地球科学进展 ›› 2021, Vol. 36 ›› Issue (1): 95 -109. doi: 10.11867/j.issn.1001-8166.2021.009

研究简报 上一篇    下一篇

青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究
车雪华 1 , 2( ), 罗万银 1( ), 邵梅 1 , 2, 王中原 3   
  1. 1.中国科学院西北生态环境资源研究院沙漠与沙漠化重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.北京师范大学地理科学学部,北京 100875
  • 收稿日期:2020-10-29 修回日期:2020-12-09 出版日期:2021-03-19
  • 通讯作者: 罗万银 E-mail:chexuehua19@mails.ucas.ac.cn;wyluo@lzb.ac.cn
  • 基金资助:
    国家自然科学基金面上项目“共和盆地巨型风蚀坑的发育对环境变化的响应”(41771015)

Form-flow Feedback within Blowouts at Different Developing Stages in the Gonghe Basin, Qinghai Province

Xuehua CHE 1 , 2( ), Wanyin LUO 1( ), Mei SHAO 1 , 2, Zhongyuan WANG 3   

  1. 1.Key Laboratory of Desert and Desertification,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Beijing Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
  • Received:2020-10-29 Revised:2020-12-09 Online:2021-03-19 Published:2021-03-19
  • Contact: Wanyin LUO E-mail:chexuehua19@mails.ucas.ac.cn;wyluo@lzb.ac.cn
  • About author:CHE Xuehua (1997-), female, Lüliang City, Shanxi Province, Master student. Research areas include aeolian geomorphology and physics of blown sand. E-mail: chexuehua19@mails.ucas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China "Mega-blowouts formation and its response to the environmental change"(41771015)

风蚀坑是沙质草原沙漠化的主要地貌响应和驱动,但目前我们对其形成演化的动力机制知之甚少。利用二维超声风速仪和积沙仪观测了共和盆地不同发育阶段风蚀坑表面气流和风沙流特征,研究其形态—动力反馈过程。结果表明: 风蚀斑与碗状坑内气流沿主风向先减速后加速,槽形坑内气流则先辐散减速—中部气流加速—积沙体迎风坡风速降低—背风坡风速有所恢复;且发育初期风蚀坑内风速与风速变异系数和风向稳定系数均呈负相关,而发育中期坑内风速与前者呈正相关,与后者呈负相关。 受坑体内的涡流影响,槽形坑内风速廓线不符合对数分布规律。 槽形坑内不同部位的输沙率随高度均呈指数式递减,但受气流—形态间的反馈作用,各部位输沙通量差异明显,坑底最低、积沙体迎风坡前端最大。风蚀坑内气流场与形态间存在反馈关系,坑体越大反馈效果越明显。

Blowouts are the primary geomorphologic manifestation and driving force of sandy grassland desertification in the Gonghe Basin. However, their feedback mechanism between the flow dynamics and geomorphology is unclear. Two-dimensional ultrasonic anemometers and gradient sand traps were used in this study to measure the characteristics of wind flows and sediment transport at different blowouts of different developing stages in the Gonghe Basin. The feedback between the morphology-dynamic processes of the blowouts was discussed. Results show as follows. After entering the sand patch and small bowl blowout along the prevailing wind direction, air flow expanded and decelerated, and then accelerated until going outside the blowout; when entering a trough blowout of a small or medium size, it expanded and decelerated at the headwall, accelerated at the bottom of blowout, decelerated at the windward slope of the depositional lobe, and then recovered somewhat at the leeside slope of the depositional lobe. Besides, the wind speed was negatively correlated with steadiness of flow and directional steadiness in the early stage of blowout, but was positively correlated with the steadiness of flow and negatively correlated with the directional steadiness in the middle stage of blowout. Due to the rotating vortices in the blowout, the wind speed profiles in the trough blowout displayed a nonlogarithmic behavior. The measured sand flux density at different stations decreased exponentially with height. However, due to the feedback effect between flow dynamics and morphology, the sediment transport fluxes at different positions were obviously different, with the lowest at the bottom of the blowout and the largest in front of the windward slope of the deposition lobe. In conclusion, there is a form-flow feedback in the blowout, and the bigger the blowout is, the more obvious the feedback effect is.

中图分类号: 

图1 研究区地理位置及风蚀坑形态与分布图
(a)共和盆地区域概况图,研究区位于龙羊峡北岸三塔拉阶地;(b)研究区域风蚀坑分布,影像来自2019年4月无人机三航向飞行拍摄结果(飞行高度为74 m,重叠度为85%/70%,相机倾角为-90°与-60°);(c)~(f)分别为4个不同发育阶段风蚀坑无人机正摄影像
Fig.1 Location of the study area and the form and distribution of the blowouts in the study site
(a) Regional overview of the Gonghe Basin, the study site is located at the third level terrace of the Tarlatan sandy land; (b) The distribution of the blowouts in the study site, images were taken by a drone’s three course flight in April 2019 (flight height was 74 m, the overlap degree was 85%/70%, the camera tilt angle was -90° and -60°); (c)~(f) The orthoimage of the four targeted blowouts in different develop stages in this study
图1 研究区地理位置及风蚀坑形态与分布图
(a)共和盆地区域概况图,研究区位于龙羊峡北岸三塔拉阶地;(b)研究区域风蚀坑分布,影像来自2019年4月无人机三航向飞行拍摄结果(飞行高度为74 m,重叠度为85%/70%,相机倾角为-90°与-60°);(c)~(f)分别为4个不同发育阶段风蚀坑无人机正摄影像
Fig.1 Location of the study area and the form and distribution of the blowouts in the study site
(a) Regional overview of the Gonghe Basin, the study site is located at the third level terrace of the Tarlatan sandy land; (b) The distribution of the blowouts in the study site, images were taken by a drone’s three course flight in April 2019 (flight height was 74 m, the overlap degree was 85%/70%, the camera tilt angle was -90° and -60°); (c)~(f) The orthoimage of the four targeted blowouts in different develop stages in this study
表1 风蚀坑的形态参数
Table 1 Summary of morphological parameters of four observed blowouts
表1 风蚀坑的形态参数
Table 1 Summary of morphological parameters of four observed blowouts
