地球科学进展 ›› 2014, Vol. 29 ›› Issue (12): 1341 -1354. doi: 10.11867/j.issn.1001-8166.2014.12.1341

综述与评述 上一篇    下一篇

现代陆生植物碳同位素组成对气候变化的响应研究进展
刘贤赵 1, 2, 张勇 1, 宿庆 3, 田艳林 1, 全斌 1, 王国安 4   
  1. 1.湖南科技大学建筑与城乡规划学院,湖南 湘潭 411201; 2.中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,江苏 南京210008; 3.湖南科技大学生命科学学院,湖南 湘潭 411201; 4.中国农业大学资源与环境学院,北京100193
  • 收稿日期:2014-09-09 修回日期:2014-11-02 出版日期:2014-12-20
  • 基金资助:

    湖南省教育厅重点项目“陆生草本植物氮同位素组成对气候温度变化的指示”(编号:14A054); 湖南省自然科学基金项目“陆生植物氮同位素组成及其与气候温度的关系研究”(编号:2015JJ2062)资助

Research Progress in Responses of Modern Terrestrial Plant Carbon Isotope Composition to Climate Change

Liu Xianzhao 1, 2, Zhang Yong 1, Su Qing 3, Tian Yanlin 1, Quan Bin 1, Wang Guoan 4   

  1. 1.College of Architecture and Urban Planning,Hunan University of Science and Technology,Xiangtan 411201,China; 2. State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,CAS,Nanjing 210008,China; 3. College of Life Science, Hunan University of Science and Technology,Xiangtan 411201,China; 4. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
  • Received:2014-09-09 Revised:2014-11-02 Online:2014-12-20 Published:2014-12-20

植物组织的碳同位素组成(13C)能够记录气候变化的信息,因而被作为指示气候环境变化的一个重要代用指标,并广泛应用于全球变化研究。然而,气候环境变化引起的现代植物13C及其指示的气候环境意义的不确定性限制了植物13C在气候环境变化等领域研究中的应用。在概述植物碳同位素分馏和不同光合型植物碳同位素分布的基础上,综述了温度、降水、大气CO2浓度和海拔高度等气候环境因子对陆生植物13C的影响以及它们之间的关系,分析了植物13C对气候因子变化的响应机理。指出为更准确地认识气候历史,在利用植物碳同位素技术进行全球变化的研究过程中,需要突出C4植物13C对气候环境参数的响应研究,加强不同尺度植物13C的转换关系以及与相关学科的交叉渗透、探索与多种代用指标和科学方法的联合研究。

Global climate change has been one of the most concerned environmental problems in the world since the 1980s. Since stable carbon composition (13C) in plant tissues can record abundant information on climate changes, it has been widely used as an important climate proxy in global change studies and becomes a powerful tool for obtaining paleoclimate information, understanding paleoenvironment reconstruction and modern climate change, and predicting future climate trends. However, a lot of potential uncertainties have always involved in the reconstruction of paleoclimate and paleoenvironment by carbon isotope of the past period sediment or fossils. Among them, the most dominant uncertainty is due to our poor understanding of the relations between carbon isotope ratios of plants and climatic factors and the climatic and environmental significance indicated by modern plant 13C. This may limit the application of plant 13C in the study of climatic and environmental changes. Based on the Summary of plant 13C fractionation and carbon isotope distribution of different photosynthetic plants, the effects of environmental factors, e.g., temperature, precipitation, atmospheric CO2 concentration, and altitude on terrestrial plant 13C and their relationships were reviewed in this paper, and the response mechanism of plant 13C to climate changes were also analyzed. Furthermore, the current existing problems and the future prospects in carbon isotope study were discussed. It is pointed out that strengthening some studies such as the response of C4 plants 13C to climate environmental parameters, the transformation relation of different scale plant 13C, intersection and permeation of related disciplines, and various proxies and scientific method, will undoubtedly make us have a more accurate understanding of the climate history and eventually broaden the development of the field during the process of global change study by plant carbon isotope techniques.

