地球科学进展 ›› 2020, Vol. 35 ›› Issue (9): 948 -961. doi: 10.11867/j.issn.1001-8166.2020.078

所属专题: 地球系统科学大会纪念专刊

水生关键带有机碳循环过程:从分子水平到全球尺度 上一篇    下一篇

中国主要河流输送陆源碳的同位素特征及影响因素
单森 1( ),齐远志 1,罗春乐 1,付文静 1,薛跃君 2,王旭晨 1, 2( )   
  1. 1.中国海洋大学海洋化学理论与工程技术教育部重点实验室/深海圈层与地球系统前沿科学中心,山东 青岛 266100
    2.青岛海洋科学与技术试点国家实验室同位素与地质年代测定中心,山东 青岛 266237
  • 收稿日期:2020-08-09 修回日期:2020-09-02 出版日期:2020-09-10
  • 通讯作者: 王旭晨 E-mail:shansen@stu.ouc.edu.cn;xuchenwang@ouc.edu.cn
  • 基金资助:
    国家自然科学基金项目“重新评估河流输入陆源有机碳对海洋碳循环的贡献和影响”(41776082);中央高校基本科研业务费专项“C3、C4植物生物降解对水体和沉积物间隙水溶解无机碳同位素值的影响”(201861017)

Carbon Isotopic Constrains on the Sources and Controls of the Terrestrial Carbon Transported in the Four Large Rivers in China

Sen Shan 1( ),Yuanzhi Qi 1,Chunle Luo 1,Wenjing Fu 1,Yuejun Xue 2,Xuchen Wang 1, 2( )   

  1. 1.Key Laboratory of Marine Chemistry Theory and Technology/Center for Frontier Science of Deep Ocean and Earth System,Ocean University of China,Qingdao 266100,China
    2.Center for Isotope Geochemistry and Geochronology,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China
  • Received:2020-08-09 Revised:2020-09-02 Online:2020-09-10 Published:2020-10-28
  • Contact: Xuchen Wang E-mail:shansen@stu.ouc.edu.cn;xuchenwang@ouc.edu.cn
  • About author:Shan Sen(1993-), male, Zibo City, Shandong Province, Ph. D student. Research areas include isotope of inorganic carbon isotope in ocean and rivers. E-mail: shansen@stu.ouc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Reassessing the contribution and impact of river input terrigenous organic carbon on marine carbon cycle”(41776082);The Fundamental Research Funds for the Central Universities "The impact of C3 and C4 vegetation biodegradation on dissolved inorganic carbon isotopes in aquatic systems and sediment pore water"(201861017)

长江、黄河、珠江和黑龙江是我国的4条主要大型河流,其淡水和陆源物质的输送对边缘海的物理、生物和地球化学过程具有重要影响。通过碳同位素(13C和14C)与浓度相结合的方法,研究了4条河流输送陆源有机碳(POC和DOC)和无机碳(PIC和DIC)的同位素特征和通量,通过同位素端元模型对各河流输送陆源有机和无机碳的来源做了定量计算并与世界主要河流进行了比较。长江、黄河和珠江输送的DIC和DOC具有千年尺度的14C年龄,高于世界其他大河流,主要受岩石风化以及人类活动的影响。黑龙江流域输送的DIC、DOC及POC具有相对年轻的14C年龄,这表明其河流碳组分主要受陆源植被有机质降解影响。该研究对认识我国主要河流输送陆源碳的特征、来源和控制因素及对边缘海碳循环的影响具有实质意义。

