1 |
Corno G, Karl D M, Church M J, et al. Impact of climate forcing on ecosystem processes in the North Pacific Subtropical Gyre [J]. Geophysical Research-Oceans, 2007, 112(C4): 14.
|
2 |
Hoegh-Guldberg O, Bruno J F. The impact of climate change on the world's marine ecosystems[J]. Science, 2010, 328(5 985): 1 523-1 528.
|
3 |
Roberts J M, Wheeler A J, Freiwald A. Reefs of the deep: The biology and geology of cold-water coral ecosystems[J]. Science, 2006, 312(5 773): 543-547.
|
4 |
Rogers A D. The biology of Lophelia pertusa (LINNAEUS 1758) and other deep-water reef-forming corals and impacts from human activities [J]. International Review of Hydrobiology, 1999, 84(4): 315-406.
|
5 |
Li J, Wang P. Discovery of deep-water bamboo coral forest in the South China Sea [J]. Scientific Reports, 2019, 9: 15 453.
|
6 |
Duineveld G C A, Lavaleye M S S, Berghuis E M. Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain) [J]. Marine Ecology Progress Series, 2004, 277: 13-23.
|
7 |
Michener R H, Schell D M. Stable isotope ratios as tracers in marine aquatic food webs[M]// Lajtha K, Michener R H. Stable Isotopes in Ecology and Environmental Science. London: Blackwell Scientific, 1994: 138-157.
|
8 |
Dalsgaard J, St John M, Kattner G, et al. Fatty acid trophic markers in the pelagic marine environment [J]. Advances in Marine Biology, 2003, 46: 225-340.
|
9 |
Dodds L A, Black K D, Orr H, et al. Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia) [J]. Marine Ecology Progress Series, 2009, 397: 113-124.
|
10 |
Naumann M S, Orejas C, Wild C, et al. First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral [J]. Journal of the Experimental Biology, 2011, 214(21): 3 570-3 576.
|
11 |
Murray F, De Clippele L H, Hiley A, et al. Multiple feeding strategies observed in the cold-water coral Lophelia pertusa[J]. Journal of the Marine Biological Association of the United Kingdom, 2019, 99(6): 1 281-1 283.
|
12 |
van Oevelen D, Mueller C E, Lund?lv T, et al. Food selectivity and processing by the cold-water coralLophelia pertusa[J]. Biogeosciences, 2016, 13(20): 5 789-5 798.
|
13 |
van Oevelen D, Duineveld G C A, Lavaleye M S S, et al. Trophic structure of cold-water coral communities revealed from the analysis of tissue isotopes and fatty acid composition[J]. Marine Biology Research, 2018, 14(3): 287-306.
|
14 |
Mueller C E, Larsson A I, Veuger B, et al. Opportunistic feeding on various organic food sources by the cold-water coralLophelia pertusa[J]. Biogeosciences, 2014, 11(1): 123-133.
|
15 |
Fabricius K E, Genin A, Benayahu Y. Flow-dependent herbivory and growth in zooxanthellae-free soft corals [J]. Limnology and Oceanography, 1995, 40(7): 1 290-1 301.
|
16 |
Mortensen P B, Buhl-Mortensen L. Morphology and growth of the deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea[J]. Marine Biology, 2005, 147(3): 775-788.
|
17 |
Sherwood O A, Heikoop J M, Scott D B, et al. Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: A new archive of surface processes [J]. Marine Ecology Progress Series, 2005, 301: 135-148.
|
18 |
Elias-Piera F, Rossi S, Gili J M, et al. Trophic ecology of seven Antarctic gorgonian species[J]. Marine Ecology Progress Series, 2013, 477: 93-106.
|
19 |
Nyssen F, Brey T, Lepoint G, et al. A stable isotope approach to the eastern Weddell Sea trophic web: Focus on benthic amphipods [J]. Polar Biology, 2002, 25(4): 280-287.
|
20 |
Rau G H, Sullivan C W, Gordon L I. Delta-13-C and delta-15-N variations in Weddell Sea particulate organic matter [J]. Marine Chemistry, 1991, 35(1/4): 355-369.
|
21 |
Mincks S L, Smith C R, Jeffreys R M, et al. Trophic structure on the West Antarctic Peninsula shelf: Detritivory and benthic inertia revealed by δ13C and δ15N analysis [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(22/23): 2 502-2 514.
|
22 |
Mortensen P B, Hovland M T, Fossa J H, et al. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics [J]. Journal of the Marine Biological Association of the United Kingdom, 2001, 81(4): 581-597.
|
23 |
Judd A, Hovland M. Seabed Fluid Flow-Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2007.
