降低浮游植物的密度 [ 64 ~ 68 ]
微生物 有微生物促进底泥磷释放;无微生物抑制底泥磷释放 微生物可通过微生物作用将沉积物中的不溶性磷转化为可溶性磷 [ 69 , 70 ]
换水周期 换水周期短,湖泊富营养化程度降低;换水周期长,富营养化程度加深 换水周期短,导致湖泊大量营养盐流出 [ 71 ]
表4 磷动力学模型结果及其与参数相对应的影响因素
Table 4 Phosphorus kinetic model results and their corresponding influencing factors
表4 磷动力学模型结果及其与参数相对应的影响因素
Table 4 Phosphorus kinetic model results and their corresponding influencing factors
1 SCHEFFER M, CARPENTER S R, LENTON T M, et al. Anticipating critical transitions[J]. Science, 2012,338(6 105): 344-348.
SCHEFFER M, CARPENTER S R, LENTON T M, et al. Anticipating critical transitions[J]. Science, 2012,338(6 105): 344-348.
2 QIU Guoyu, ZHANG Xiaonan. China's urbanization and its ecological environment challenges in the 21st century[J]. Advances in Earth Science,2019,34(6):640-649.
QIU Guoyu, ZHANG Xiaonan. China's urbanization and its ecological environment challenges in the 21st century[J]. Advances in Earth Science,2019,34(6):640-649.
邱国玉,张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展,2019,34(6):640-649.
邱国玉,张晓楠. 21世纪中国的城市化特点及其生态环境挑战[J]. 地球科学进展,2019,34(6):640-649.
3 ZHANG Hucai, CHANG Fengqin, DUAN Lizeng, et al. Water quality characteristics and variations of Lake Dian[J]. Advances in Earth Science,2017,32(6):651-659.
ZHANG Hucai, CHANG Fengqin, DUAN Lizeng, et al. Water quality characteristics and variations of Lake Dian[J]. Advances in Earth Science,2017,32(6):651-659.
张虎才,常凤琴,段立曾,等. 滇池水质特征及变化[J]. 地球科学进展,2017,32(6):651-659.
张虎才,常凤琴,段立曾,等. 滇池水质特征及变化[J]. 地球科学进展,2017,32(6):651-659.
4 QIN B Q, ZHU G W, GAO G, et al. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management[J]. Environmental Management,2010,45(1):105-112.
QIN B Q, ZHU G W, GAO G, et al. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management[J]. Environmental Management,2010,45(1):105-112.
5 HAVENS K E, FUKUSHIMA T, XIE P, et al. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee(USA)[J]. Environmental Pollution,2001,111(2):263-272.
HAVENS K E, FUKUSHIMA T, XIE P, et al. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee(USA)[J]. Environmental Pollution,2001,111(2):263-272.
6 SCHINDER D W. Recent advances in the understanding and management of eutrophication[J]. Limnology and Oceanography,2006,51(1, part 2): 356-363.
SCHINDER D W. Recent advances in the understanding and management of eutrophication[J]. Limnology and Oceanography,2006,51(1, part 2): 356-363.
7 XUE Qingju, TANG Xiangming, GONG Zhijun, et al. Succession of macrozoobenthic communities and implications for ecological restoration in an urban Lake Wuli,Jiangsu Province[J]. Journal of Lake Sciences, 2020,32(3):762-771.
XUE Qingju, TANG Xiangming, GONG Zhijun, et al. Succession of macrozoobenthic communities and implications for ecological restoration in an urban Lake Wuli,Jiangsu Province[J]. Journal of Lake Sciences, 2020,32(3):762-771.
薛庆举,汤祥明,龚志军,等.典型城市湖泊五里湖底栖动物群落演变特征及其生态修复应用建议[J]. 湖泊科学,2020,32(3):762-771.
薛庆举,汤祥明,龚志军,等.典型城市湖泊五里湖底栖动物群落演变特征及其生态修复应用建议[J]. 湖泊科学,2020,32(3):762-771.
8 CARPENTER S R. Phosphorus control is critical to mitigating eutrophication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11 039-11 040.
CARPENTER S R. Phosphorus control is critical to mitigating eutrophication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11 039-11 040.
9 KALFF J. Limnology: Inland water ecosystems[M]. GU Binhe, LIU Zhengwen,LI Kuanyi, et al, translanted. Beijing: Higher Education Press, 2011: 122-126.
KALFF J. Limnology: Inland water ecosystems[M]. GU Binhe, LIU Zhengwen,LI Kuanyi, et al, translanted. Beijing: Higher Education Press, 2011: 122-126.
Kalff J.湖沼学:内陆水生态系统[M]. 古滨河,刘正文,李宽意,等,译.北京:高等教育出版社,2011:122-126.
Kalff J.湖沼学:内陆水生态系统[M]. 古滨河,刘正文,李宽意,等,译.北京:高等教育出版社,2011:122-126.
10 ZHAI Shuhua, HAN Tao, CHEN Fang. Self-purification capacity of nitrogen and phosphorus of Lake Taihu on the basis of mass balance[J]. Journal of Lake Sciences, 2014,26(2):185-190.
ZHAI Shuhua, HAN Tao, CHEN Fang. Self-purification capacity of nitrogen and phosphorus of Lake Taihu on the basis of mass balance[J]. Journal of Lake Sciences, 2014,26(2):185-190.