The Changjiang, Huanghe, Zhujiang and Heilongjiang are the four largest rivers in China and they transport large amount of fresh water and terrigenous materials, including both inorganic and organic carbon into the ocean. The sources of the terrestrial carbon transported in the four rivers, however, have not been well constrained and compared. In this study, we used carbon isotopes (13C and 14C) combined with concentration measurements to investigate and compare the sources and fluxes of Dissolved Inorganic Carbon (DIC), Particulate Inorganic Carbon (PIC), Dissolved Organic Carbon (DOC) and Particulate Organic Carbon (POC) in the four rivers. The contributions of the potential sources to both DIC and DOC were quantitatively calculated using a dual isotope and three end member model. The results showed that the concentrations and isotope characteristics of the carbon pools in the river depended largely on the geological setting, surrounding environment and the anthropogenic influence of the drainage basins. Compared with other large rivers in the world, the concentrations of DIC in the Changjiang, Huanghe and Zhujiang were higher, but the DIC fluxes in the Huanghe and Zhujiang were lower. The DOC concentrations in the Heilongjiang River were higher and lower in the other three rivers compared with the average value of the world largest 25 rivers. The Changjiang, Huanghe and Zhujiang all transport millennia aged carbon. The old riverine DIC reflects the influence of chemical weathering of carbonate rocks and the old DOC reflects influence mainly from pre-aged soil OC. These ancient terrestrial carbon discharged by the rivers could have significant effects on the carbon cycle and ecosystems in the China's marginal seas.

中图分类号: 