中图分类号: 

[1] Chen F, Yuan Y, Wei W. Climatic response of Picea crassifolia tree-ring parameters and precipitation reconstruction in the western Qilian Mountains, China[J]. Journal of Arid Environment, 2011, 75: 1 121-1 128.
[2] Li Z H, Driese S G, Cheng H. A multiple cave deposit assessment of suitability of speleothem isotopes for reconstructing palaeo-vegetation and palaeo-temperature[J]. Sedimentology, 2014, 61(3): 749-766.
[3] Rao Z G, Chen F H, Cheng H, et al. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial[J]. Scientific Reports, 2013, 3(2 785): 1-6.
[4] Chi Y P, Fang X M, Song C H, et al. Cenozoic organic carbon isotope and pollen records from the Xining Basin, NE Tibetan Plateau, and their palaeoenvironmental significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386: 436-444.
[5] Gebrekirstos A, Worbes M, Teketay D, et al. Stable carbon isotope ratios in tree rings of co-occurring species from semi-arid tropics in Africa: Patterns and climatic signals[J]. Global and Planetary Change, 2009, 66(3/4): 253-260.
[6] Yuan Zineng, Xing Lei, Zhang Hailong, et al. Progress of biomarker stable hydrogen isotope and its application to marine paleoenvironmental reconstruction[J]. Advances in Earth Science, 2012, 27(3): 276-283. [袁子能, 邢磊, 张海龙, 等. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.]
[7] Hafida E B, Patterson R T. Influence of cellulose oxygen isotope variability in sub-fossil Sphagnum and plant macrofossil components on the reliability of paleoclimate records at the Mer Bleue Bog, Ottawa, Ontario, Canada[J]. Organic Geochemistry, 2012, 43: 39-49.
[8] Marika H, Martin W, Michael G, et al. A 400-year reconstruction of July relative air humidity for the Vienna region (eastern Austria) based on carbon and oxygen stable isotope ratios in tree-ring latewood cellulose of oaks (Quercus petraea Matt. Liebl.)[J]. Climatic Change, 2011, 105: 243-262.
[9] Verleyen E, Hodgson D A, Sabbe K, et al. Post-glacial regional climate variability along the East Antarctic coastal margin—Evidence from shallow marine and coastal terrestrial records[J]. Earth-Science Reviews, 2011, 104(4): 199-212.
[10] Valery J T,Zewdu E, Albert C,et al. Reconstructing palaeoenvironment from δ 13 C and δ 15 N transects values of soil organic matter: A calibration from arid and wetter elevation transects in Ethiopia[J]. Geoderma, 2008, 147:197-210.
[11] Li Chaozhu, Zhang Xiao, Xu Yuanbin, et al. Reviews on the reconstructed C 3 /C 4 variations since the late Miocene in the Chinese Loess Plateau[J]. Advances in Earth Science, 2012, 27(3): 284-291. [李朝柱, 张晓, 许元斌, 等. 黄土高原地区晚中新世以来陆地植被C 3 /C 4 植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.]
[12] Reynard L M, Hedges R E. Stable hydrogen isotopes of bone collagen in palaeodietary and palaeoenvironmental reconstruction[J]. Journal of Archaeological Science, 2008, 35: 1 934-1 942.
[13] Verheyden S, Nader F H, Cheng H J, et al. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon[J]. Quaternary Research, 2008, 70: 368-381.
[14] Eiler J M. Paleoclimate reconstruction using carbonate clumped isotope thermometry[J]. Quaternary Science Reviews, 2011, 30(25/26): 3 575-3 588.
[15] Ann-Kathrin S, Michael Z, Björn B, et al. The late Quaternary loess record of Tokaj, Hungary: Reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers[J]. Quaternary International, 2011, 240: 52-61.
[16] van Beynen P E, Soto L, Pace-Graczyk K. Paleoclimate reconstruction derived from speleothem strontium and δ 13 C in Central Florida[J]. Quaternary International, 2008, 187 (1): 76-83.
[17] Zhao Deai, Wu Haibin, Wu Jianyu, et al. C 3 /C 4 plants characteristics of the eastern and western parts of the Chinese Loess Plateau during Mid-Holocene and last interglacial[J]. Quaternary Sciences, 2013, 33(5): 848-855. [赵得爱,吴海斌,吴建育,等. 过去典型增温期黄土高原东西部C 3 /C 4 植物组成变化特征[J]. 第四纪研究, 2013, 33(5): 848-855.]
[18] Kohn M J. Carbon isotope compositions of terrestrial C 3 plants as indicators of (paleo) ecology and (paleo) climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19 691-19 695.