翟淑华,韩涛,陈方.基于质量平衡的太湖氮、磷自净能力计算[J]. 湖泊科学,2014,26(2):185-190.
翟淑华,韩涛,陈方.基于质量平衡的太湖氮、磷自净能力计算[J]. 湖泊科学,2014,26(2):185-190.
11 ZHU Guangwei, QIN Boqiang, GAO Guang. Direct evidence of the explosive release of endogenous phosphorus in large shallow lakes caused by wind wave disturbance[J]. Scientific Bulletin, 2005, 50(1): 66-71.
ZHU Guangwei, QIN Boqiang, GAO Guang. Direct evidence of the explosive release of endogenous phosphorus in large shallow lakes caused by wind wave disturbance[J]. Scientific Bulletin, 2005, 50(1): 66-71.
朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷暴发性释放的直接证据[J]. 科学通报,2005, 50(1): 66-71.
朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷暴发性释放的直接证据[J]. 科学通报,2005, 50(1): 66-71.
12 WEBER M J, BROWN M L. Effects of common carp on aquatic ecosystems 80 years after "Carp as a Dominant": Ecological insights for fisheries management[J]. Reviews in Fisheries Science, 2009, 17(4): 524-537.
WEBER M J, BROWN M L. Effects of common carp on aquatic ecosystems 80 years after "Carp as a Dominant": Ecological insights for fisheries management[J]. Reviews in Fisheries Science, 2009, 17(4): 524-537.
13 ZHANG Lei, GU Xiaozhi, WANG Zhaode, et al. The influence of Tubificid worms bioturbation on the exchange of phosphorus across sediment-water interface in lakes[J]. Journal of Lake Sciences, 2010,22(5):666-674.
ZHANG Lei, GU Xiaozhi, WANG Zhaode, et al. The influence of Tubificid worms bioturbation on the exchange of phosphorus across sediment-water interface in lakes[J]. Journal of Lake Sciences, 2010,22(5):666-674.
张雷,古小治,王兆德,等.水丝蚓(Tubificid worms)扰动对磷在湖泊沉积物—水界面迁移的影响[J]. 湖泊科学, 2010,22(5):666-674.
张雷,古小治,王兆德,等.水丝蚓(Tubificid worms)扰动对磷在湖泊沉积物—水界面迁移的影响[J]. 湖泊科学, 2010,22(5):666-674.
14 WANG Hua, CHEN Huaxin, XU Zhaoan, et al. Variation trend of total phosphorus and its controlling factors in Lake Taihu, 2010-2017[J]. Journal of Lake Sciences, 2019, 31(4):919-929.
WANG Hua, CHEN Huaxin, XU Zhaoan, et al. Variation trend of total phosphorus and its controlling factors in Lake Taihu, 2010-2017[J]. Journal of Lake Sciences, 2019, 31(4):919-929.
王华, 陈华鑫, 徐兆安, 等. 2010—2017年太湖总磷浓度变化趋势分析及成因探讨[J]. 湖泊科学, 2019,31(4):919-929.
王华, 陈华鑫, 徐兆安, 等. 2010—2017年太湖总磷浓度变化趋势分析及成因探讨[J]. 湖泊科学, 2019,31(4):919-929.
15 LIU Zhengwen, ZHANG Xiufeng, CHEN Feizhou, et al. The responses of the benthic-pelagic coupling to eutrophication and regime shifts in shallow lakes: Implication for lake restoration[J]. Journal of Lake Sciences, 2020,32(1):1-10.
LIU Zhengwen, ZHANG Xiufeng, CHEN Feizhou, et al. The responses of the benthic-pelagic coupling to eutrophication and regime shifts in shallow lakes: Implication for lake restoration[J]. Journal of Lake Sciences, 2020,32(1):1-10.
刘正文,张修峰,陈非洲,等.浅水湖泊底栖—敞水生境耦合对富营养化的响应与稳态转换机理:对湖泊修复的启示[J]. 湖泊科学,2020,32(1):1-10.
刘正文,张修峰,陈非洲,等.浅水湖泊底栖—敞水生境耦合对富营养化的响应与稳态转换机理:对湖泊修复的启示[J]. 湖泊科学,2020,32(1):1-10.
16 SCHEFFER M. Ecology of shallow lakes[M]. Netherlands:Springer, 1998.
SCHEFFER M. Ecology of shallow lakes[M]. Netherlands:Springer, 1998.
17 KALFF J, KNOECHEL R. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes[J]. Annual Review of Ecology and Systematics,1978,9(1):475-495.
KALFF J, KNOECHEL R. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes[J]. Annual Review of Ecology and Systematics,1978,9(1):475-495.
18 DIOVISALVI N,BOHN V Y,PICCOLO M C, et al. Shallow lakes from the central plains of argentina: An overview and worldwide comparative analysis of their basic limnological features[J]. Hydrobiologia, 2015,752(1):419-432.
DIOVISALVI N,BOHN V Y,PICCOLO M C, et al. Shallow lakes from the central plains of argentina: An overview and worldwide comparative analysis of their basic limnological features[J]. Hydrobiologia, 2015,752(1):419-432.