图1 长江、黄河、珠江和黑龙江河流采样站位图
字母和数字代表样品名称
Fig.1 Sampling sites for the Changjiang, Huanghe, Zhujiang and Heilongjiang rivers
The letter and number represented the sample name
表1 长江、黄河、珠江和黑龙江 DICPOCDOC端元碳同位素取值范围
Table 1 Carbon isotopic values of potential sources for the DIC, POC and DOC for the ChangjiangHuangheZhujiang and Heilongjiang rivers
图2 长江、黄河、珠江和黑龙江各站位DICDOC的浓度分布
Fig.2 Plot of measured concentrations of DIC and DOC in the Changjiang, Huanghe, Zhujiang and Heilongjiang rivers
图3 长江、黄河、珠江和黑龙江输送DICPICDOCPOC的碳同位素值分布图
(a) δ 13C 值;(b) Δ 14C值
Fig.3 Plot of carbon isotopic values for DIC, PIC, DOC, and POC in the Changjiang, Huanghe, Zhujiang and Heilongjiang rivers
(a) δ 13C distribution ; (b) Δ 14C distribution
图4 长江、黄河、珠江和黑龙江年径流量、DICDOC浓度以及通量与世界25条大型河流[ 26 , 67 ]平均值对比图
(a)年径流量;(b)DIC、DOC平均浓度;(c)DIC、DOC通量;误差棒表示最大值、最小值
Fig.4 Comparison of discharge, DOC and DIC concentrations, DOC and DIC flux in the ChangjiangHuangheZhujiang and Heilongjiang rivers with the average values[ 26 , 67 ] of the 25 largest rivers in the world
(a)The average discharge; (b) Concentrations of DIC and DOC; (c) The fluxes of DIC and DOC;The error bars represent the maximum and minimum values
图5 长江、黄河、珠江和黑龙江DICPICDOCPOCδ13CΔ14C关系分布图
Fig.5 Plots of δ13C vs. Δ14C for DIC, PIC, DOC, and POC in the ChangjiangHuangheZhujiang and Heilongjiang rivers
图6 同位素三端元模型计算得到的不同来源对长江、黄河、珠江和黑龙江河流碳的贡献
(a)DIC; (b)DOC; (c)POC; DIC 3个端元分别为:大气入侵( f 1)、有机质降解( f 2)、碳酸盐岩溶解( f 3);DOC及POC 3个端元分别为:现代植物( f 1)、土壤预陈化有机质( f 2)、化石燃料( f 3)
Fig.6 Calculated contributions of the three potential sources to riverine carbon in the Changjiang HuangheZhujiang and Heilongjiang rivers studied
(a)DIC, (b)DOC and (c)POC; The endmembers for DIC are: Atmosphere invasion ( f 1), organic matter degradation ( f 2), and carbonate dissolution ( f 3). The endmembers for DOC and POC are: Plant ( f 1), pre-aged soil ( f 2) and fossil ( f 3)
图7 世界河流碳同位素特征图
(a)DIC(世界河流 n=197,中国4条河流 n=36);(b)DOC(世界河流 n=502,中国4条河流 n=33);(c)POC(世界河流 n=484,中国4条河流 n=28);方框代表各组分来源,红色虚线代表世界河流的平均值(包含本研究的数据),灰色柱形图代表河流样品碳同位素值的分布情况,世界河流碳同位素数据引自参考文献[ 20 ]
Fig.7 Plots of the isotopic values of δ13C vs. Δ14C for the world rivers
(a) DIC (global n=197, four large rivers in China n=36); (b) DOC (global n=502, four large rivers in China n=33); (c) POC (global n=484, four large rivers in China n=28). The boxes represent the potential sources of the carbon pools, the red dashed lines represent the average data of the global rivers (include the data in this study), and the bar graphs represent the carbon isotopic distribution of all data the global river data is from reference [ 20 ]
1 Bianchi T S, Allison M A. Large-river delta-front estuaries as natural "recorders" of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8 085-8 092.
2 Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4(1): 401-423.
3 Dai A G, Qian T T, Trenberth K E, et al. Changes in continental freshwater discharge from 1948 to 2004[J]. Journal of Climate, 2009, 22(10): 2 773-2 792.
4 Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1-21.
5 Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7 478): 61-70.
6 Cai W-J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3(1): 123-145.
7 Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 171-184.
8 Beaulieu E, Goddéris Y, Donnadieu Y, et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change[J]. Nature Climate Change, 2012, 2(5): 346-349.
9 Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19 473-19 481.
10 Dosseto A. Chemical weathering (U-series)[C]//Encyclopedia of Scientific Dating Methods. Dordrecht: Springer Netherlands, 2015: 152-169.
11 Kump L R, Brantley S L, Arthur M A. Chemical weathering, atmospheric CO2, and climate[J]. Annual Review of Earth & Planetary Sciences, 2000, 28(1): 611-667.
12 Wang X C, Chen R F, Gardner G B. Sources and transport of dissolved and particulate organic carbon in the Mississippi River estuary and adjacent coastal waters of the northern Gulf of Mexico[J]. Marine Chemistry, 2004, 89(1/4): 241-256.
13 Wang X C, Ma H Q, Li R H, et al. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2025.
14 Wu Y, Zhang J, Liu S M, et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 13-25.
15 Wu Y, Bao H, Yu H, et al. Temporal variability of particulate organic carbon in the lower Changjiang (Yangtze River) in the post-Three Gorges Dam period: Links to anthropogenic and climate impacts[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120: 2 194-2 211.
16 Xue Y J, Zou L, Ge T T, et al. Mobilization and export of millennial-aged organic carbon by the Yellow River[J]. Limnology and Oceanography, 2017, 62(S1): S95-S111.
17 Schuur E A G, Druffel E, Trumbore S E. Radiocarbon and Climate Change[M]. Cham: Springer International Publishing, 2016. DOI: 10.1007/978-3-319-25643-6.