[19] Wang G A, Li J Z, Liu X Z, et al. Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction[J]. Quaternary Science Reviews, 2013, 63: 83-90.
[20] Gao J Q, Lei G C, Zhang X W, et al. Can δ 13 C abundance, water-soluble carbon, and light fraction carbon be potential indicators of soil organic carbon dynamics in Zoigê wetland[J]. Catena, 2014, 119: 21-27.
[21] Liu X H, Zhao L J, Gasaw M, et al. Foliar δ 13 C and δ 15 N values of C 3 plants in the Ethiopia Rift Valley and their environmental controls[J]. Chinese Science Bulletin, 2007, 52(9): 1 265-1 273.
[22] Liu X Z, Su Q, Li C K, et al. Responses of carbon isotope ratios of C 3 herbs to humidity index in northern China[J]. Turkish Journal of Earth Sciences, 2014, 23: 100-111.
[23] Wang G A, Han J M, Zhou L P, et al. Carbon isotope ratios of C 4 plants in loess areas of North China[J]. Science in China (Series D), 2006, 49(1): 97-102.
[24] Deines P. The isotopic composition of reduced organic carbon[M]∥ Fritz P, Fontes J C, eds. Handboook of Environmental Isotope Geochemistry I, The Terrestrial Environment. Amsterdam: Elsevier, 1980:329-406.
[25] Zheng Yongfei, Chen Jiangfeng. Stable Isotope Geochemistry[M]. Beijing: Science Press, 2000. [郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000.]
[26] Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9: 121-137.
[27] Farquhar G D. On the nature of carbon isotope discrimination in C 4 species[J]. Australian Journal of Plant Physiology, 1983, 10: 205-226.
[28] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503-537.
[29] Evans J R, Sharkey E T, Berry J A, et al. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO 2 diffusion in leaves of higher plants[J]. Australian Journal of Plant Physiology, 1986, 13: 281-292.
[30] Condon A G, Richards R A, Rebetzke G J, et al. Improving intrinsic water-use efficiency and crop yield[J]. Crop Science, 2002, 42: 122-131.
[31] Dawson T E, Mambelle S, Plamboeck A H, et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics, 2002,33: 507-559.
[32] Harmon C. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta,1953, 3: 53-92.
[33] Farmer J G. Problems in interpreting tree-ring δ 13 C records[J]. Nature, 1979, 279: 229-231.
[34] Pearman G I, Francey R J, Fraser P B. Climatic implications of stable carbon isotopes in tree rings[J]. Nature, 1976, 260: 771-772.
[35] Stuiver M, Braziunas T F. Tree cellulose 13 C/ 12 C isotope ratios and climatic change[J]. Nature, 1987, 328: 58-60.
[36] Wang G A, Han J M, Liu T S. The carbon isotopic composition of C 3 herbaceous plants in loess area of North China[J]. Science in China (Series D), 2003, 46(10): 1 069-1 076.
[37] Liu Xianzhao, Wang Guoan, Li Jiazhu, et al. Relationship between temperature and δ 13 C values of C 3 herbaceous plants and its implications of WUE in farming-pastoral zone in north China[J]. Acta Ecologica Sinica, 2011, 31(1): 123-136. [刘贤赵, 王国安, 李嘉竹, 等. 中国北方农牧交错带C3草本植物 δ 13 C与温度的关系及其对WUE的指示[J]. 生态学报, 2011, 31(1): 123-136.]
[38] Schleser G H, Helle G, Luche A, et al. Isotope signals as climate proxies: The role of transfer functions in the study of terrestrial archives[J]. Quaternary Science Reviews, 1999, 18: 927-943.
[39] McCarroll D, Loader N J. Stable isotopes in tree rings[J]. Quaternary Science Reviews, 2004, 23: 771-801.
[40] Heaton T H E. Spatial, species and temporal variations in the 13 C/ 12 C ratios of C 3 plants: Implications for palaeo-diet studies[J]. Journal of Achaeological Science, 1999, 26: 637-649.
[41] Smith B N, Herath H M W, Chase J B. Effect of growth temperature on carbon isotopic ratios in barley, pea and rape[J]. Plant Cell Physiology, 1973, 14: 177-182.
[42] Leavitt S W, Long A. An atmospheric 13 C/ 12 C reconstruction generated through removal of climate effects from tree-ring 13 C/ 12 C measurements[J]. Tellus, 1983, 35B(2): 92-102.
[43] Liu Xianzhao, Su Qing, Li Jiazhu, et al. Responses of carbon isotopic composition of C 3 and C 4 herbaceous plants to temperature under controlled temperature conditions[J]. Acta Ecologica Sinica, 2015, 35(10): 1-13, doi:10.5846/stxb201307051840"> doi:10.5846/stxb201307051840. [刘贤赵, 宿庆, 李嘉竹, 等. 控温条件下C 3 、C 4 草本植物碳同位素组成对温度的响应[J]. 生态学报, 2015, 35(10): 1-13,doi:10.5846/stxb201307051840"> doi:10.5846/stxb201307051840.]