图2 各风蚀坑贴地表气流观测的测点布置
(a)风蚀坑B1进行了1次观测,布置测点共20处;(b)风蚀坑B2进行了3次观测,共布置测点34处;(c)风蚀坑B3进行了2次观测,共布置测点28处;(d)风蚀坑B4进行了4次测量,其中测量三与测量四部分点测量位置相同,实际测量部位63处;剔除传感出错仪器并进行数据筛选后,部分测点(图中未标明编号的测点)被排除,最终用于本研究的测点有:风蚀坑B1 18个;风蚀坑B2 27个,测量三未参与分析;风蚀坑B3 26个;风蚀坑B4 48个,测量四未参与分析
Fig.2 Array of the measurement of the near surface air flow
(a) One measurement was made at B1 with 20 locations, (b) Three measurements were made at B2 with 34 locations, (c) Two measurements were made at B3 with 28 locations, (d) Four measurements were made at B4 with 63 locations, among which some measurement positions of the third measurement and the fourth measurement were the same. After removing the instrument data with sensor error and performing data screening, some stations that were not labeled in the picture being excluded from analysis. A total of 18 stations in blowout B1, 27 stations in blowout B2, 26 stations in blowout B3, 48 stations in blowout B4 passed the quality control and were used in this study, the third measurement data in blowout B2 and the fourth measurement data in blowout B4 were not involved in this paper
图2 各风蚀坑贴地表气流观测的测点布置
(a)风蚀坑B1进行了1次观测,布置测点共20处;(b)风蚀坑B2进行了3次观测,共布置测点34处;(c)风蚀坑B3进行了2次观测,共布置测点28处;(d)风蚀坑B4进行了4次测量,其中测量三与测量四部分点测量位置相同,实际测量部位63处;剔除传感出错仪器并进行数据筛选后,部分测点(图中未标明编号的测点)被排除,最终用于本研究的测点有:风蚀坑B1 18个;风蚀坑B2 27个,测量三未参与分析;风蚀坑B3 26个;风蚀坑B4 48个,测量四未参与分析
Fig.2 Array of the measurement of the near surface air flow
(a) One measurement was made at B1 with 20 locations, (b) Three measurements were made at B2 with 34 locations, (c) Two measurements were made at B3 with 28 locations, (d) Four measurements were made at B4 with 63 locations, among which some measurement positions of the third measurement and the fourth measurement were the same. After removing the instrument data with sensor error and performing data screening, some stations that were not labeled in the picture being excluded from analysis. A total of 18 stations in blowout B1, 27 stations in blowout B2, 26 stations in blowout B3, 48 stations in blowout B4 passed the quality control and were used in this study, the third measurement data in blowout B2 and the fourth measurement data in blowout B4 were not involved in this paper
表2 贴地表气流观测期间气象站所指示的参考风况
Table 2 Reference wind regime recorded at the 3 m high reference wind tower during the observation periods
表2 贴地表气流观测期间气象站所指示的参考风况
Table 2 Reference wind regime recorded at the 3 m high reference wind tower during the observation periods
图3 集沙仪及风塔测点位置示意图
(a)集沙仪的测量位置分布,共布置7处测点:坑头处(J-4)、坑体中部(J-2、J-6、J-7)、积沙体迎风坡(J-1)、顶部(J-3)及背风坡处(J-5),且均为同步观测;风速廓线的测量共进行了5次,每次测量部位为3处,部分位置进行了2次测量,故实际测量点位共11处,经数据筛选后本文选用第一次(1-1、1-2、1-4)、第三次(3-1、3-2、3-4)和第四次(4-1、4-2、4-4)测量位置进行研究,第二次观测点位(2-1、2-2、2-4)与第五次观测点位(5-1、5-2、5-4)未参与本文数据分析;(b) 风速廓线的测量风塔布置图,每个风塔配一个数采盒与各层风速仪连接进行数据存储;(c)本研究所用二维超声风速仪DS-2
Fig.3 Array of the measurement of the sediment transport and the vertical wind speed profiles
(a) Arrangement of the gradient sand traps, a total of seven traps were arranged at the blowout, with one trap (J-4) at the headwall, three traps (J-2, J-6, J-7) at the bottom of the blowout, one trap (J-1) at the windward of the deposition lobe, one trap (J-3) at the top of the deposition lobe and one trap (J-5) at the lee side of the deposition lobe, all the instruments were observed simultaneously. Five observations were made for the measurement of the vertical wind speed profiles, a total of 11 sites were measured with three sites of each measurement, and some sites were measured twice. After data screening, the first measurement (1-1, 1-2, 1-4), the third measurement (3-1, 3-2, 3-4) and the fourth measurement (4-1, 4-2, 4-4) data passed the quality control and were used in this paper, the second measurement (2-1, 2-2, 2-4) and the fifth measurement (5-1, 5-2, 5-4) data were excluded in this paper. (b) Site layout of the wind tower, each tower was equipped with a data acquisition box which is connected with wind anemometers of each layer for data storage. (c) Two-dimensional ultrasonic anemometer (DS-2) used in this study
图3 集沙仪及风塔测点位置示意图
(a)集沙仪的测量位置分布,共布置7处测点:坑头处(J-4)、坑体中部(J-2、J-6、J-7)、积沙体迎风坡(J-1)、顶部(J-3)及背风坡处(J-5),且均为同步观测;风速廓线的测量共进行了5次,每次测量部位为3处,部分位置进行了2次测量,故实际测量点位共11处,经数据筛选后本文选用第一次(1-1、1-2、1-4)、第三次(3-1、3-2、3-4)和第四次(4-1、4-2、4-4)测量位置进行研究,第二次观测点位(2-1、2-2、2-4)与第五次观测点位(5-1、5-2、5-4)未参与本文数据分析;(b) 风速廓线的测量风塔布置图,每个风塔配一个数采盒与各层风速仪连接进行数据存储;(c)本研究所用二维超声风速仪DS-2
Fig.3 Array of the measurement of the sediment transport and the vertical wind speed profiles
(a) Arrangement of the gradient sand traps, a total of seven traps were arranged at the blowout, with one trap (J-4) at the headwall, three traps (J-2, J-6, J-7) at the bottom of the blowout, one trap (J-1) at the windward of the deposition lobe, one trap (J-3) at the top of the deposition lobe and one trap (J-5) at the lee side of the deposition lobe, all the instruments were observed simultaneously. Five observations were made for the measurement of the vertical wind speed profiles, a total of 11 sites were measured with three sites of each measurement, and some sites were measured twice. After data screening, the first measurement (1-1, 1-2, 1-4), the third measurement (3-1, 3-2, 3-4) and the fourth measurement (4-1, 4-2, 4-4) data passed the quality control and were used in this paper, the second measurement (2-1, 2-2, 2-4) and the fifth measurement (5-1, 5-2, 5-4) data were excluded in this paper. (b) Site layout of the wind tower, each tower was equipped with a data acquisition box which is connected with wind anemometers of each layer for data storage. (c) Two-dimensional ultrasonic anemometer (DS-2) used in this study