|
24 |
Hovland M, Thomsen E. Cold-water corals—Are they hydrocarbon seep related?[J]. Marine Geology, 1997, 137(1): 159-164.
|
25 |
Hovland M, Risk M. Do Norwegian deep-water coral reefs rely on seeping fluids?[J]. Marine Geology, 2003, 198(1/2): 83-96.
|
26 |
Jensen S, Neufeld J D, Birkeland N K, et al. Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway [J]. FEMS Microbiology Ecology, 2008, 66(2): 320-330.
|
27 |
Rincón-Tomás B, Duda J, Somoza L, et al. Cold-water corals and hydrocarbon-rich seepage in Pompeia Province (Gulf of Cádiz)-living on the edge[J]. Biogeosciences, 2019, 16(7): 1 607-1 627.
|
28 |
Buhl-Mortensen L, Mortensen P B. Symbiosis in deep-water corals [J]. Symbiosis, 2004, 37(1/3): 33-61.
|
29 |
Yamashita H, Suzuki G, Kai S, et al. Establishment of coral-algal symbiosis requires attraction and selection[J]. PLoS ONE, 2014, 9(5): e97003.
|
30 |
van de Water J A J M, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts-recent advances and perspectives[J]. Microbiome, 2018, 6: 64.
|
31 |
Ainsworth T D, Fordyce A J, Camp E F. The other microeukaryotes of the coral reef microbiome [J]. Trends in Microbiology, 2017, 25(12): 980-991.
|
32 |
Krediet C J, Ritchie K B, Paul V J, et al. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases [J]. Proceedings of the Royal Society B-Biological Sciences, 2013, 280(1 755): 9.
|
33 |
Middelburg J J, Mueller C E, Veuger B, et al. Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals [J]. Scientific Reports, 2015, 5: 9.
|
34 |
Grover R, Ferrier-Pagès C, Maguer J F, et al. Nitrogen fixation in the mucus of Red Sea corals[J]. The Journal of Experimental Biology, 2014, 217(22): 3 962-3 963.
|
35 |
Kellogg C A, Ross S W, Brooke S D. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus[J]. Peer J, 2016, 4: e2529.
|
36 |
Lawler S N, Kellogg C A, France S C, et al. Coral-associated bacterial diversity is conserved across two deep-sea Anthothela Species [J]. Frontiers in Microbiology, 2016, 7: 458.
|
37 |
Wild C, Huettel M, Klueter, A, et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem [J]. Nature, 2004, 428(6 978): 66-70.
|
38 |
Naumann M S, Richter C, el-Zibdah M, et al. Coral mucus as an efficient trap for picoplanktonic cyanobacteria: Implications for pelagic-benthic coupling in the reef ecosystem [J]. Marine Ecology Progress Series, 2009, 385: 65-76.
|
39 |
Kelman D, Kushmaro A, Loya Y, et al. Antimicrobial activity of a Red Sea soft coral, Parerythropodium fulvum fulvum: Reproductive and developmental considerations [J]. Marine Ecology Progress Series, 1998, 169: 87-95.
|
40 |
Sutherland K P, Porter J W, Torres C. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals [J]. Marine Ecology Progress Series, 2004, 266: 273-302.
|
41 |
Ritchie K B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria [J]. Marine Ecology Progress Series, 2006, 322: 1-14.
|
42 |
Verbaendert I, Boon N, De Vos P, et al. Denitrification is a common feature among members of the genus Bacillus [J]. Systematic and Applied Microbiology, 2011, 34(5): 385-391.
|
43 |
Radecker N, Pogoreutz C, Voolstra C R, et al. Nitrogen cycling in corals: The key to understanding holobiont functioning?[J]. Trends in Microbiology, 2015, 23(8): 490-497.
|
44 |
Buhl-Mortensen L, Olafsdottir S H, Buhl-Mortensen P, et al. Distribution of nine cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic: Effects of bathymetry and hydrography [J]. Hydrobiologia, 2015, 759(1): 39-61.
|
45 |
Penn K, Wu D Y, Eisen J A, et al. Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts [J]. Applied and Environmental Microbiology, 2006, 72(2): 1 680-1 683.
|
46 |
Gray M A, Stone R P, McLaughlin M R, et al. Microbial consortia of gorgonian corals from the Aleutian Islands [J]. FEMS Microbiology Ecology, 2011, 76(1): 109-120.
|
47 |
Sunagawa S, DeSantis T Z, Piceno Y M, et al. Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata [J]. The Isme Journal, 2009, 3(5): 512-521.
|
48 |
Kellogg C A, Lisle J T, Galkiewicz J P. Culture-independent characterization of bacterial communities associated with the cold-water coral lophelia pertusa in the Northeastern Gulf of Mexico [J]. Applied and Environmental Microbiology, 2009, 75(8): 2 294-2 303.