[44] Troughton J H, Card K A. Temperature effects on the carbon-isotope ratio of C 3 , C 4 and Crassulacean-Arid-Metabolish (CAM) plants[J]. Planta, 1975, 123:185-190.
[45] Diefendorf A F, Mueller K E, Wing S L. Global patterns in leaf 13 C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 5 738-5 743.
[46] Francey R J, Farquhar G D. An explanation of 13 C/ 12 C variations in tree rings[J]. Nature, 1982, 297: 28-31.
[47] Morecroft M D, Woodward F I. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and 13 C of Alchemilla Alpine[J]. New Phytologist, 1996, 134: 471-479.
[48] Devitt D A, Smith S D, Neuman D S. Leaf carbon isotope ratios in three landscape species growing in an arid environment[J]. Journal of Arid Environments, 1997, 2: 249-257.
[49] Schleser G H.Investigations of the δ 13 C pattern in leaves of Fagus sylvatica L[J]. Journal of Experimental Botany, 1990, 41: 565-572.
[50] Wang G A, Han J M, Zhou L P, et al. Carbon isotope ratios of plants and occurrences of C 4 species under different soil moisture regimes in arid region of Northwest China[J]. Physiologia Plantarum, 2005, 25: 74-81.
[51] Liu W G, Feng X H, Ning Y F, et al. δ 13 C variation of C 3 and C 4 plants across an Asian monsoon rainfall gradient in arid northwestern China[J]. Global Change Biology, 2005, 11: 1 094-1 100.
[52] Su Bo, Han Xingguo, Li Linghao, et al. Response of δ 13 C value and water use efficiency of plant species to environmental gradients along the grassland zone of Northeast China transect[J]. Acta Phytoecological Sinica, 2000, 24(6): 648-655. [苏波, 韩兴国, 李凌浩, 等.中国东北样带草原区植物 δ 13 C值及水分利用效率对环境梯度的响应[J]. 植物生态学报, 2000, 24(6): 648-655.]
[53] Wang G, Feng X, Han J, et al. Paleovegetation reconstruction using δ 13 C of soil organic matter[J]. Biogeosciences, 2008, 5: 1 325-1 337.
[54] Stewart G R, Turnbull M H, Schmidt S, et al. 13 C natural abundance in plant communities along a rainfall gradient: A biological integrator of water availability[J]. Australian Journal of Plant Physiology, 1995, 22: 51-55.
[55] Zhang C J, Chen F H, Jin M. Study on modern plant δ 13 C in Western China and significance[J]. Chinese Journal of Geochemistry, 2003, 22(2): 97-106.
[56] Liu Xianzhao, Li Chaokui, Xu Shujian, et al. Carbon isotope composition of C 3 herbaceous plants and its relation to humidity index in arid and humid climate zones in Northern China[J].Chinese Bulletin of Botany, 2011, 46 (6): 675-687. [刘贤赵, 李朝奎, 徐树建, 等. 中国北方干湿气候区C 3 草本植物 δ 13 C值及其与湿润指数的关系[J]. 植物学报, 2011, 46 (6): 675-687.]
[57] Sun B N, Dilcher D L, Beerling D J, et al. Variation in Ginkgo Biloba L. leaf characters across a climatic gradient in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 7 141-7 146.
[58] Schulze E D, Williams R J, Farquhar G D, et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia[J]. Australian Journal of Plant Physiology, 1998, 25: 413-425.
[59] Tieszen L L, Boutton T W. Stable Carbon Isotope in Terrestrial Ecological Research[C]. Berlin: Springer-Verlag, 1989:167- 195.
[60] Feng X, Epstein S. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO 2 concentration[J]. Geochimica et Cosmochimica Acta, 1995, 59: 2 599-2 608.
[61] Wang G A, Feng X H. Response of plants’ water use efficiency to increasing atmospheric CO 2 concentration[J]. Environmental Science & Technology, 2012, 46:8 610-8 620.
[62] [62]Anderson W T, Bernasconi S M, McKenzie J A. Oxygen and carbon isotopic record of climatic variability in tree ring cellulose: An example from central Switzerland[J]. Journal of Geophysical Research-Earth, 1998, 103: 31 625-31 636.
[63] Robertson I, Rolfe J, Switsur V R, et al. Signal strength and climate relationship in 13 C/ 12 C ratios of tree ring cellulose from oak in southwest Finland[J]. Geophysical Research Letters, 1997, 24: 1 487-1 490.
[64] [64]Morison J, Gifford R.Stomatal sensitivity to carbon dioxide and humidity: A comparison of two C 3 and two C 4 grass species[J].Plant Physiology, 1983, 71: 789-796.