19 JEPPESEN E, SONDERGAARD M, KRONVANG B, et al. Lake and catchment management in Denmark[J]. Hydrobiologia, 1999, 395/396: 419-432.
JEPPESEN E, SONDERGAARD M, KRONVANG B, et al. Lake and catchment management in Denmark[J]. Hydrobiologia, 1999, 395/396: 419-432.
20 SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions[J]. Nature, 2009, 461(7 260): 53-59.
SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions[J]. Nature, 2009, 461(7 260): 53-59.
21 SCHEFFER M, CARPENTER S R. Catastrophic regime shifts in ecosystems: Linking theory to observation[J]. Trends in Ecology & Evolution, 2003, 18(12): 648-656.
SCHEFFER M, CARPENTER S R. Catastrophic regime shifts in ecosystems: Linking theory to observation[J]. Trends in Ecology & Evolution, 2003, 18(12): 648-656.
22 WANG R, DEARING J A, LANGDON P G, et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state[J]. Nature, 2012, 492(7 429): 419-422.
WANG R, DEARING J A, LANGDON P G, et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state[J]. Nature, 2012, 492(7 429): 419-422.
23 XU M, WANG R, DONG X H, et al. A palaeolimnological perspective to understand regime-shift dynamics in two Yangtze-basin lakes[J]. Biology Letters,2019, 15(11). DOI:10.1098/rsbl.2019.0447.
XU M, WANG R, DONG X H, et al. A palaeolimnological perspective to understand regime-shift dynamics in two Yangtze-basin lakes[J]. Biology Letters,2019, 15(11). DOI:10.1098/rsbl.2019.0447.
doi: 10.1098/rsbl.2019.0447    
24 DAI L, VORSELEN D, KOROLEV K S, et al. Generic indicators for loss of resilience before a tipping point leading to population collapse[J]. Science, 2012,336(6 085):1 175-1 177.
DAI L, VORSELEN D, KOROLEV K S, et al. Generic indicators for loss of resilience before a tipping point leading to population collapse[J]. Science, 2012,336(6 085):1 175-1 177.
25 VERAART A J, FAASSEN E J, DAKOS V, et al. Recovery rates reflect distance to a tipping point in a living system[J]. Nature,2012,481(7 381): 357-359.
VERAART A J, FAASSEN E J, DAKOS V, et al. Recovery rates reflect distance to a tipping point in a living system[J]. Nature,2012,481(7 381): 357-359.
26 ANDERSEN T K, NIELSEN A, JEPPESEN E, et al. Predicting ecosystem state changes in shallow lakes using an aquatic ecosystem model: Lake Hinge, Denmark, an example[J]. Ecological Applications,2020,30(7):e02160.
ANDERSEN T K, NIELSEN A, JEPPESEN E, et al. Predicting ecosystem state changes in shallow lakes using an aquatic ecosystem model: Lake Hinge, Denmark, an example[J]. Ecological Applications,2020,30(7):e02160.
27 JAMES R T, MARTIN J, WOOL T, et al. A sediment resuspension and water quality model of lake Okeechobee[J]. Journal of the American Water Resources Association,1997,33(3): 661-678.
JAMES R T, MARTIN J, WOOL T, et al. A sediment resuspension and water quality model of lake Okeechobee[J]. Journal of the American Water Resources Association,1997,33(3): 661-678.
28 REN Xiaoqian, SUN Shufen, CHEN Wen, et al. A review of researches on the lake numerical modeling[J]. Advances in Earth Science,2013,28(3): 347-356.
REN Xiaoqian, SUN Shufen, CHEN Wen, et al. A review of researches on the lake numerical modeling[J]. Advances in Earth Science,2013,28(3): 347-356.
任晓倩,孙菽芬,陈文,等. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013,28(3):347-356.
任晓倩,孙菽芬,陈文,等. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013,28(3):347-356.
29 CARPENTER S R. Regime shifts in lake ecosystems: Pattern and variation[M]. Oldendorf/Luhe, Germany: International Ecology Institute,2003.
CARPENTER S R. Regime shifts in lake ecosystems: Pattern and variation[M]. Oldendorf/Luhe, Germany: International Ecology Institute,2003.
30 CARSTENSEN J, TELFORD R J, BIRKS H J B. Diatom flickering prior to regime shift[J]. Nature, 2013,498(7 455): E11-E12.
CARSTENSEN J, TELFORD R J, BIRKS H J B. Diatom flickering prior to regime shift[J]. Nature, 2013,498(7 455): E11-E12.
31 ZHAO L, WANG M G, LIANG Z Y, et al. Identification of regime shifts and their potential drivers in the shallow eutrophic Lake Yilong, Southwest China[J]. Sustainability,2020,12(9). DOI:10.3390/su12093704.
ZHAO L, WANG M G, LIANG Z Y, et al. Identification of regime shifts and their potential drivers in the shallow eutrophic Lake Yilong, Southwest China[J]. Sustainability,2020,12(9). DOI:10.3390/su12093704.
doi: 10.3390/su12093704    
32 ZHAO Yanjie, WANG Rong, YANG Xiangdong, et al. Regime shifts revealed by paleoecological records in Lake Taibai's ecosystem in the middle and lower Yangtze River Basin during the last century[J]. Journal of Lake Sciences, 2016,28(6):1 381-1 390.