图4 斜向气流进入不同形态风蚀坑后的流场分布模式
风玫瑰图反映各观测期间的风况
Fig.4 Distribution pattern of flow field after oblique air entered different forms of blowouts
The wind roses shows the wind conditions during the near surface airflow observation at the corresponding blowout
图4 斜向气流进入不同形态风蚀坑后的流场分布模式
风玫瑰图反映各观测期间的风况
Fig.4 Distribution pattern of flow field after oblique air entered different forms of blowouts
The wind roses shows the wind conditions during the near surface airflow observation at the corresponding blowout
图5 风速变异系数Fs、风向稳定系数SD与相对风速U在各风蚀坑不同观测断面上的变化
最左侧图片为风蚀坑内的各观测断面(中轴线及两侧侵蚀坡面)及其测点位置示意图,风蚀坑B1中为测线L1,L2,风蚀坑B2中设置了测线L3、L4、L5,风蚀坑B3中设置了测线L6、L7(由于西侧侵蚀坡面上测点不足故缺少一条测线),风蚀坑B4中设置了测线L8、L9、L10,灰色区域表示相应测线的地形起伏状况(以3 094 m为基准海拔)
Fig.5 Variation of wind speed variation factor (Fs), wind direction stability factor (SD) and relative wind speed (U) at different observation sections of each blowout
The pictures on the left are the schematic diagram of all the observation sections from section L1 to L2 in blowout B1, section L3 to L5 in blowout B2, section L6 to L7 in blowout B3 (due to the lack of measuring positions on the western erosion slope, a measuring line is missing), section L8 to L10 in blowout B4 and their measuring positions used in this study in the blowouts. The gray area represents the topographic relief of the corresponding survey line (taking 3 094 m as the base elevation)
图5 风速变异系数Fs、风向稳定系数SD与相对风速U在各风蚀坑不同观测断面上的变化
最左侧图片为风蚀坑内的各观测断面(中轴线及两侧侵蚀坡面)及其测点位置示意图,风蚀坑B1中为测线L1,L2,风蚀坑B2中设置了测线L3、L4、L5,风蚀坑B3中设置了测线L6、L7(由于西侧侵蚀坡面上测点不足故缺少一条测线),风蚀坑B4中设置了测线L8、L9、L10,灰色区域表示相应测线的地形起伏状况(以3 094 m为基准海拔)
Fig.5 Variation of wind speed variation factor (Fs), wind direction stability factor (SD) and relative wind speed (U) at different observation sections of each blowout
The pictures on the left are the schematic diagram of all the observation sections from section L1 to L2 in blowout B1, section L3 to L5 in blowout B2, section L6 to L7 in blowout B3 (due to the lack of measuring positions on the western erosion slope, a measuring line is missing), section L8 to L10 in blowout B4 and their measuring positions used in this study in the blowouts. The gray area represents the topographic relief of the corresponding survey line (taking 3 094 m as the base elevation)
表3 风蚀坑 B4风速廓线观测期间气象站所示的参考风速风向
Table 3 Observation results of reference wind speed and direction at the height of 3 m reference meteorological station during the observation of vertical wind profiles near blowout B4
表3 风蚀坑 B4风速廓线观测期间气象站所示的参考风速风向
Table 3 Observation results of reference wind speed and direction at the height of 3 m reference meteorological station during the observation of vertical wind profiles near blowout B4
图6 风蚀坑B4不同部位风速廓线图
图中参考风向为风速廓线观测期间气象站所测,表示进入风蚀坑的初始气流方向;风蚀坑内的箭头表示各观测点距地表0.1 m高度的风向;风速廓线图中表示的是各测点不同高度的相对风速。由于风速仪传感错误,3-4测站0.1 m高度处数据及3-2测站1.0 m高度处数据被剔除,但基于前文中贴地层气流的观测结果,判断3-4测站0.1 m高度的风速应低于积沙体迎风坡测点同高度的风速, U 0.1 m(3-4)≈0.8(实心图标表示),风向保持沿积沙体走向发展(虚线箭头表示)
Fig.6 The wind speed profiles at different positions of the trough blowout B4
The reference wind direction in the figure was measured by the meteorological station during the observation, indicated the initial direction of the airflow before entering the wind blowout. The arrow in the blowout indicates the wind direction at 0.1 m height from the surface of each observation point. The wind speed profile shows the wind speed at different heights of each observation point. Because of the anemometer sensor error, wind speed and the direction at 0.1 m height of station 3-4 and 1.0 m height of station 3-2 were eliminated. Based on the observation results of the near surface airflow above, we believe that wind speed at 0.1 m height of station 3-4 should be lower than the windward side of the deposition, U 0.1 m (3-4)≈0.8 (the solid circle), wind direction should be along with the deposition (the dotted arrow)
图6 风蚀坑B4不同部位风速廓线图
图中参考风向为风速廓线观测期间气象站所测,表示进入风蚀坑的初始气流方向;风蚀坑内的箭头表示各观测点距地表0.1 m高度的风向;风速廓线图中表示的是各测点不同高度的相对风速。由于风速仪传感错误,3-4测站0.1 m高度处数据及3-2测站1.0 m高度处数据被剔除,但基于前文中贴地层气流的观测结果,判断3-4测站0.1 m高度的风速应低于积沙体迎风坡测点同高度的风速, U 0.1 m(3-4)≈0.8(实心图标表示),风向保持沿积沙体走向发展(虚线箭头表示)
Fig.6 The wind speed profiles at different positions of the trough blowout B4