[65] Gong W, Gong Y B, Hu T X, et al.Responses of transpiration characteristics and water use efficiency of Pinus elliottii leaf to elevated CO 2 concentration[J]. Journal of Soil and Water Conservation, 2005, 19(5) : 178-182.
[66] Polley H W, Johnson H B, Marino B D, et al. Increase in C 3 plant water-use efficiency and biomass over glacial to present CO 2 concentrations[J]. Nature, 1993, 361: 61-63.
[67] Beerling D J. Ecophysiological responses of woody plants to past CO 2 concentrations[J]. Tree Physiology, 1996, 16: 389-396.
[68] Bert G D, Leavit S W, Dupouey J L. Variations of wood δ 13 C and water-use efficiency of Abies alba (Mill.) during the last century[J]. Ecology, 1997, 78: 1 588-1 596.
[69] Raffalli-Delerce G, Masson-Delmotte V, Dupouey J L, et al. Reconstruction of summer droughts using tree-ring cellulose isotopes: A calibration study with living oaks from Brittany (western France)[J]. Tellus B, 2004, 56: 160-174.
[70] Zheng S X, Shangguan Z P. Studies on variety in the δ 13 C value of typical Plants in Loess Plateau over the last 70 years[J]. Acta Phytoecological Sinica, 2005, 29(2): 289-295.
[71] Krner C, Farquhar G D, Roksandie Z. A global survey of carbon isotope discrimination in plants from high altitude[J]. Oecologia, 1988, 74(4): 623-632.
[72] Krner C, Farquhar G D,Wong S C. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends[J]. Oecologia, 1991, 88(1): 30-40.
[73] Hultine K R, Marshall J D. Altitude trends in conifer leaf morphology and stable carbon isotope composition[J]. Oecologia, 2000, 123(1): 32-40.
[74] Zhou Y C, Fan J W, Zhong H P, et al. Relationships between altitudinal gradient and plant carbon isotope composition of grassland communities on the Qinghai-Tibet Plateau, China[J]. Science in China (Series D), 2013, 56: 311-320.
[75] Wang X F, Li R Y, Li X Z, et al. Variations in leaf characteristics of three species of angiosperms with changing of altitude in Qilian Mountains and their inland high-altitude pattern[J]. Science in China (Series D), 2014, 57: 662-670.
[76] Sparks J P, Ehleringer J R. Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevation transects[J]. Oecologia, 1997, 109(3): 362-367.
[77] Li J Z, Wang G A, Liu X Z, et al. Variations in carbon isotope ratios of C 3 plants and distribution of C 4 plants along an altitudinal transect on the eastern slope of Mount Gongga[J]. Science in China (Series D), 2009, 52(11): 1 714-1 723.
[78] Van de Water P K, Leavitt S W, Betancourt J L. Leaf δ 13 C variability with elevation, slope aspect and precipitation in the southwest United States[J]. Oecologia, 2002, 132(3): 332-343.
[79] Zhu Y, Siegwolf R T W, Durka W, et al. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients[J]. Oecologia,2010, 162(4): 853-863.
[80] Wang G A, Zhou L P, Liu M, et al. Altitudinal trends of leaf δ 13 C follow different patterns across a mountainous terrain in North China characterized by a temperate semi-humid climate[J]. Rapid Communication in Mass Spectrometry, 2010, 24: 1 557-1 564.
[81] Wu Guoxiong,Lin Hai,Zou Xiaolei,et al.Research on global climate change and scientific data[J]. Advances in Earth Science,2014,29(1): 15-22. [吴国雄,林海,邹晓蕾,等.全球气候变化研究与科学数据[J].地球科学进展, 2014, 29(1): 15-22.]

[1] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[2] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[3] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[4] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[5] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[6] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[7] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[8] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[9] 张海龙, 陶舒琴, 于蒙, 赵美训. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 1193-1203.
[10] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[11] 药瑛, 孙樯. 应用于流体包裹体CO 2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[12] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[13] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[14] 黄思静, 李小宁, 武文慧, 张萌, 胡作维, 刘四兵, 黄可可, 钟怡江. 显生宙海相碳酸盐高 δ 13C时期的古海洋学[J]. 地球科学进展, 2015, 30(11): 1185-1197.
[15] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
阅读次数
全文


摘要