ZHAO Yanjie, WANG Rong, YANG Xiangdong, et al. Regime shifts revealed by paleoecological records in Lake Taibai's ecosystem in the middle and lower Yangtze River Basin during the last century[J]. Journal of Lake Sciences, 2016,28(6):1 381-1 390.
赵雁捷,王荣,羊向东,等. 古生态记录揭示的长江中下游太白湖生态系统稳态转换过程[J]. 湖泊科学,2016,28(6):1 381-1 390.
赵雁捷,王荣,羊向东,等. 古生态记录揭示的长江中下游太白湖生态系统稳态转换过程[J]. 湖泊科学,2016,28(6):1 381-1 390.
33 ZHANG Chuming, NI Zhenyu, TANG Hongqu. Tracking ecosystem regime shifts in Lake Xijiu(Taihu Basin) based on chironomid sub-fossil assemblages[J]. Journal of Lake Sciences, 2020,32(2):587-595.
ZHANG Chuming, NI Zhenyu, TANG Hongqu. Tracking ecosystem regime shifts in Lake Xijiu(Taihu Basin) based on chironomid sub-fossil assemblages[J]. Journal of Lake Sciences, 2020,32(2):587-595.
张楚明,倪振宇,唐红渠. 太湖流域西氿摇蚊亚化石群落对湖泊生态系统稳态转换的响应[J]. 湖泊科学,2020,32(2):587-595.
张楚明,倪振宇,唐红渠. 太湖流域西氿摇蚊亚化石群落对湖泊生态系统稳态转换的响应[J]. 湖泊科学,2020,32(2):587-595.
34 HU Yu, CHEN Jianhui, WANG Haipeng, et al. Recent progress and perspectives in paleoenvironmental and paleoclimatic research based on chironomidae (Diptera)[J]. Advances in Earth Science,2016,31(8): 870-884.
HU Yu, CHEN Jianhui, WANG Haipeng, et al. Recent progress and perspectives in paleoenvironmental and paleoclimatic research based on chironomidae (Diptera)[J]. Advances in Earth Science,2016,31(8): 870-884.
胡玉,陈建徽,王海鹏,等. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016,31(8):870-884.
胡玉,陈建徽,王海鹏,等. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016,31(8):870-884.
35 ZHANG Chenxue, XU Min, DONG Yifan, et al. Sedimentary diatom records reveal the succession of ecosystem in Lake Xihu,Dali over the past 50 years[J]. Environmental Science, 2020,41(10):4 572-4 580.
ZHANG Chenxue, XU Min, DONG Yifan, et al. Sedimentary diatom records reveal the succession of ecosystem in Lake Xihu,Dali over the past 50 years[J]. Environmental Science, 2020,41(10):4 572-4 580.
张晨雪,徐敏,董一凡, 等. 硅藻群落指示的近50年来大理西湖湖泊生态系统演变规律[J]. 环境科学,2020,41(10):4 572-4 580.
张晨雪,徐敏,董一凡, 等. 硅藻群落指示的近50年来大理西湖湖泊生态系统演变规律[J]. 环境科学,2020,41(10):4 572-4 580.
36 CHEN Jie, XU Hai, ZHAN Xu, et al. Mechanisms and research methods of phosphorus migration and transformation across sediment-water interface[J]. Journal of Lake Sciences, 2019,31(4):907-918.
CHEN Jie, XU Hai, ZHAN Xu, et al. Mechanisms and research methods of phosphorus migration and transformation across sediment-water interface[J]. Journal of Lake Sciences, 2019,31(4):907-918.
陈洁,许海,詹旭,等. 湖泊沉积物—水界面磷的迁移转化机制与定量研究方法[J]. 湖泊科学,2019,31(4):907-918.
陈洁,许海,詹旭,等. 湖泊沉积物—水界面磷的迁移转化机制与定量研究方法[J]. 湖泊科学,2019,31(4):907-918.
37 ZOU Rui, WU Zhen, ZHAO Lei, et al. Nutrient cycling flux of Lake Dianchi: A three-dimensional water quality modelling approach[J]. Journal of Lake Sciences, 2017,29(4):819-826.
ZOU Rui, WU Zhen, ZHAO Lei, et al. Nutrient cycling flux of Lake Dianchi: A three-dimensional water quality modelling approach[J]. Journal of Lake Sciences, 2017,29(4):819-826.
邹锐, 吴桢,赵磊,等. 湖泊营养盐通量平衡的三维数值模拟[J]. 湖泊科学,2017,29(4):819-826.
邹锐, 吴桢,赵磊,等. 湖泊营养盐通量平衡的三维数值模拟[J]. 湖泊科学,2017,29(4):819-826.
38 CARPENTER S R, LUDWIG D, BROCK W A. Management of eutrophication for lakes subject to potentially irreversible change[J]. Ecological Applications,1999,9(3):751-771.
CARPENTER S R, LUDWIG D, BROCK W A. Management of eutrophication for lakes subject to potentially irreversible change[J]. Ecological Applications,1999,9(3):751-771.
39 ZOU R, WU Z, ZHAO L, et al. Seasonal algal blooms support sediment release of phosphorus via positive feedback in a eutrophic lake: Insights from a nutrient flux tracking modeling[J]. Ecological Modelling,2020,416. DOI:10.1016/j.ecolmodel.2019.108881.
