地球科学进展 ›› 2001, Vol. 16 ›› Issue (2): 226 -234. doi: 10.11867/j.issn.1001-8166.2001.02.0226

综述与评述 上一篇    下一篇

地幔矿物与水流体之间元素分配系数的研究及意义
苏根利,谢鸿森,李和平,丁东业,郭 捷   
  1. 中国科学院地球化学研究所,贵州 贵阳  550002
  • 收稿日期:2000-07-03 修回日期:2000-09-04 出版日期:2001-04-01
  • 通讯作者: 苏根利(1969-),男,山东宁阳人,博士,主要从事地球深部物质科学研究. E-mail:sugenli@hotmail.com

THE RESEARCH PROGRESS IN MANTLE MINERAL-AQUEOUS FLUID PARTITIONING OF TRACE ELEMENTS AT HIGH PRESSURE AND HIGH TEMPERATURE

SU Gen-li, XIE Hong-sen,LI He-ping,DING Dong-ye, GUO Jie   

  1. Institute of Geochemistry,Chinese Academy of Sciences,Guiyang550002,China
  • Received:2000-07-03 Revised:2000-09-04 Online:2001-04-01 Published:2001-04-01

流体是地球内部物质和能量迁移最为活跃的介质,它在造成地幔化学的富集和亏损、产生具有不同地球化学特征的幔源岩浆岩石,以及促进壳幔物质的再循环过程等诸多方面都起了重大作用。高温高压下实验模拟流体与地幔岩石和矿物之间痕量元素分配作用是揭示地幔流体的组成与性质、地幔中不同元素类型之间或内部的分异作用、地幔交代介质的类型与特征、岛弧玄武岩高场强元素亏损原因的一个重要的手段。并对近年来有关高温高压下流体与地幔矿物之间痕量元素分配作用的实验模拟研究进行了评述,分析了制约流体与地幔矿物之间痕量元素分配系数的因素,总结了这些研究的应用。

Mantle fluids are the most active mediums for mass and heat transport in the Earth’s mantle. They play important roles in the enrichment and depletion of Earth’s mantle and the origin of mantle derived magmatic rock with different geochemical features and facilitating the recycle of crustal and mantle’s materials. The simulation of trace elements partitioning between mantle mineral and fluid is a useful tool to estimate the fluid composition in the Earth’s mantle and constrain the role of fluid phases during metasomatic processes in the upper mantle and characterize crust/mantle recycling processes and explain the origin of high strength element depletions in arc magmas. In this article we review the recent progresses in the experimental studies of fluid/ mantle mineral trace element partitioning and analyze the controlling factors for mantle mineral/fluid trace element partitioning and summarize the applications of partitioning coefficients obtained from the high pressure and high temperature measurement. Despite the advances in our understanding of fluid/mineral partitioning, specific shortcomings exists in the database. Future research will surely have a significanly impact on our understanding of deep seated fluid.

中图分类号: 