|
49 |
Zehr J P, Bench S R, Carter B J, et al. Globally distributed uncultivated oceanic N(2)-fixing cyanobacteria lack oxygenic Photosystem II [J]. Science, 2008, 322(5 904): 1 110-1 112.
|
50 |
Thiagarajan N, Gerlach D, Roberts M L, et al. Movement of deep-sea coral populations on climatic timescales[J]. Paleoceanography, 2013, 28(2): 227-236.
|
51 |
Roark E B, Guilderson T P, Flood-Page S, et al. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska [J]. Geophysical Research Letters, 2005, 32(4): 5.
|
52 |
Sherwood O A, Lehmann M F, Schubert C J, et al. Nutrient regime shift in the western North Atlantic indicated by compound-specific delta N-15 of deep-sea gorgonian corals [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): 1 011-1 015.
|
53 |
Guilderson T P, McCarthy M D, Dunbar R B, et al. Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals [J]. Biogeosciences, 2013, 10(9): 6 019-6 028.
|
54 |
Sherwood O A, Guilderson T P, Batista F C, et al. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age[J]. Nature, 2014, 505(7 481): 78-81.
|
55 |
Heikoop J M, Hickmott D D, Risk M J, et al. Potential climate signals from the deep-sea gorgonian coral Primnoa resedaeformis [J]. Hydrobiologia, 2002, 471:117-124.
|
56 |
Sherwood O A, Thresher R E, Fallon S J, et al. Multi-century time-series of N-15 and C-14 in bamboo corals from deep Tasmanian seamounts: Evidence for stable oceanographic conditions [J]. Marine Ecology Progress Series, 2009, 397: 209-218.
|
57 |
Williams B, Risk M, Stone R, et al. Oceanographic changes in the North Pacific Ocean over the past century recorded in deep-water gorgonian corals [J]. Marine Ecology Progress Series, 2007, 335: 85-94.
|
58 |
Hill T M, Myrvold C R, Spero H J, et al. Evidence for benthic-pelagic food web coupling and carbon export from California margin bamboo coral archives [J]. Biogeosciences, 2014,11(14): 3 845-3 854.
|
59 |
Schiff J T, Batista F C, Sherwood O A, et al. Compound specific amino acid δ13C patterns in a deep-sea proteinaceous coral: Implications for reconstructing detailed δ13C records of exported primary production[J]. Marine Chemistry, 2014, 166:82-91.
|
60 |
Larsen T. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting [J]. PLoS ONE, 2013, 8:9.
|
61 |
Larsen T, Taylor D L, Leigh M B,et al. Stable isotope ?ngerprinting: A novel method for identifying plant, fungal, or bacterial origins of amino acids [J]. Ecology, 2009, 90 (12): 3 526-3 535.
|
62 |
McMahon K W, McCarthy M D, Sherwood O A, et al. Millennial- scale plankton regime shifts in the subtropical North Pacific Ocean [J]. Science, 2015, 350(6 267): 1 530-1 533.
|
63 |
Ohkouchi N, Chikaraishi Y, Close H G, et al. Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies[J]. Organic Geochemistry, 2017, 113:150-174.
|
64 |
Miyake Y, Wada E. The abundance ratio of 15N/14N in marine environments [J]. Records of Oceanographic Works, 1967, 9(1):37-53.
|
65 |
Popp B N, Graham B S, Olson R J, et al. Insight into the trophic ecology of yellow?n tuna, Thunnus albacares, from compound-speci?c nitrogen isotope analysis of proteinaceous amino acids [J]. Terrestrial Ecology, 2007, 1: 173-190.
|
66 |
McClelland J W, Montoya J P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton [J]. Ecology, 2002, 83: 2 173-2 180.
|
67 |
McCarthy M D, Benner R, Lee C, et al. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter [J]. Geochimica et Cosmochimica Acta, 2007, 71: 4 727-4 744.
|
68 |
Chikaraishi Y, Kashiyama Y, Ogawa N O, et al. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: Implications for aquatic food web studies [J]. Marine Ecology Progress Series, 2007, 342: 85-90.
|
69 |
Greene C H, Pershing A J. The flip-side of the North Atlantic Oscillation and modal shifts in slope-water circulation patterns [J]. Limnol Oceanogr, 2003, 48:319-322.
|
70 |
Glynn D S, McMahon K W, Guilderson T P, et al. Major shifts in nutrient and phytoplankton dynamics in the North Pacific Subtropical Gyre over the last 5000 years revealed by high-resolution proteinaceous deep-sea coral δ15N and δ13C records [J]. Earth and Planetary Science Letters, 2019, 515:145-153.
|