ZOU R, WU Z, ZHAO L, et al. Seasonal algal blooms support sediment release of phosphorus via positive feedback in a eutrophic lake: Insights from a nutrient flux tracking modeling[J]. Ecological Modelling,2020,416. DOI:10.1016/j.ecolmodel.2019.108881.
doi: 10.1016/j.ecolmodel.2019.108881    
40 SUN T A, HILKER F M. Analyzing the mutual feedbacks between lake pollution and human behaviour in a mathematical social-ecological model[J]. Ecological Complexity,2020,43:100834.
SUN T A, HILKER F M. Analyzing the mutual feedbacks between lake pollution and human behaviour in a mathematical social-ecological model[J]. Ecological Complexity,2020,43:100834.
41 ZHANG Yanliang, ZHAO Shuangyue, LI Xiaozhe. Analysis of telemedicine promotion strategy based on Vensim simulation [J]. Chinese Health Service Management, 2020,37(3):161-165,179.
ZHANG Yanliang, ZHAO Shuangyue, LI Xiaozhe. Analysis of telemedicine promotion strategy based on Vensim simulation [J]. Chinese Health Service Management, 2020,37(3):161-165,179.
张炎亮,赵双月,李小哲.基于Vensim仿真的远程医疗推广策略分析[J].中国卫生事业管理,2020,37(3):161-165,179.
张炎亮,赵双月,李小哲.基于Vensim仿真的远程医疗推广策略分析[J].中国卫生事业管理,2020,37(3):161-165,179.
42 WEI Xianpeng, CHAO Lu. Development of green transportation based on Vensim simulation [J]. China Transportation Review, 2016,38(8):57-61.
WEI Xianpeng, CHAO Lu. Development of green transportation based on Vensim simulation [J]. China Transportation Review, 2016,38(8):57-61.
魏贤鹏,朝鲁. 基于Vensim仿真的城市绿色交通发展问题研究[J]. 综合运输,2016,38(8):57-61.
魏贤鹏,朝鲁. 基于Vensim仿真的城市绿色交通发展问题研究[J]. 综合运输,2016,38(8):57-61.
43 SCHEFFER M, CARPENTER S R, FOLEY J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6 856): 591-596.
SCHEFFER M, CARPENTER S R, FOLEY J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6 856): 591-596.
44 Xiaotian LÜ, Yonglong LÜ, SONG Shuai, et al. Eutrophication in cold-water lakes driven by combined effects of climate change and human activities[J]. Acta Ecologica Sinica, 2017,37(22):7 375-7 386.
Xiaotian Lü, Yonglong Lü, SONG Shuai, et al. Eutrophication in cold-water lakes driven by combined effects of climate change and human activities[J]. Acta Ecologica Sinica, 2017,37(22):7 375-7 386.
吕笑天,吕永龙,宋帅,等.气候变化与人类活动双重驱动的冷水湖泊富营养化[J].生态学报,2017,37(22):7 375-7 386.
吕笑天,吕永龙,宋帅,等.气候变化与人类活动双重驱动的冷水湖泊富营养化[J].生态学报,2017,37(22):7 375-7 386.
45 PAERL H W. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations[J]. Ecological Engineering,2006,26(1): 40-54.
PAERL H W. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations[J]. Ecological Engineering,2006,26(1): 40-54.
46 JEPPESEN E, MOSS B, BENNION H, et al. Interaction of climate change and eutrophication[M]//KERNAN M,BATTARBEE R W,MOSS B. Climate change impacts on freshwater cosystems. Chichester,UK:Blackwell Publishing Ltd,2010.
JEPPESEN E, MOSS B, BENNION H, et al. Interaction of climate change and eutrophication[M]//KERNAN M,BATTARBEE R W,MOSS B. Climate change impacts on freshwater cosystems. Chichester,UK:Blackwell Publishing Ltd,2010.
47 MOSS B, KOSTEN S, MEERHOFF M, et al. Allied attack: Climate change and eutrophication[J]. Inland Waters, 2011, 1(2): 101-105.
MOSS B, KOSTEN S, MEERHOFF M, et al. Allied attack: Climate change and eutrophication[J]. Inland Waters, 2011, 1(2): 101-105.
48 LUETTICH R A, HARLEMAN D R, SOMLYODY L, et al. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events[J]. Limnology and Oceanography, 1990, 35(5):1 050-1 067.
LUETTICH R A, HARLEMAN D R, SOMLYODY L, et al. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events[J]. Limnology and Oceanography, 1990, 35(5):1 050-1 067.
49 QIN Boqiang, HU Weiping, GAO Guang, et al. The dynamic mechanism of sediment suspension in Taihu Lake and the conceptual model of endogenous release[J]. Chinese Science Bulletin, 2003,48(17):1 822-1 831.
QIN Boqiang, HU Weiping, GAO Guang, et al. The dynamic mechanism of sediment suspension in Taihu Lake and the conceptual model of endogenous release[J]. Chinese Science Bulletin, 2003,48(17):1 822-1 831.
秦伯强, 胡维平, 高光, 等. 太湖沉积物悬浮的动力机制及内源释放的概念性模式[J]. 科学通报, 2003,48(17):1 822-1 831.