The reference wind direction in the figure was measured by the meteorological station during the observation, indicated the initial direction of the airflow before entering the wind blowout. The arrow in the blowout indicates the wind direction at 0.1 m height from the surface of each observation point. The wind speed profile shows the wind speed at different heights of each observation point. Because of the anemometer sensor error, wind speed and the direction at 0.1 m height of station 3-4 and 1.0 m height of station 3-2 were eliminated. Based on the observation results of the near surface airflow above, we believe that wind speed at 0.1 m height of station 3-4 should be lower than the windward side of the deposition, U 0.1 m (3-4)≈0.8 (the solid circle), wind direction should be along with the deposition (the dotted arrow)
图7 风蚀坑B4中轴线不同高度相对风速变化示意图(a)及中轴线等风速线示意图(b)
Fig.7 Schematic diagram of uniform wind speed at different heights (a) and the iso-velocity patterns within the blowout (b) at the center axis of the blowout B4
图7 风蚀坑B4中轴线不同高度相对风速变化示意图(a)及中轴线等风速线示意图(b)
Fig.7 Schematic diagram of uniform wind speed at different heights (a) and the iso-velocity patterns within the blowout (b) at the center axis of the blowout B4
图8 风蚀坑B4不同部位风沙流结构函数(三参数的指数函数)
Fig.8 Structure function of wind-sand flow and its fitting equation using the modified three parameter exponential function
图8 风蚀坑B4不同部位风沙流结构函数(三参数的指数函数)
Fig.8 Structure function of wind-sand flow and its fitting equation using the modified three parameter exponential function
表4 风蚀坑内风沙流通量特征
Table 4 Characteristics of the sand flux density in the blowout B4
表4 风蚀坑内风沙流通量特征
Table 4 Characteristics of the sand flux density in the blowout B4
表5 不同函数模型的拟合优度对比
Table 5 Comparisons of the goodness of fit of the five models
表5 不同函数模型的拟合优度对比
Table 5 Comparisons of the goodness of fit of the five models
图9 风蚀坑不同部位的输沙率与风速
由于集沙仪J-2处的风速仪由于数据出错被剔除,故缺少该处的风速数据
Fig.9 The sediment transport rate and wind speed of different parts of the blowout
As the anemometer at the sand trap J-2 was deleted due to data error, the wind speed data at that location was missing
图9 风蚀坑不同部位的输沙率与风速
由于集沙仪J-2处的风速仪由于数据出错被剔除,故缺少该处的风速数据
Fig.9 The sediment transport rate and wind speed of different parts of the blowout
As the anemometer at the sand trap J-2 was deleted due to data error, the wind speed data at that location was missing
1 HESP P A, HYDE R. Flow dynamics and geomorphology of a trough blowout[J]. Sedimentology, 1996, 43: 505-525.
HESP P A, HYDE R. Flow dynamics and geomorphology of a trough blowout[J]. Sedimentology, 1996, 43: 505-525.
2 HESP P A. Foredunes and blowouts: Initiation, geomorphology and dynamics[J]. Geomorphology, 2002, 48: 245-268.
HESP P A. Foredunes and blowouts: Initiation, geomorphology and dynamics[J]. Geomorphology, 2002, 48: 245-268.
3 CARTER R W G, HESP P A, NORDSTROM K F. Erosional landforms in coastal dunes[C]// NORDSTROM K F, PSUTY N P, CARTER R W G. Coastal dunes: Form and process. Wiley: London, 1990: 217-249.
CARTER R W G, HESP P A, NORDSTROM K F. Erosional landforms in coastal dunes[C]// NORDSTROM K F, PSUTY N P, CARTER R W G. Coastal dunes: Form and process. Wiley: London, 1990: 217-249.
4 FRASER G S, BENNET S W, OLYPHANT G A, et al. Windflow circulation patterns in a coastal dune blowout, south coast of Lake Michigan[J]. Journal of Coastal Research, 1998, 14: 451-460.
FRASER G S, BENNET S W, OLYPHANT G A, et al. Windflow circulation patterns in a coastal dune blowout, south coast of Lake Michigan[J]. Journal of Coastal Research, 1998, 14: 451-460.
5 SMYTH T A G, JACKSON D W T, COOPER J A G. Three dimensional airflow patterns within a coastal trough-bowl blowout during fresh breeze to hurricane force winds[J]. Aeolian Research, 2013, 9: 111-123.
SMYTH T A G, JACKSON D W T, COOPER J A G. Three dimensional air?ow patterns within a coastal trough-bowl blowout during fresh breeze to hurricane force winds[J]. Aeolian Research, 2013, 9: 111-123.
6 HUGENHOLTZ C H, WOLFE S A. Morphodynamics and climate controls of two aeolian blowouts on the northern Great Plains, Canada[J]. Earth Surface Processes and Landforms, 2006, 31: 1 540-1 557.
HUGENHOLTZ C H, WOLFE S A. Morphodynamics and climate controls of two aeolian blowouts on the northern Great Plains, Canada[J]. Earth Surface Processes and Landforms, 2006, 31: 1 540-1 557.
7 LI Shuangquan, HASI Eerdun, DU Huishi, et al. Interaction between airflow and shape of saucer blowout in grassland[J]. Journal of Desert Research, 2012, 32(5): 1 201-1 209.
LI Shuangquan, HASI Eerdun, DU Huishi, et al. Interaction between airflow and shape of saucer blowout in grassland[J]. Journal of Desert Research, 2012, 32(5): 1 201-1 209.
李双权, 哈斯, 杜会石, 等. 沙质草地碟形风蚀坑形态-气流相互作用[J]. 中国沙漠, 2012, 32(5): 1 201-1 209.
李双权, 哈斯, 杜会石, 等. 沙质草地碟形风蚀坑形态-气流相互作用[J]. 中国沙漠, 2012, 32(5): 1 201-1 209.
8 WANG Shuai, HASI Eerdun, ZHANG Jun, et al. Geomorphological significance of air flow over saucer blowout of the Hulun Buir Sandy Grassland[J]. Journal of Desert Research, 2007, 27(5): 745-749.
WANG Shuai, HASI Eerdun, ZHANG Jun, et al. Geomorphological significance of air flow over saucer blowout of the Hulun Buir Sandy Grassland[J]. Journal of Desert Research, 2007, 27(5): 745-749.
王帅, 哈斯, 张军, 等. 呼伦贝尔沙质草原碟形风蚀坑表面气流及其意义[J]. 中国沙漠, 2007, 27(5): 745-749.
王帅, 哈斯, 张军, 等. 呼伦贝尔沙质草原碟形风蚀坑表面气流及其意义[J]. 中国沙漠, 2007, 27(5): 745-749.
9 WANG Shuai, HASI Eerdun. Air flow dynamics of the blowout trough in the Hulun Buir Sandy Grassland[J]. Science of Soil and Water Conservation, 2009, 7(2): 80-85.