[1]  Thompson A B. Water in the Earth' s upper mantle[J]. Nature, 1992, 358:295~301.
[2]  Belt D R, Rossman G R. Water in the Earth' s mantle: the role of nominally anhydrous minerals[J]. Science, 1992, 255:1 391~1 297.
[3]  Burnley P C, Navrotsky A. Synthesis of high-pressure hydrous magnesium silicates: observations and analysis[J]. Am Mineral, 1996, 81:317~326.
[4]  Konzett J, Sweeney R J, Ulmer P. Potassium amphibole stability in the upper mantle: an experimental study in a peralkaline KNCMASH system to 8.5 GPa[J]. J Petro, 1996, 38:537~568.
[5]  Poli S, Schmidt M W. H2O transport and release in subduction zones: experimental constraints on basaltic and andesitic systems[J]. J Geophys Res ,1995, 100:22 299~22 314.
[6]  Gaetani G A, Green T L. The influence of water on melting of mantle peridotite[J]. Contrib Mineral Petrol, 1998, 131:323~346.
[7]  Kubo T, Ohtani E, Kato F,et al. Effects of water on theα-β trnasformation kinetics in San Carlos olivine [J]. Science,1997, 281:85~87.
[8]  Wood B J. The effect of H2O on the 410-kilometer seismic discontinuity[J]. Science, 1995, 268:74~76.
[9]  McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth Planet Sci Lett ,1991, 102:358~374.
[10]  Maury R C, Defant M J, Joron J -Z. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths[J]. Nature,1992, 360:661~663.
[11]  Hawkesworth C J, Gallagher K, Herg J M,et al. Mantle and slab contributions in arc magmas[J]. Ann Rev Earth Planet Sci, 1993, 21:175~204.
[12]  Harris D M, Anderson A T. Volatiles H2O, CO2, and Cl in a subduction realted basalt[J]. Contrib Mineral Petro, 1984,87:120~128.
[13]  Garcia M O, Liu N W K, Muenow. Volatiles in submarine volcanic rocks from Mariana Island arc and trough [J].Geochim Cosmochim Acta,1979, 43:305~312.
[14]  Stolper E, Newman S. The role of water in the petrogenesis of Mariana trough magmas[J]. Earth Planet Sci Lett, 1994,121:292~325.
[15]  Reodder E. Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts[J]. Am Mineral , 1965, 50:1 746~1 782.
[16]  Anderson T, O' Reily S Y, Griffin W L. The trapped fluid phase in upper mantle xenoliths from Victoria, Australia:Implications for mantle metasomatism[J]. Contrib Mineral Petrol , 1984, 88:72~85.
[17]  Beergman S C, Dubessy J. CO2-CO fluid inclusions in a composite peridotite xenolith:implications for mantle oxygen fugacity[J]. Contrib Mineral Petrol , 1984, 85:1~13.
[18]  Smith J V, Delaney J S, Hervig R L,et al. J B. Storage of F and Cl in the upper mantle: geochemical implications[J].Lithos, 1981, 14:133~147.
[19]  Matson D W, Muenow D W, Garcia M O. Volatile contents os phlogopite micas from south Africa kimberlite[J]. Contrib Mineral Petrol, 1986, 93:399~408.
[20]  Brenan J M.Partitioning of fluorine and chlorine between apatite and aqueous fluids at high pressure and temperature:implications for the fluorine and chlorine content of high P-T fluids[J]. Earth Planet Sci Lett, 1993,107:672~688.
[21]  Wass S Y, Rogers N W. Mantle metasomatism-precursor to continental alkaline volcanism[J]. Geochim Cosmochim Acta, 1980, 52:433~447.
[22]  O' Rieily S Y, Griffin W L. Mantle metasomatism benath western Victoria, Australia, I. Metasomatism processes in Cr-diopside lherzolites[J]. Geochim Comochim Acta,1988,52:433~447.
[23]  Maury R C, Defant M J, Joron J-Z. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths[J]. Nature, 1992, 360:661~663.
[24]  Wood D A. A variably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochimical evidence[J]. Geology, 1979, 7:499~503.
[25]  Hawkesworth G J,et al. Mantle enrichment processes[J].Nature, 1984, 311:331~335.