秦伯强, 胡维平, 高光, 等. 太湖沉积物悬浮的动力机制及内源释放的概念性模式[J]. 科学通报, 2003,48(17):1 822-1 831.
50 WU Y, WEN Y, ZHOU J, et al. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen[J]. KSCE Journal of Civil Engineering, 2013,18(1): 323-329.
WU Y, WEN Y, ZHOU J, et al. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen[J]. KSCE Journal of Civil Engineering, 2013,18(1): 323-329.
51 CORNELISSEN G, VAN N P C, PARSONS J R, et al. Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments[J]. Environmental Science & Technology, 1997, 31(2): 454-460.
CORNELISSEN G, VAN N P C, PARSONS J R, et al. Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments[J]. Environmental Science & Technology, 1997, 31(2): 454-460.
52 GACHTER R, MEYER J S. The role of microorganisms in mobilization and fixation of phosphorus in sediments[J]. Hydrobiologia, 1993, 253(1): 103-121.
GACHTER R, MEYER J S. The role of microorganisms in mobilization and fixation of phosphorus in sediments[J]. Hydrobiologia, 1993, 253(1): 103-121.
53 SEN S, HAGGARD B E, CHAUBEY I, et al. Sediment phosphorus release at beaver reservoir, Northwest Arkansas, USA, 2002-2003: A preliminary investigation[J]. Water Air and Soil Pollution, 2007, 179(1): 67-77.
SEN S, HAGGARD B E, CHAUBEY I, et al. Sediment phosphorus release at beaver reservoir, Northwest Arkansas, USA, 2002-2003: A preliminary investigation[J]. Water Air and Soil Pollution, 2007, 179(1): 67-77.
54 WANG Jiaquan, SUN Yamin, QIAN Jiazhong, et al. Simulated study on phosphorus release of Chao Lake sediment[J]. Acta Scientiae Circumstantiae, 2002, 22(6):738-742.
WANG Jiaquan, SUN Yamin, QIAN Jiazhong, et al. Simulated study on phosphorus release of Chao Lake sediment[J]. Acta Scientiae Circumstantiae, 2002, 22(6):738-742.
汪家权,孙亚敏,钱家忠,等. 巢湖底泥磷的释放模拟实验研究[J]. 环境科学学报, 2002, 22(6):738-742.
汪家权,孙亚敏,钱家忠,等. 巢湖底泥磷的释放模拟实验研究[J]. 环境科学学报, 2002, 22(6):738-742.
55 YAO Yang, JIN Xiangcan, JIANG Xia, et al. Study on effects of light on phosphorus release and phosphorus form change in lake sediments[J]. Research of Environmental Sciences, 2004(17):30-33.
YAO Yang, JIN Xiangcan, JIANG Xia, et al. Study on effects of light on phosphorus release and phosphorus form change in lake sediments[J]. Research of Environmental Sciences, 2004(17):30-33.
姚扬,金相灿,姜霞,等.光照对湖泊沉积物磷释放及磷形态变化的影响研究[J]. 环境科学研究,2004(17):30-33.
姚扬,金相灿,姜霞,等.光照对湖泊沉积物磷释放及磷形态变化的影响研究[J]. 环境科学研究,2004(17):30-33.
56 AN Min, WEN Wei, SUN Shujuan, et al. Effects of pH and salinity on phosphorus sorption and desorption in the surface sediments of the main stream of the Haihe River[J]. Acta Scientiae Circumstantiae, 2009, 29(12): 2 616-2 622.
AN Min, WEN Wei, SUN Shujuan, et al. Effects of pH and salinity on phosphorus sorption and desorption in the surface sediments of the main stream of the Haihe River[J]. Acta Scientiae Circumstantiae, 2009, 29(12): 2 616-2 622.
安敏,文威,孙淑娟,等. pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影响[J]. 环境科学学报, 2009,29(12): 2 616-2 622.
安敏,文威,孙淑娟,等. pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影响[J]. 环境科学学报, 2009,29(12): 2 616-2 622.
57 JIN X, WANG S, PANG Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China[J]. Environmental Pollution, 2006, 139(2): 288-295.
JIN X, WANG S, PANG Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China[J]. Environmental Pollution, 2006, 139(2): 288-295.
58 KRALCHEVSKA R P, PRUCEK R, KOLAŘIK J, et al. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles[J]. Water Research, 2016, 103:83-91.
KRALCHEVSKA R P, PRUCEK R, KOLA?IK J, et al. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles[J]. Water Research, 2016, 103:83-91.
59 DRENNER R W, DAY D J, BASHAM S J, et al. Ecological water treatment system for removal of phosphorus and nitrogen from polluted water biological application[J]. Ecological Applications, 1997, 7(2): 381-390.
DRENNER R W, DAY D J, BASHAM S J, et al. Ecological water treatment system for removal of phosphorus and nitrogen from polluted water biological application[J]. Ecological Applications, 1997, 7(2): 381-390.
60 JENSEN M, LIU Z W, ZHANG X F, et al. The effect of biomanipulation on phosphorus exchange between sediment and water in shallow, tropical Huizhou West Lake, China[J]. Limnologica-Ecology and Management of Inland Waters, 2017, 63:65-73.