WANG Shuai, HASI Eerdun. Air flow dynamics of the blowout trough in the Hulun Buir Sandy Grassland[J]. Science of Soil and Water Conservation, 2009, 7(2): 80-85.
王帅, 哈斯. 呼伦贝尔沙质草原槽形风蚀坑表面气流特征[J]. 中国水土保持科学, 2009, 7(2): 80-85.
王帅, 哈斯. 呼伦贝尔沙质草原槽形风蚀坑表面气流特征[J]. 中国水土保持科学, 2009, 7(2): 80-85.
10 SUN Yu, DU Huishi, HASI Eerdun, et al. Aeolian dynamical process of blowout on the fixed dune[J]. Acta Geographica Sinica, 2016, 71(9): 1 562-1 570.
SUN Yu, DU Huishi, HASI Eerdun, et al. Aeolian dynamical process of blowout on the fixed dune[J]. Acta Geographica Sinica, 2016, 71(9): 1 562-1 570.
孙禹, 杜会石, 哈斯额尔敦, 等. 固定沙丘风蚀坑风沙动力学观测研究[J]. 地理学报, 2016, 71(9): 1 562-1 570.
孙禹, 杜会石, 哈斯额尔敦, 等. 固定沙丘风蚀坑风沙动力学观测研究[J]. 地理学报, 2016, 71(9): 1 562-1 570.
11 HU Rina, HASI Eerdun, HAOBISI Halatu, et al. Dynamic changes of blowouts on fixed sand dunes in the southeastern fringe of Otindag Sandy Land[J]. Journal of Desert Research, 2019, 39(1): 37-46.
HU Rina, HASI Eerdun, HAOBISI Halatu, et al. Dynamic changes of blowouts on fixed sand dunes in the southeastern fringe of Otindag Sandy Land[J]. Journal of Desert Research, 2019, 39(1): 37-46.
胡日娜, 哈斯额尔敦, 浩毕斯哈拉图, 等. 浑善达克沙地东南缘固定沙丘风蚀坑动态变化[J]. 中国沙漠, 2019, 39(1): 37-46.
胡日娜, 哈斯额尔敦, 浩毕斯哈拉图, 等. 浑善达克沙地东南缘固定沙丘风蚀坑动态变化[J]. 中国沙漠, 2019, 39(1): 37-46.
12 LUO W Y, WANG Z Y, SHAO M, et al. Historical evolution and controls on mega‐blowouts in northeastern Qinghai‐Tibetan Plateau, China[J]. Geomorphology, 2019, 329: 17-31.
LUO W Y, WANG Z Y, SHAO M, et al. Historical evolution and controls on mega‐blowouts in northeastern Qinghai‐Tibetan Plateau, China[J]. Geomorphology, 2019, 329: 17-31.
13 LUO W Y, WANG Z Y, LU J F, et al. Mega‐blowouts in Qinghai-Tibet Plateau: Morphology, distribution and initiation[J]. Earth Surface Processes and Landforms, 2019, 44(2): 449-458.
LUO W Y, WANG Z Y, LU J F, et al. Mega‐blowouts in Qinghai-Tibet Plateau: Morphology, distribution and initiation[J]. Earth Surface Processes and Landforms, 2019, 44(2): 449-458.
14 HUGENHOLTZ C H, WOLFE S A. Form-flow interactions of an aeolian saucer blowout[J]. Earth Surface Processes and Landforms, 2009, 34: 919-928.
HUGENHOLTZ C H, WOLFE S A. Form-flow interactions of an aeolian saucer blowout[J]. Earth Surface Processes and Landforms, 2009, 34: 919-928.
15 HESP P A, PRINGLE A. Flow behaviour in a trough blowout. Tangimoana, New Zealand[J]. Journal of Coastal Research, 2001, 34(special issue): 597-601.
HESP P A, PRINGLE A. Flow behaviour in a trough blowout. Tangimoana, New Zealand[J]. Journal of Coastal Research, 2001, 34(special issue): 597-601.
16 HESP P A, SMYTH T A G, WALKER I J, et al. Flow within a trough blowout at cape cod[J]. Journal of Coastal Research, 2016, 75(special issue):288-292.
HESP P A, SMYTH T A G, WALKER I J, et al. Flow within a trough blowout at cape cod[J]. Journal of Coastal Research, 2016, 75(special issue):288-292.
17 DECH J P, MAUN M A, PAZNER M I. Blowout dynamics on lake huron sand dunes: Analysis of digital multispectral data from colour air photos[J]. Catena, 2005, 60(2): 165-180.
DECH J P, MAUN M A, PAZNER M I. Blowout dynamics on lake huron sand dunes: Analysis of digital multispectral data from colour air photos[J]. Catena, 2005, 60(2): 165-180.
18 LUO W Y, SHAO M, CHE X H, et al. Optimization of UAVs-SfM data collection in aeolian landform morphodynamics: A case study from the Gonghe Basin, China[J]. Earth Surface Processes and Landforms, 2020, 45: 3 293-3 312.
LUO W Y, SHAO M, CHE X H, et al. Optimization of UAVs-SfM data collection in aeolian landform morphodynamics: A case study from the Gonghe Basin, China[J]. Earth Surface Processes and Landforms, 2020, 45: 3 293-3 312.
19 SMYTH T A G, JACKSON D W T, COOPER J A G. Computational fluid dynamic modelling of Three-Dimensional airflow over dune blowouts[J]. Journal of Coastal Research, 2011, 64(special issue): 314-318.
SMYTH T A G, JACKSON D W T, COOPER J A G. Computational fluid dynamic modelling of Three-Dimensional airflow over dune blowouts[J]. Journal of Coastal Research, 2011, 64(special issue): 314-318.
20 SMYTH T A G, JACKSON D W T, COOPER J A G. High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout[J]. Geomorphology, 2012, 177/178: 62-73.
SMYTH T A G, JACKSON D W T, COOPER J A G. High resolution measured and modelled three-dimensional airflow over a coastal bowl blowout[J]. Geomorphology, 2012, 177/178: 62-73.
21 ZHANG A MungkDalai, WANG Xiaoke, HASI Eerdun, et al. HulunBuir Sandy Grassland blowouts: Geomorphology,classification,and significances[J]. Journal of Desert Research, 2006, 26(6): 894-902.