[26]  Francis D, Ludden. The mantle source for olivine basalt at Fort Selkik, Yukon, Canada[J]. J Petro, 1990, 31:371~400.
[27]  McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism [J]. Earth Planet Sci Lett,1991, 102:358~374.
[28]  Mysen B O. Trace elememt partitioning between garnet peridotite minerals and water-rich vapor: experimental data from 5-30kbar[J]. Amer Mineral, 1979, 64:274~287.
[29]  Cullers R L, Medaris L G, Haskin L A. Experimental studies of the distribution of rare earth as trace elements among silicate minerals and liquids and water[J]. Geochim Cosmochim Acta, 1973,37:1 499~1 512.
[30]  Cullers R L, Medaris L G, Haskin L A. Gadolinium: distribution between aqueous and silicate phases [J]. Science,1970, 169: 580~583.
[31]  Zielinski R A, Frey E A. An experimental study of the partitioning of a rare earth element(Gd) in the system diopsideaqueous vapor[J]. Geochim Cosmochim Acta,1974, 38, 345~365.
[32]  Brenan J M, Watson E B. Partitioning of trace elements between olivine and aqueous fluid at a high P-T conditions: implications for the effect of fluid composition on trace element transport[J]. Earth Planet Sci Lett, 1991, 107:672~688.
[33]  Ayers J C, Watson E B. Apatite/fluid partitioning of rareearth elements and strontium: Experiment results at 1.0GPa and 1000℃and application to models of fluid-rock interaction[J]. Chem Geol,1993, 110:299~314.
[34]  Brenan J M, Shaw HF, Ryerson F J,et al. Rutile-fluid partitioning of Nb, Ta, Zr, U and Th: implications for highfield-strength element depletions in island arc basalts[J].Earth Planet Sci Lett, 1994, 128:327~339.
[35]  Brenan J M, Shaw HF, Ryerson F J,et al. Mineral-aqueous fluid partitioning of trace elements at 900℃and 2.0 GPa: constrains on the trace element chemistry of mantle and deep crustal fluids[J]. Geochim Cosmochim Acta, 1995, 59:3 331~3 250.
[36]  Stalder R, Folly S F, Brey G P,et al. Mineral-aqueous fluid partitioning of trace elements at 900~1 200℃and 3.0~5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism[J].Geochim Cosmochim Acta, 1998, 62:1 781~1 801.
[37]  Ayers J. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones[J]. Contrib Mineral Petro,1998, 132:390~404.
[38]  Tatsumi Y, Isoyama H. Transportation of beryllium with H2O at high pressure: implication for magma genesis in subduction zone[J]. Geophys Res Lett, 1988, 15: 180~183.
[39]  Tatsumi Y, Hamilton D L, Nesbitt R W. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas[J]. J Volcan Geotherm Res, 1986,29:293~309.
[40]  Shimizu N. Rare earth elements in garnets and clinopyroxenes from garnet lherzolite nodules in kimberlites[J]. Earth Planet Sci Lett,1975, 25:26~32.
[41]  Shimizu N, Richardson S H. Trace element abundance patterns of garnet inclusions in peridotite suite diamonds[J].Geochim Cosmochim Acta,1987, 51:755~758.
[42]  Stachel T, Harris J W. Diamond precipitation and mantle metasomatism-evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana [J].Contrib Mineral Petro, 1997, 129:143~154.
[43]  Zimmerman R, Knop E, Heinrich W,et al. Experimental Na-K Distribution between amphiboles and aqueous chloride solutions, and a mixing model along the richterite jion[J].Contrib Mineral Petro,1997, 126:252~264.
[44]  Melzer S, Gottschalk M, Andrut M,et al. Experimentally determined distribution of Na, K, and Ca between amphiboles and aqueous chloride solutions [J]. Eur J Mineral, Beih, 1997, 9:244.
[45]  Najorka J, Frantz G, Gottschalk M. Equilibrium of (Sr, Ca)-tremolite solutions at 750℃and 2 kbar and (Sr,Ca)chloride solutions[J]. EMPG-1,Bayreuth, Terra Noca Suppl, 1996, 1:47.