JENSEN M, LIU Z W, ZHANG X F, et al. The effect of biomanipulation on phosphorus exchange between sediment and water in shallow, tropical Huizhou West Lake, China[J]. Limnologica-Ecology and Management of Inland Waters, 2017, 63:65-73.
61 XIA Xinghui, WU Qiong, MOU Xinli, et al. Advances in impacts of climate change on surface water quality[J]. Advances in Water Science,2012,23(1):124-133.
XIA Xinghui, WU Qiong, MOU Xinli, et al. Advances in impacts of climate change on surface water quality[J]. Advances in Water Science,2012,23(1):124-133.
夏星辉,吴琼,牟新利.全球气候变化对地表水环境质量影响研究进展[J]. 水科学进展, 2012, 23(1):124-133.
夏星辉,吴琼,牟新利.全球气候变化对地表水环境质量影响研究进展[J]. 水科学进展, 2012, 23(1):124-133.
62 WU Zhaoshi, CAI Yongjiu, LIU Xia, et al. Temporal and spatial variability of phytoplankton in Lake Poyang: The largest freshwater lake in China[J]. Journal of Great Lakes Research, 2013, 39(3): 476-483.
WU Zhaoshi, CAI Yongjiu, LIU Xia, et al. Temporal and spatial variability of phytoplankton in Lake Poyang: The largest freshwater lake in China[J]. Journal of Great Lakes Research, 2013, 39(3): 476-483.
63 SØNDERGAARD M, KRISTENSEN P, JEPPESEN E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arresø, Denmark[J]. Hydrobiologia, 1992, 228(1): 91-99.
S?NDERGAARD M, KRISTENSEN P, JEPPESEN E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arres?, Denmark[J]. Hydrobiologia, 1992, 228(1): 91-99.
64 PLEW D R, KLEBERT P, ROSTEN T, et al. Changes to flow and turbulence caused by different concentrations of fish in a circular tank[J]. Journal of Hydraulic Research, 2015, 53(3): 364-383.
PLEW D R, KLEBERT P, ROSTEN T, et al. Changes to flow and turbulence caused by different concentrations of fish in a circular tank[J]. Journal of Hydraulic Research, 2015, 53(3): 364-383.
65 WEBER M J, BROWN M L. Effects of common carp on aquatic ecosystems 80 years after "Carp as a Dominant": Ecological insights for fisheries management[J]. Reviews in Fisheries Science, 2009, 17(4): 524-537.
WEBER M J, BROWN M L. Effects of common carp on aquatic ecosystems 80 years after "Carp as a Dominant": Ecological insights for fisheries management[J]. Reviews in Fisheries Science, 2009, 17(4): 524-537.
66 ZHANG Lei, GU Xiaozhi, WANG Zhaode, et al. The influence of Tubificid worms bioturbation on the exchange of phosphorus across sediment-water interface in lakes[J]. Journal of Lake Sciences, 2010,22(5):666-674.
ZHANG Lei, GU Xiaozhi, WANG Zhaode, et al. The influence of Tubificid worms bioturbation on the exchange of phosphorus across sediment-water interface in lakes[J]. Journal of Lake Sciences, 2010,22(5):666-674.
张雷,古小治,王兆德,等.水丝蚓(Tubificid worms)扰动对磷在湖泊沉积物—水界面迁移的影响[J]. 湖泊科学, 2010,22(5):666-674.
张雷,古小治,王兆德,等.水丝蚓(Tubificid worms)扰动对磷在湖泊沉积物—水界面迁移的影响[J]. 湖泊科学, 2010,22(5):666-674.
67 ZHANG Xiufeng, LIU Zhengwen, et al. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: Implications for the restoration of eutrophic shallow lakes[J]. Water Research, 2014, 50:135-146.
ZHANG Xiufeng, LIU Zhengwen, et al. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: Implications for the restoration of eutrophic shallow lakes[J]. Water Research, 2014, 50:135-146.
68 YANG Liu,HE Hu,GUAN Baohua, et al. Mesocosm experiment reveals a strong positive effect of snail presence on macrophyte growth, resulting from control of epiphyton and nuisance filamentous algae: Implications for shallow lake management[J]. Science of the Total Environment, 2020, 705:135958.
YANG Liu,HE Hu,GUAN Baohua, et al. Mesocosm experiment reveals a strong positive effect of snail presence on macrophyte growth, resulting from control of epiphyton and nuisance filamentous algae: Implications for shallow lake management[J]. Science of the Total Environment, 2020, 705:135958.
69 LIU Yusheng, ZOU Lan, ZHENG Binghui, et al. Effects of light, temperature and algae on phosphorus release from sediment[J]. Research of Environmental Sciences, 1992,5(2):41-44.
LIU Yusheng, ZOU Lan, ZHENG Binghui, et al. Effects of light, temperature and algae on phosphorus release from sediment[J]. Research of Environmental Sciences, 1992,5(2):41-44.
刘玉生,邹兰,郑丙辉. 光照、温度和藻类对底泥释放磷的影响[J]. 环境科学研究,1992,5(2):41-44.
刘玉生,邹兰,郑丙辉. 光照、温度和藻类对底泥释放磷的影响[J]. 环境科学研究,1992,5(2):41-44.
