地球科学进展 ›› 2001, Vol. 16 ›› Issue (2): 220 -225. doi: 10.11867/j.issn.1001-8166.2001.02.0220

综述与评述 上一篇    下一篇

浮游植物动力学模型及其在海域富营养化研究中的应用
魏皓 1,赵亮 1,武建平 2
  
  1. 1.青岛海洋大学物理海洋研究所,山东 青岛  266003;
    2.国家海洋局第一海洋研究所,山东 青岛  266061
  • 收稿日期:2000-06-28 修回日期:2000-09-26 出版日期:2001-04-01
  • 通讯作者: 魏皓(1964-),女,天津市人,教授,博士,主要从事浅海环流与物质输运和海洋生态动力学数值模型研究. E-mail:weihao@lib.ouqd.edu.cn
  • 基金资助:

    国家重点基础研究发展规划(973)项目“黄、东海生态系统动力学和生物资源可持续利用”(编号:G19990437)资助.

REVIEW ON THE NUMERICAL MODELS OF PHYTOPLANKTON DYNAMICS AND THEIR APPLICATION IN ENVIRONMENT MANAGEMENT OF EUTROPHICATION

WEI Hao 1, ZHAO Liang 1, WU Jian-ping 2
  

  1. 1.Insititue of Physical Oceanography,Ocean University of Qingdao,Qingdao  266003,China;
    2.First Institute of oceanography,State Oceanic Administration,Qingdao  266061,China
  • Received:2000-06-28 Revised:2000-09-26 Online:2001-04-01 Published:2001-04-01

浮游植物动力学模型用来研究特定海域浮游植物生物量的时空分布规律,定量确定各种物理、生物过程的贡献,对解决浮游植物生物量异常增加导致的富营养化问题具有至关重要的作用。综述了国内外海洋浮游植物动力学模型研究的发展过程和现状,介绍了几种不同时空尺度浮游植物动力学模型的特点和性能。此类模型在发达国家的海域富营养化研究和环境管理中已取得了相当的进展,而我国目前虽已开展了海洋生态模型的初步研究,但面临一些困难,其中不仅需要获取特定海域的过程参数,而且急需对海域的强迫过程和边界过程加强认识。

The numerical models of phytoplankton dynamics can reproduce the spatial and temporal variation of alge and quantify the contributions of all physical and biological processes involved in phytoplankton production. It takes a great role when studying the eutrophication of coastal sea. A brief review on the model’s development is given. Time dependent water column model is the initial state of physical biological couplling. Vertical resolved model, horizontal box model and three dimensional model can simulate the annual cycle of biomass. Short term model studies show a great importance of the short time physical processes to the evolution of marine ecosystem. More nutrients and function groups are included in the eutrophyication models. They must reproduce the variation of phytoplankton biomass at first. Then the response of the sea to the strategy of nutrient deduction can be investigated. More attention should be pay on the driven and boundary processes in our modelling studies.

中图分类号: 