[46]  Keppler H. Constraints from partitioning experiments on the composition of subduction zone fluids [J]. Nature, 1996,380:237~240.
[47]  Goodwin A. Precambrian granulites and the dynamic lower crust [ A ]. In: Abstract 28th International Geological Congress[C]. 1989, 3:470~471.
[48]  Touret J L R. Synmetamorphic fluid inclusions in granulites[A]. In: Petrology and Geochemistry of Granulites (Clermont-Ferrand(France)[C]. 1988.303~306.
[49]  Vielzeuf D. Granulites and their problems[A]. In: Petrology and Geochemistry of Granulites (Clermont-Ferrand(France)[C]. 1988.237~238.
[50]  Glassley W E. The role of CO2 in the chemical modification of deep continental crust[J]. Geochim Cosmochim Acta,1983, 47:597~616.
[51]  Ayers J C, Eggler D H. Partitioning of elements between silicate melt and H2O-NaCl fluids at 1.5 and 2.0 GPa pressure:implications for mantle metasomatism [J]. Geochim Cosmochim Acta, 1995, 59: 4 237~4 246.
[52]  Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf and lanthanide tetrd effect[J]. Contrib Mineral Petro, 1996, 123:323~333.
[53]  Johannesson K H, Lyons W B, Yelken M A,et al. Geochemistry of rare-earth elements in hypersaline and dilute acid natural terrestrial waters: complexation behavior and middle rare-earth element enrichment [J]. Chem Geol,1996, 133:125~144.
[54]  Hart S R. A large-scale isotope anomaly in the southern Hemisphere mantle[J]. Nature, 1984, 309:753~757.
[55]  Matveen S,et al. Volatiles in the Earth' s mantle :I. synthesis of CHO fluids at 1273 K and 2.4 GPa[J]. Geochim Cosmochim Acta, 1997, 61:3 081~3 088.
[56]  Llyod F E, Bailey D K. Light element metasomatism of the continental mantle: the evidence and the sequences[J]. Phys Chem Earth, 1975, 9:389~416.
[57]  Boettcher A L, O' Neil J R. Stable isotope, chemical, and petrographic studies of high pressure amphiboles and micas:evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites[J]. Am J Sci, 1980, 280A:594~621.
[58]  Frey F A, Green D H. The mineralogy, geochemistry and origin of lherzolite inclusins in Victorian basanites [ J ].Geochim Cosmochim Acta,1974,38:1 023~1 059.
[59]  Hunter R H, Mekenzine D. The equilibrium geometry of carbonate melts in rocks of mantle composition[J]. Earth Planet Sci Lett, 1989, 92:347~356.
[60]  Kelemen P B, Shimizu N, Dunn T. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La, and Ce during melt/rock reaction in the upper mantle[J]. Earth Planet Sci Lett, 1993, 120:111~134.
[61]  Ryerson, F J, Watson E B. Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island arc basalts[J].Earth Planet Sci Lett,1987, 86:225~239.
[62]  Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chem Geol,1995, 120:347~359.
[63]  Jenner G A, Foley S F, Jackson S E,et al. Determination of partition coefficients for trace elements in high pressure -temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry(LAM-ICP-MS) [J]. Geochim Cosmochim Acta, 1993, 57:5 099~5 103.
[64]  Ionov D A, Hofmann A W. Nb-Ta-rich mantle amphiboles and micas: implications for subduction -related metasomatic trace element fractionations [J]. Earth Planet Sci Lett,1995, 131:341~356.

[1] 泮枫敏,袁华茂,宋金明,段丽琴. 海水痕量元素—有机配体的配分特征与影响因素研究进展[J]. 地球科学进展, 2019, 34(5): 499-512.
[2] 王水龙, 尚林波, 毕献武, 樊文苓. 硅酸盐熔体和流体中金的性质及行为研究进展[J]. 地球科学进展, 2014, 29(6): 683-690.
[3] 朱炎铭,陈尚斌,王道华,曹新款,李伍. 煤中金的研究现状及其展望[J]. 地球科学进展, 2010, 25(8): 794-799.
[4] 陈晋阳;郑海飞;曾贻善. 微量元素在幔源矿物与热液之间分配系数的研究进展[J]. 地球科学进展, 2004, 19(2): 224-229.
[5] 魏俊峰;戴民汉;洪华生;李骁麟;陈蔚芳. 海洋胶体与痕量金属的相互作用[J]. 地球科学进展, 2004, 19(1): 26-031.
[6] 杨学明,杨晓勇,M.J.Le Bas. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 1998, 13(5): 457-466.
阅读次数
全文


摘要