70 SUN Xiaohang, ZHANG Yu, ZHANG Binliang, et al. Simulation experiment study on the effect of microorganism on phosphorus release from Taihu Lake sediments[J]. Environmental Chemistry,2006,25(1):24-27.
SUN Xiaohang, ZHANG Yu, ZHANG Binliang, et al. Simulation experiment study on the effect of microorganism on phosphorus release from Taihu Lake sediments[J]. Environmental Chemistry,2006,25(1):24-27.
孙晓杭,张昱,张斌亮,等.微生物作用对太湖沉积物磷释放影响的模拟实验研究[J]. 环境化学,2006,25(1):24-27.
孙晓杭,张昱,张斌亮,等.微生物作用对太湖沉积物磷释放影响的模拟实验研究[J]. 环境化学,2006,25(1):24-27.
71 DU Bingxue, XU Ligang, ZHANG Jie, et al. The spatial-temporal characteristics of eutrophication in Poyang Lake and its relationship with the water level[J]. Research of Environmental Sciences, 2019,32(5):795-801.
DU Bingxue, XU Ligang, ZHANG Jie, et al. The spatial-temporal characteristics of eutrophication in Poyang Lake and its relationship with the water level[J]. Research of Environmental Sciences, 2019,32(5):795-801.
杜冰雪,徐力刚,张杰,等. 鄱阳湖富营养化时空变化特征及其与水位的关系[J]. 环境科学研究,2019,32(5):795-801.
杜冰雪,徐力刚,张杰,等. 鄱阳湖富营养化时空变化特征及其与水位的关系[J]. 环境科学研究,2019,32(5):795-801.
72 ZHAO Dongsheng,GAO Xuan,WU Shaohong,et al. Study on the spatiotemporal evolution of temperature and precipitation in China from 1951 to 2018[J]. Advances in Earth Science,2020,35(7):750-760.
ZHAO Dongsheng,GAO Xuan,WU Shaohong,et al. Study on the spatiotemporal evolution of temperature and precipitation in China from 1951 to 2018[J]. Advances in Earth Science,2020,35(7):750-760.
赵东升,高璇,吴绍洪,等. 基于自然分区的1960—2018年中国气候变化特征[J]. 地球科学进展,2020,35(7):750-760.
赵东升,高璇,吴绍洪,等. 基于自然分区的1960—2018年中国气候变化特征[J]. 地球科学进展,2020,35(7):750-760.
73 DENG Junhao, TAO Zhen, GAO Quanzhou, et al. Research advance of changing biogenic substance cycling in river systems by damming[J]. Advances in Earth Science,2018,33(12): 1 237-1 247.
DENG Junhao, TAO Zhen, GAO Quanzhou, et al. Research advance of changing biogenic substance cycling in river systems by damming[J]. Advances in Earth Science,2018,33(12): 1 237-1 247.
邓俊浩, 陶贞, 高全洲, 等. 河流筑坝对生源物质循环的改变研究进展[J]. 地球科学进展, 2018,33(12): 1 237-1 247.
邓俊浩, 陶贞, 高全洲, 等. 河流筑坝对生源物质循环的改变研究进展[J]. 地球科学进展, 2018,33(12): 1 237-1 247.
74 PROKOPKIN I G, MOOIJ W M, JANSE J H, et al. A general one-dimensional vertical ecosystem model of Lake Shira (Russia, Khakasia): Description, parametrization and analysis[J]. Aquatic Ecology,2010,44: 585-618.
PROKOPKIN I G, MOOIJ W M, JANSE J H, et al. A general one-dimensional vertical ecosystem model of Lake Shira (Russia, Khakasia): Description, parametrization and analysis[J]. Aquatic Ecology,2010,44: 585-618.
[1] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[2] 邹银洪, 张润宇, 陈敬安, 王立英, 陆顶盘. 黏土矿物在富营养化水体和底泥磷污染控制中的应用研究进展[J]. 地球科学进展, 2018, 33(6): 578-589.
[3] 林晓娟, 高姗, 仉天宇, 刘桂梅. 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 2018, 33(4): 373-384.
[4] 杨永琼,陈敬安,王敬富,曾艳. 沉积物磷原位钝化技术研究进展[J]. 地球科学进展, 2013, 28(6): 674-684.
[5] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[6] 黄廷林,柴蓓蓓. 水源水库水质污染与富营养化控制技术研究进展[J]. 地球科学进展, 2009, 24(6): 588-596.
[7] 周俊,邓伟,刘伟龙. 沟渠湿地的水文和生态环境效应研究进展[J]. 地球科学进展, 2008, 23(10): 1079-1083.
[8] 秦伯强,王小冬,汤祥明,冯胜,张运林. 太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J]. 地球科学进展, 2007, 22(9): 896-906.
[9] 赵生才. 我国湖泊富营养化的发生机制与控制对策[J]. 地球科学进展, 2004, 19(1): 138-140.
[10] 魏皓,赵亮,武建平. 浮游植物动力学模型及其在海域富营养化研究中的应用[J]. 地球科学进展, 2001, 16(2): 220-225.
[11] 陈 尚,朱明远,马 艳,李瑞香,李宝华,吕瑞华. 富营养化对海洋生态系统的影响及其围隔实验研究[J]. 地球科学进展, 1999, 14(6): 571-576.
阅读次数
全文


摘要