doi: 10.1007/978-3-319-25643-6    
18 Armstrong A. Riverine carbon unravelled[J]. Nature Geoscience, 2012, 5(10): 684-684.
19 Galy V, Beyssac O, France-Lanord C, et al. Recycling of graphite during Himalayan erosion: A geological stabilization of carbon in the crust[J]. Science, 2008, 322(5 903): 943-945.
20 Marwick T R, Tamooh F, Teodoru C R, et al. The age of river-transported carbon: A global perspective[J]. Global Biogeochemical Cycles, 2015, 29(2): 122-137.
21 Mayorga E, Aufdenkampe A K, Masiello C A, et al. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers[J]. Nature, 2005, 436(7 050): 538-541.
22 Faurescu I, Varlam C, Faurescu D, et al. Underground water dating and age corrections using radiocarbon[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306(1): 263-269.
23 Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3-30.
24 Goldsmith S T, Carey A E, Johnson B M, et al. Stream geochemistry, chemical weathering and CO2 consumption potential of andesitic terrains, Dominica, Lesser Antilles[J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 85-103.
25 Richey J E, Hedges J I, Devol A H, et al. Biogeochemistry of carbon in the Amazon River[J]. Limnology and Oceanography, 1990, 35(2): 352-371.
26 Cai W-J, Guo X H, Chen C-T A, et al. A comparative overview of weathering intensity and HCO3- flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers[J]. Continental Shelf Research, 2008, 28(12): 1 538-1 549.
27 Wu W H, Yang J D, Xu S J, et al. Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang: Silicate weathering and CO2 consumption[J]. Applied Geochemistry, 2008, 23(12): 3 712-3 727.
28 Zhang L J, Xue M, Wang M, et al. The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(5): 741-757.
29 Wang Xuchen, Dai Minhan. The application naturally occurred radiocarbon (14C) in marine organic geochemistry studies[J]. Advance in Earth Sciences, 2002, 17(3): 348-354.
王旭晨, 戴民汉. 天然放射性碳同位素在海洋有机地球化学中的应用[J]. 地球科学进展, 2002, 17(3): 348-354.
30 Bao R, McIntyre C, Zhao M, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10): 791-794.
31 Raymond P A, Bauer J E. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis[J]. Organic Geochemistry, 2001, 32(4): 469-485.
32 Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7 476): 355-359.
33 Butman D E, Wilson H F, Barnes R T, et al. Increased mobilization of aged carbon to rivers by human disturbance[J]. Nature Geoscience, 2015, 8(2): 112-116.
34 Amon R M W, Rinehart A J, Duan S, et al. Dissolved organic matter sources in large Arctic rivers[J]. Geochimica et Cosmochimica Acta, 2012, 94: 217-237.
35 Benner R, Benitez-Nelson B, Kaiser K, et al. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean[J]. Geophysical Research Letters, 2004, 31(5): 179-211.
36 Raymond P A, McClelland J W, Holmes R M, et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers[J]. Global Biogeochemical Cycles, 2007, 21(4): GB4011.
37 Raymond P A, Bauer J E, Caraco N F, et al. Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers[J]. Marine Chemistry, 2004, 92(1/4): 353-366.
38 Sickman J O, DiGiorgio C L, Lee Davisson M, et al. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California[J]. Biogeochemistry, 2010, 99(1): 79-96.
39 Wang X C, Luo C L, Ge T T, et al. Controls on the sources and cycling of dissolved inorganic carbon in the Changjiang and Huanghe River estuaries, China: 14C and 13C studies[J]. Limnology and Oceanography, 2016, 61(4): 1 358-1 374.
40 Xu Qianqing. Water Conservancy Encyclopedia [M]. 2nd ed. Beijing: China Water & Power Press, 2006.
徐乾清. 中国水利百科全书[M]. 第2版. 北京: 中国水利水电出版社, 2006.
41 Ministry of Water Resources of the People's Republic of China. Sediment Bulletin of Chinese Rivers(2018)[M]. Beijing: China Water & Power Press, 2019.
中华人民共和国水利部. 中国河流泥沙公报(2018)[M]. 北京: 中国水利水电出版社, 2019.
42 McNichol A P, Jones G A, Hutton D L, et al. The rapid preparation of seawater ΣCO2 for radiocarbon analysis at the National Ocean Sciences Ams Facility[J]. Radiocarbon, 1994, 36(2): 237-246.
43 Luo Chunle. Carbon Isotopic (13C, 14C) Studies of the Sources, Seasonal Variation and Flux of Inorganic Carbon Transported by the Huanghe River[D]. Qingdao: Ocean University of China, 2017.
罗春乐. 碳同位素(13C,14C)方法研究黄河输送无机碳的来源、季节变化及入海通量[D]. 青岛: 中国海洋大学, 2017.
44 Xue Y J, Ge T T, Wang X C. An effective method of UV-oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry[J]. Journal of Ocean University of China, 2015, 14(6): 989-993.
45 Ge T T, Wang X C, Zhang J, et al. Dissolved inorganic radiocarbon in the Northwest Pacific continental margin[J]. Radiocarbon, 2016, 58(3): 517-529.
46 Wang X C, Xu C L, Druffel E M, et al. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China[J]. Global Biogeochemical Cycles, 2016, 30(12): 1 778-1 790.