ZHANG A MungkDalai, WANG Xiaoke, HASI Eerdun, et al. HulunBuir Sandy Grassland blowouts: Geomorphology,classification,and significances[J]. Journal of Desert Research, 2006, 26(6): 894-902.
张德平, 王效科, 哈斯, 等.呼伦贝尔沙质草原风蚀坑研究(I)——形态、分类、研究意义[J]. 中国沙漠, 2006, 26(6): 894-902.
张德平, 王效科, 哈斯, 等.呼伦贝尔沙质草原风蚀坑研究(I)——形态、分类、研究意义[J]. 中国沙漠, 2006, 26(6): 894-902.
22 ZHANG A MungkDalai, SUN Hongwei, WANG Xiaoke, et al. HulunBuir Sandy Grassland blowouts (II): Process of development and landscape evolution[J]. Journal of Desert Research, 2007, 27(1): 20-24.
ZHANG A MungkDalai, SUN Hongwei, WANG Xiaoke, et al. HulunBuir Sandy Grassland blowouts (II): Process of development and landscape evolution[J]. Journal of Desert Research, 2007, 27(1): 20-24.
张德平, 孙宏伟, 王效科, 等. 呼伦贝尔沙质草原风蚀坑研究(II): 发育过程[J]. 中国沙漠, 2007, 27(1): 20-24.
张德平, 孙宏伟, 王效科, 等. 呼伦贝尔沙质草原风蚀坑研究(II): 发育过程[J]. 中国沙漠, 2007, 27(1): 20-24.
23 ZHANG A MungkDalai, WANG Xiaoke, HURRLE U, et al. HulunBuir Sandy Grassland blowouts (III): Influence of Soil Layer and Microrelief[J]. Journal of Desert Research, 2007, 27(1): 25-31.
ZHANG A MungkDalai, WANG Xiaoke, HURRLE U, et al. HulunBuir Sandy Grassland blowouts (III): Influence of Soil Layer and Microrelief[J]. Journal of Desert Research, 2007, 27(1): 25-31.
张德平, 王效科, 胡日乐, 等. 呼伦贝尔沙质草原风蚀坑研究(III): 微地貌和土层的影响[J]. 中国沙漠, 2007, 27(1): 25-31.
张德平, 王效科, 胡日乐, 等. 呼伦贝尔沙质草原风蚀坑研究(III): 微地貌和土层的影响[J]. 中国沙漠, 2007, 27(1): 25-31.
24 ZHANG A MungkDalai, WANG Xiaoke, SUN Hongwei, et al. HulunBuir Sandy Grassland blowouts: Influence of human activities[J]. Journal of Desert Research, 2007, 27(2): 214-220.
ZHANG A MungkDalai, WANG Xiaoke, SUN Hongwei, et al. HulunBuir Sandy Grassland blowouts: Influence of human activities[J]. Journal of Desert Research, 2007, 27(2): 214-220.
张德平, 王效科, 孙宏伟, 等. 呼伦贝尔沙质草原风蚀坑研究(IV): 人类活动的影响[J]. 中国沙漠, 2007, 27(2): 214-220.
张德平, 王效科, 孙宏伟, 等. 呼伦贝尔沙质草原风蚀坑研究(IV): 人类活动的影响[J]. 中国沙漠, 2007, 27(2): 214-220.
25 SHI Peijun. Theory of the surface morphological characteristics and development process of desertified land in Daqinggou area, Southern Horqin[J]. Journal of Inner Mongolia Normal University (Natural Science Edition),1986(1): 45-56.
SHI Peijun. Theory of the surface morphological characteristics and development process of desertified land in Daqinggou area, Southern Horqin[J]. Journal of Inner Mongolia Normal University (Natural Science Edition),1986(1): 45-56.
史培军.试论科尔沁南部大青沟地区沙漠化土地的地表形态特征及其发育过程[J]. 内蒙古师大学报:自然科学版,1986(1):45-56.
史培军.试论科尔沁南部大青沟地区沙漠化土地的地表形态特征及其发育过程[J]. 内蒙古师大学报:自然科学版,1986(1):45-56.
26 YANG Gensheng, LIU Yangxuan, LI Changzhi, et al. Characteristics of aeolian sand at different developmental stages of desertification: A case study of Daqinggou typical area in the southern Horqin sandy land[J]. Environmental Protection of Xinjiang, 1987(2):8-15.
YANG Gensheng, LIU Yangxuan, LI Changzhi, et al. Characteristics of aeolian sand at different developmental stages of desertification: A case study of Daqinggou typical area in the southern Horqin sandy land[J]. Environmental Protection of Xinjiang, 1987(2):8-15.
杨根生, 刘阳宣, 李长治, 等. 沙漠化不同发育阶段的风沙特征——以科尔沁沙地南部大青沟典型区为例[J]. 新疆环境保护, 1987(2):8-15.
杨根生, 刘阳宣, 李长治, 等. 沙漠化不同发育阶段的风沙特征——以科尔沁沙地南部大青沟典型区为例[J]. 新疆环境保护, 1987(2):8-15.
27 ZHANG Shaoyun, DONG Yuxiang. Research progress on morphodynamics of coastal sandy blowout[J]. Advances in Earth Science, 2019, 34(10):1 028-1 037.
ZHANG Shaoyun, DONG Yuxiang. Research progress on morphodynamics of coastal sandy blowout[J]. Advances in Earth Science, 2019, 34(10):1 028-1 037.
张绍云, 董玉祥. 海岸沙地风蚀坑形态—动力学研究进展[J]. 地球科学进展,2019, 34(10): 1 028-1 037.
张绍云, 董玉祥. 海岸沙地风蚀坑形态—动力学研究进展[J]. 地球科学进展,2019, 34(10): 1 028-1 037.
28 ZHUANG Yanmei, Si HA. Progress of the study on shapes and dynamical process of blowout on dunes[J]. Arid Zone Research, 2005(5): 632-637.
ZHUANG Yanmei, Si HA. Progress of the study on shapes and dynamical process of blowout on dunes[J]. Arid Zone Research, 2005(5): 632-637.
庄燕美, 哈斯. 沙丘风蚀坑的形态及动力过程的研究进展[J]. 干旱区地理, 2005(5): 632-637.
庄燕美, 哈斯. 沙丘风蚀坑的形态及动力过程的研究进展[J]. 干旱区地理, 2005(5): 632-637.