[1]  Fransz HG, Mommaerts J P, Radach G. Ecological modeling of the North Sea [J]. Netherlands Journal of Sea Research,1991, 28(1/2):67~140.
[2]  Steele J H. Plant production on the Fladen, Ground [J]. J Mar Biol Ass U K, 1956, 35:1~33.
[3]  Lassen H,Nielsen B. Simple mathematical model for the primary production ad a function of the phosphate concentration and incoming solar energy applied to the North Sea [Z].ICES, C M 1972 /L:6, Plankton Comm.
[4]  Parsons T R,Kessler T A. Computer model analysis of pelagic ecosystem in estuarine waters[Z]. NATA ASI Series, 1986,G7:161~181.
[5]  Parsons T R,Kessler T A. An ecosystem model for the assessment of plankton production in relation to the survival of young fish [J]. J Plankt Res, 1987, 9(1):125~137.
[6]  Klein P, Coste B. Effects of wind-stress variability on nutrient transport into the mixed layer[J]. Deep-Sea Res, 1984,31:21~37.
[7]  Radach G. Simulations of phytoplankton dynamics and their interactions with other system components during FLES' 76[A]. In: Suendermann J, Lenz W ed. North Sea Dynamics[C]. Berlin Heidelberg: Spring-Verlag, 1983. 584~610.
[8]  Riley G A, Stommel H, Bumpus D F. Quantitative ecology of the plankton of the Western North Atlantic[J]. Bull Bingham Oceanogr Coll, 1949, 12:1~169.
[9]  Winter D F, Banse K, Anderson G C. The dynamics of phytoplankton blooms in Puget Sound, a fjord in the northwestern United States[J]. Mar Biol, 1975, 29:139~176.
[10]  Radach G, Maier-Reunerm E. The vertical structure of phytoplankton growth dynamics, A mathematical model [J].Mem So R Sco Kiege, 1975, 6(7):113~146.
[11]  Steele J H, Henderson E W. Scottish Fish Res Report, Simulation of Vertical Structure in a Planktonic Ecosystem[R].1976.27.
[12]  Evans G T, Steele J H, Kullenberg G E B. Scottish Fish Res Reprot 9,A Preliminary Model of Shear Diffusion and Plankton Populations[C]. 1977. 20pp.
[13]  Radach G. Preliminary simulations of the phytoplankton and phosphate dynamics during FLEX' 76 with a simple two-component model[A].“Meteor”Forsch[C]. Ergebnisse, 1980,A/22:151~163.
[14]  Woods J D, Onken R. Diurnal variation and primary production in the ocean-preliminary results of a Lagrangian ensemble model[J]. J Plankton Res, 1982, 4:735~756.
[15]  Radach G. Dynamic interactions between the lower trophic levels of the marine food web in relation to the physical environment during the Fladen Ground experiment[J]. Neth J Sea Res, 1982, 16:231~246.
[16]  Tett P, Edwards A, Kones K, A model for the growth of shelf-sea phytoplankton in summer[J]. Estuar Coast Shelf Sci, 1986, 23(5):641~672.
[17]  Fasham M, Holligan P, Pugh P R. The spatial and temporal development of the spring phytoplankton bloom in the Celtic Sea, April 1979[J]. Prog Oceanogr, 1983, 12:87~145.
[18]  Sjoeberg S, Wilmot W. Systems analysis of a spring phytoplankton bloom in the Baltic[A]. Contr Askoe Lab[C].1977, 20p.
[19]  Wroblewski J S, Richman J G. The non-linear response of plankton to wind mixing events-implications for survival of larval northern anchovy[J]. J Plankton Res, 1987, 9:103~123.
[20]  Kremer P, Nixon S W. A Coastal Marine Ecosystem, Simulation and Analysis [M]. Berlin, Heidelberg, New York:Spring-Verlag,1978. 217pp.
[21]  Scavia D. An ecological model of Lake Ontario[J]. Ecol Mod, 1980, 8:49~78.
[22]  Fransz H G, Verhagen H G. Modelling research on the production cycle of phytoplankton in the Southern Bight of the North Sea in relation to riverborne nutrient load[J]. NJSR,1985, 19:241~250.
[23]  Evans G T, Parslow J S. A model of annual plankton cycles[J]. Biol Oceanogr, 1985, 3:327~347,
[24]  Jones R, Henderson W W. Population regulation and implications for the recruitment process in fish[Z]. ICES 1985,1980. G21.
[25]  Kiefer D A, Kremer E W. Origins of vertical patterns of phytoplankton and nutrients in the temperate, open ocean: a straitgraphic hypothesis [J]. DSR, 1981, 28A: 1 087 ~1 105.
[26]  Stigebrandt A, Wulff F. A model for the dynamics of nutrients and oxygen in the Baltic Proper[J]. J Mar Res, 1988,45:729~759.
[27]  Radach G,Moll A. State of the Art in Algal Bloom Modeling[R]. Water Pollution Research Report 12, Brussels, 1990.116~149.
[28]  Radach G, Moll A. Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea[J]. Prog Oceanog, 1993, 31:339~419.
[29]  Pichot G, Runfola Y. Mathematical model of the nitrogen cycle in the Southern Bight of the North Sea[A]. 10th European Symposium on Marine Biology[C]. Ostende, Belgium, 1975.467~476.
[30]  Dubois D M, Adam Y. Spatial structuration of diffusive prey-predator biological populations: simulation of the horizontal distribution of plankton in the North Sea[A]. In:Vansteenkiste G C, eds. System Simulation in Water Resoutces[C].Netherlands: North-Holland Publishing Company,1976. 343~356.
[31]  Horwood J W. Algal production in the west-central North Sea[J]. J Plankton Res, 1982, 4(1):103~124.
[32]  Varela R A, Cruzado A, Gabaldon J E. Modelling primary production in the North Sea using the European Regional Seas Ecosystem Modelp[J]. Netherlands Journal of Sea Research, 1995, 33(3/4):337~361.
[33]  Moll A. Regional distribution of primary production in the North Sea simulated by a three-dimensional model[J]. Journal of Marine Systems, 1998, 16(1~2):151~170.
[34]  Beukema J,Baratta Bekker J, eds.European Regioonal Seas Ecosystem Model-I[J]. Neth J Sea Res, 1995, 33(3/4).
[35]  Lenhart H, Radach G, Ruardij P. The effects of river input on the ecosystem dynamics in the continental coastal zone of the North Sea using ERSEM[J]. Neth J Sea Res, 1997,38,249~274.
[36]  Skogen M D. Modeling the primary production in the North Sea using a coupled three-dimensional physical-chemical-biological ocean model[J]. Estuarine, Coastal and Shelf Science, 1995, 41:545~565.
[37]  Cerco F C, Cole T. Three-dimensional Eutrophication model of Chesapeake Bay[J]. J Envir Engin, 1993, 119(6):1 006~1 025.
[38]  Cerco F C. Simulation of Long-term Trends in Chespeake Bay Eutrophication[J]. J Envir Engin, 1995, 121(4):298~310.
[39]  Paetsch J, Radach G. Long-term of Simulation of the Eutrophication of the North Sea: Temporal development of nutrients, chlorophyll and primary production in comparison to observations[J]. J Sea Research, 1997, 38:275~310.
[40]   Yanagi T, Montani K. Ecological modeling as a tool for coastal zone management in Dokai Bay, Japan[J]. J Mar Sys, 1997, 13:123~136.
[41]  Report of the NSTF Modelling Workshop[A]. In:De Vries I Rijkswaterstaat,ed. Tidal Waters Division[C]. The Hague:Report DGW-92.045. 1992.
[42]  OSPAR. Report of the ASMO Modelling[R]. Workshop on Eutrophication Issues, 5-8 November 1996. The Hague:Netherlands, 1998.

[1] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[2] 周江存,孙和平. 高精度GPS观测中的负荷效应[J]. 地球科学进展, 2007, 22(10): 1036-1040.
[3] 薛传东,刘星,杨浩,李保珠,谈树成. 昆明市地热田越流含水系统中地下热水的数值模拟[J]. 地球科学进展, 2003, 18(6): 899-905.
阅读次数
全文


摘要