47 Masiello C A, Druffel E R M. Carbon isotope geochemistry of the Santa Clara River[J]. Global Biogeochemical Cycles, 2001, 15(2): 407-416.
48 Ishikawa N F, Tayasu I, Yamane M, et al. Sources of dissolved inorganic carbon in two small streams with different bedrock geology: Insights from carbon isotopes[J]. Radiocarbon, 2015, 57(3): 439-448.
49 Levin I, Naegler T, Kromer B, et al. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2[J]. Tellus B, 2010, 62(1): 26-46.
50 Qi Yuanzhi. Distribution and Carbon Isotopic (13C, 14C) Studies of Organic Carbon in the Changjiang River and East China Sea[D]. Qingdao: Ocean University of China, 2019.
齐远志. 长江及东海有机碳的分布和碳同位素(13C, 14C)特征研究[D]. 青岛: 中国海洋大学, 2019.
51 Liu W B, An Z S, Zhou W J, et al. Carbon isotope and C/N ratios of suspended matter in rivers: An indicator of seasonal change in C-4/C-3 vegetation[J]. Applied Geochemistry, 2003, 18(8): 1 241-1 249.
52 Yu F L, Zong Y Q, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4): 618-630.
53 Tu C L, Liu C Q, Quine T A, et al. Dynamics of soil organic carbon following land-use change: Insights from stable C-isotope analysis in black soil of Northeast China[J]. Acta Geochimica, 2018, 37(5): 746-757.
54 Dai S, Bi X, Chan L Y, et al. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implications for vehicle emission control policy[J]. Atmospheric Chemistry and Physics, 2015, 15(6): 3 097-3 108.
55 Huang Wei, Bi Xinhui, Zhang Guohua, et al. The chemical composition and stable carbon isotope characteristics of particulate matter from the residential honeycomb coal briquettes combustion[J]. Geochimica, 2014, 43(6):640-646.
黄卫, 毕新慧, 张国华, 等. 民用蜂窝煤燃烧排放颗粒物的化学组成和稳定碳同位素特征[J]. 地球化学, 2014, 43(6): 640-646.
56 Liu W G, Yang H, Ning Y F, et al. Contribution of inherent organic carbon to the bulk delta δ13C signal in loess deposits from the arid western Chinese Loess Plateau[J]. Organic Geochemistry, 2007, 38(9): 1 571-1 579.
57 Andersson A. A systematic examination of a random sampling strategy for source apportionment calculations[J]. Science of the Total Environment, 2011, 412/413: 232-238.
58 Andersson A, Deng J, Du K, et al. Regionally-Varying combustion sources of the January 2013 severe haze events over Eastern China[J]. Environmental Science & Technology, 2015, 49(4): 2 038-2 043.
59 Hartmann J, Jansen N, Dürr H H, et al. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?[J]. Global and Planetary Change, 2009, 69(4): 185-194.
60 Hartmann J, Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(12). DOI:10.1029/2012GC004370.
doi: 10.1029/2012GC004370    
61 Chen J S, Wang F Y, Xia X H, et al. Major element chemistry of the Changjiang (Yangtze River)[J]. Chemical Geology, 2002, 187(3): 231-255.
62 Li J Y, Zhang J. Chemical weathering processes and atmospheric CO2 consumption of Huanghe River and Changjiang River basins[J]. Chinese Geographical Science, 2005, 15(1): 16-21.
63 Li S Y, Lu X X, He M, et al. Major element chemistry in the upper Yangtze River: A case study of the Longchuanjiang River[J]. Geomorphology, 2011, 129(1/2): 29-42.
64 Chen J S, Wang F Y, Meybeck M, et al. Spatial and temporal analysis of water chemistry records (1958-2000) in the Huanghe (Yellow River) basin[J]. Global Biogeochemical Cycles, 2005, 19(3): GB3016.
65 Guo X H, Cai W-J, Zhai W D, et al. Seasonal variations in the inorganic carbon system in the Pearl River (Zhujiang) estuary[J]. Continental Shelf Research, 2008, 28(12): 1 424-1 434.
66 Qu B, Sillanp?? M, Zhang Y, et al. Water chemistry of the headwaters of the Yangtze River[J]. Environmental Earth Sciences, 2015, 74(8): 6 443-6 458.
67 Dai M H, Yu Z Q, Meng F F, et al. Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis[J]. Current Opinion in Environmental Sustainability, 2012, 4(2): 170-178.
[1] 苏绕绕, 赵珍. 16世纪末以来北运河水系演变及驱动因素[J]. 地球科学进展, 2021, 36(4): 390-398.
[2] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[3] 刘芬良, 高红山, 李宗盟, 潘保田, 苏怀. 金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化[J]. 地球科学进展, 2020, 35(4): 431-440.
[4] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[5] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[6] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[7] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[8] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[9] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[10] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[11] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[12] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[13] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[14] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[15] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
阅读次数
全文


摘要