29 SUN Yu, DU Huishi, LIU Meiping, et al. A review on morphodynamic processes of blowouts[J]. Science Geographica Sinica, 2015, 35(7): 898-904.
SUN Yu, DU Huishi, LIU Meiping, et al. A review on morphodynamic processes of blowouts[J]. Science Geographica Sinica, 2015, 35(7): 898-904.
孙禹, 杜会石, 刘美萍, 等. 风蚀坑形态——动力学研究进展[J]. 地理科学, 2015, 35(7): 898-904.
孙禹, 杜会石, 刘美萍, 等. 风蚀坑形态——动力学研究进展[J]. 地理科学, 2015, 35(7): 898-904.
30 WANG Zhongyuan, LUO Wanyin, DONG Zhibao, et al. Grain size characteristics of the blowout surface sediments and its aerodynamic significance in the alpine meadow region of Gonghe Basin[J]. Journal of Desert Research, 2017, 37(1): 7-16.
WANG Zhongyuan, LUO Wanyin, DONG Zhibao, et al. Grain size characteristics of the blowout surface sediments and its aerodynamic significance in the alpine meadow region of Gonghe Basin[J]. Journal of Desert Research, 2017, 37(1): 7-16.
王中原, 罗万银, 董治宝, 等. 共和盆地高寒草原风蚀坑表层沉积物粒度特征及动力学意义[J]. 中国沙漠, 2017, 37(1): 7-16.
王中原, 罗万银, 董治宝, 等. 共和盆地高寒草原风蚀坑表层沉积物粒度特征及动力学意义[J]. 中国沙漠, 2017, 37(1): 7-16.
31 DONG Guangrong, GAO Shangyu, JIN Jiong. Land desertification and its control in Gonghe Basin, Qinghai Province[M]. Beijing: Science Press, 1993.
DONG Guangrong, GAO Shangyu, JIN Jiong. Land desertification and its control in Gonghe Basin, Qinghai Province[M]. Beijing: Science Press, 1993.
董光荣, 高尚玉, 金炯. 青海共和盆地土地沙漠化与防治途径[M]. 北京:科学出版社, 1993.
董光荣, 高尚玉, 金炯. 青海共和盆地土地沙漠化与防治途径[M]. 北京:科学出版社, 1993.
32 ZHANG Dengshan, GAO Shangyu, SHI Mengyi, et al. Sandy desertification and its control in the Qinghai Plateau[M]. Beijing: Science Press, 2009.
ZHANG Dengshan, GAO Shangyu, SHI Mengyi, et al. Sandy desertification and its control in the Qinghai Plateau[M]. Beijing: Science Press, 2009.
张登山, 高尚玉, 石蒙沂, 等. 青海高原土地沙漠化及其防治[M]. 北京: 科学出版社, 2009.
张登山, 高尚玉, 石蒙沂, 等. 青海高原土地沙漠化及其防治[M]. 北京: 科学出版社, 2009.
33 CHEN Zongyan, DONG Zhibao, WANG Qingchun. Wind regime and dune field patterns in the Gonghe Basin, Qinghai, China[J]. Journal of Desert Research, 2018, 38(3): 492-499.
CHEN Zongyan, DONG Zhibao, WANG Qingchun. Wind regime and dune field patterns in the Gonghe Basin, Qinghai, China[J]. Journal of Desert Research, 2018, 38(3): 492-499.
陈宗颜, 董治宝, 汪青春.青海共和盆地风况及风沙地貌[J]. 中国沙漠, 2018, 38(3): 492-499.
陈宗颜, 董治宝, 汪青春.青海共和盆地风况及风沙地貌[J]. 中国沙漠, 2018, 38(3): 492-499.
34 CHEN Zongyan, DONG Zhibao, Chongyi E, et al. Characteristics of wind regime and its variation trend in the Gonghe Basin from 1971 to 2015[J]. Journal of Lanzhou University:Natural Sciences, 2020(2): 224-230.
CHEN Zongyan, DONG Zhibao, Chongyi E, et al. Characteristics of wind regime and its variation trend in the Gonghe Basin from 1971 to 2015[J]. Journal of Lanzhou University:Natural Sciences, 2020(2): 224-230.
陈宗颜, 董治宝, 鄂崇毅, 等. 1971—2015年共和盆地风况特征及变化趋势[J]. 兰州大学学报:自然科学版, 2020(2): 224-230.
陈宗颜, 董治宝, 鄂崇毅, 等. 1971—2015年共和盆地风况特征及变化趋势[J]. 兰州大学学报:自然科学版, 2020(2): 224-230.
35 ZHU Zhenda, CHEN Guangting. Sandy desertification of land in China[M]. Beijing: Science Press,1994.
ZHU Zhenda, CHEN Guangting. Sandy desertification of land in China[M]. Beijing: Science Press,1994.
朱震达, 陈广庭. 中国土地沙质荒漠化[M]. 北京: 科学出版社, 1994.
朱震达, 陈广庭. 中国土地沙质荒漠化[M]. 北京: 科学出版社, 1994.
36 Minghua LÜ, YAN Jiangyu, YAO Rentai, et al. Study on the statistical method of wind direction[J]. Journal of Meteorology and Environment, 2012, 28(3): 83-89.
Minghua Lü, YAN Jiangyu, YAO Rentai, et al. Study on the statistical method of wind direction[J]. Journal of Meteorology and Environment, 2012, 28(3): 83-89.
吕明华, 闫江雨, 姚仁太, 等. 风向的统计方法研究[J]. 气象与环境学报, 2012, 28(3): 83-89.
吕明华, 闫江雨, 姚仁太, 等. 风向的统计方法研究[J]. 气象与环境学报, 2012, 28(3): 83-89.
37 WU Zheng. Aeolian landform and sand control engineering[M]. Beijing: Science Press, 2003.
WU Zheng. Aeolian landform and sand control engineering[M]. Beijing: Science Press, 2003.
吴正. 风沙地貌与治沙工程学[M]. 北京:科学出版社, 2003.
吴正. 风沙地貌与治沙工程学[M]. 北京:科学出版社, 2003.
38 LIU Panfeng. Analysis of annual air density variation in Qinghai lake region[J]. Journal of Qinghai University (Nature Science), 2010(2): 14-15.
LIU Panfeng. Analysis of annual air density variation in Qinghai lake region[J]. Journal of Qinghai University (Nature Science), 2010(2): 14-15.
刘攀峰. 青海湖地区空气密度年变化分析[J]. 青海大学学报:自然科学版, 2010(2): 14-15.
刘攀峰. 青海湖地区空气密度年变化分析[J]. 青海大学学报:自然科学版, 2010(2): 14-15.
39 ANDERSON J L, WALKER I J. Airflow and sand transport variations within a backshore-parabolic dune plain complex: NE Graham Island, British Columbia, Canada[J]. Geomorphology, 2006, 77: 17-34.
ANDERSON J L, WALKER I J. Airflow and sand transport variations within a backshore-parabolic dune plain complex: NE Graham Island, British Columbia, Canada[J]. Geomorphology, 2006, 77: 17-34.
40 WALKER I J, NICKLING W G. Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes[J]. Earth Surface Processes and Landforms, 2003, 28: 1 111-1 124.
WALKER I J, NICKLING W G. Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes[J]. Earth Surface Processes and Landforms, 2003, 28: 1 111-1 124.
41 QU Jianjun, HUANG Ning, Wanquan TA, et al. Structural characteristics of gobi sand-drift and its significance[J]. Advances in Earth Science, 2005, 20(1): 19-23.
QU Jianjun, HUANG Ning, Wanquan TA, et al. Structural characteristics of gobi sand-drift and its significance[J]. Advances in Earth Science, 2005, 20(1): 19-23.
屈建军, 黄宁, 拓万全, 等. 戈壁风沙流结构特性及其意义[J]. 地球科学进展, 2005, 20(1): 19-23.
屈建军, 黄宁, 拓万全, 等. 戈壁风沙流结构特性及其意义[J]. 地球科学进展, 2005, 20(1): 19-23.
42 HE Qing, HU Wenfeng, YANG Xinghua, et al. Research on wind profile and sand drift structure in Guaizi Lake Region in the Badain Jaran Desert[J]. Arid Zone Research, 2012, 29(3): 517-523.
HE Qing, HU Wenfeng, YANG Xinghua, et al. Research on wind profile and sand drift structure in Guaizi Lake Region in the Badain Jaran Desert[J]. Arid Zone Research, 2012, 29(3): 517-523.
何清, 胡文峰, 杨兴华, 等.巴丹吉林沙漠拐子湖地区贴地层风速廓线和风沙流结构特征[J]. 干旱区研究, 2012, 29(3): 517-523.
何清, 胡文峰, 杨兴华, 等.巴丹吉林沙漠拐子湖地区贴地层风速廓线和风沙流结构特征[J]. 干旱区研究, 2012, 29(3): 517-523.
43 LI G, ZHANG J, HERRMANN H J, et al. Study of aerodynamic grain entrainment in aeolian transport[J]. Geophysical Research Letters, 2020, 47: e2019GL086574. DOI:10.1029/2019GL086574.
LI G, ZHANG J, HERRMANN H J, et al. Study of aerodynamic grain entrainment in aeolian transport[J]. Geophysical Research Letters, 2020, 47: e2019GL086574. DOI:10.1029/2019GL086574.
doi: 10.1029/2019GL086574    
44 HUANG N, HE P, ZHANG J. Large-eddy simulation of sand transport under unsteady wind[J]. Geomorphology, 2020. DOI:10.1016/j.geomorph. 2020. 107105.
HUANG N, HE P, ZHANG J. Large-eddy simulation of sand transport under unsteady wind[J]. Geomorphology, 2020. DOI:10.1016/j.geomorph. 2020. 107105.
doi: 10.1016/j.geomorph. 2020. 107105    
45 DONG Z B, LU J F, MAN D Q, et al. Equations for the near‐surface mass flux density profile of wind‐blown sediments[J]. Earth Surface Processes and Landforms, 2011, 36: 1 292-1 299.
DONG Z B, LU J F, MAN D Q, et al. Equations for the near‐surface mass flux density profile of wind‐blown sediments[J]. Earth Surface Processes and Landforms, 2011, 36: 1 292-1 299.
46 SMYTH T A G, JACKSON D, COOPER A. Airflow and aeolian sediment transport patterns within a coastal trough blowout during lateral wind conditions[J]. Earth Surface Processes and Landforms, 2014, 39(14): 1 847-1 854.
SMYTH T A G, JACKSON D, COOPER A. Airflow and aeolian sediment transport patterns within a coastal trough blowout during lateral wind conditions[J]. Earth Surface Processes and Landforms, 2014, 39(14): 1 847-1 854.
47 PEASE P, GARES P. The influence of topography and approach angles on local deflections of airflow within a coastal blowout[J]. Earth Surfaces Processes and Landforms, 2013, 38: 1 160-1 169.
PEASE P, GARES P. The influence of topography and approach angles on local deflections of airflow within a coastal blowout[J]. Earth Surfaces Processes and Landforms, 2013, 38: 1 160-1 169.
[1] 张绍云,董玉祥. 海岸沙地风蚀坑形态—动力学研究进展[J]. 地球科学进展, 2019, 34(10): 1028-1037.
[2] 赵哈林, 李玉强, 周瑞莲, 赵学勇, 张铜会, 王进. 内蒙古东部两大沙地土壤理化特性沙漠化演变规律的比较[J]. 地球科学进展, 2011, 26(7): 779-786.
[3] 李鸿威,杨小平. 浑善达克沙地近30年来土地沙漠化研究进展与问题[J]. 地球科学进展, 2010, 25(6): 647-655.
[4] 胡光印,董治宝,魏振海,逯军峰,颜长珍. 近30a来若尔盖盆地沙漠化时空演变过程及成因分析[J]. 地球科学进展, 2009, 24(8): 908-916.
[5] 李森;杨萍;高尚玉;陈怀顺;姚发芬. 近10年西藏高原土地沙漠化动态变化与发展态势[J]. 地球科学进展, 2004, 19(1): 63-070.
[6] 于洪军,刘敬圃. 中国陆架第四纪地质学研究的最新进展[J]. 地球科学进展, 1995, 10(6): 531-536.
[7] 董玉祥. 沙漠化研究的现状与趋势[J]. 地球科学进展, 1994, 9(3): 30-35.
[8] 吴正. 中国海岸风沙地貌与沉积研究的新进展[J]. 地球科学进展, 1993, 8(2): 59-61.
[9] 董光荣 王贵勇 金炯 申建友. 要重视全球变化对我国北方沙区可能影响的研究[J]. 地球科学进展, 1992, 7(5): 31-.
阅读次数
全文


摘要