[1] Tissier G, Perrette Y, Dzikowski M, et al. Seasonal changes of organic matter quality and quantity at the outlet of a forested karst system (La Roche Saint Alban, French Alps)[J]. Journal of Hydrology, 2013, 482: 139-148. [2] Atkinson T C. Carbon dioxide in the atmosphere of the unsaturated zone: An important control of groundwater hardness in limestones[J]. Journal of Hydrology, 1977, 35(1/2): 111-123. [3] Crowther J. Carbon dioxide concentrations in some tropical karst soils, west malaysia[J]. CATENA,1983, 10(1/2): 27-39. [4] Peyraube N, Lastennet R, Denis A, et al. Estimation of epikarst air p CO 2 using measurements of water δ 13 C TDIC , cave air p CO 2 and δ 13 C CO2 [J]. Geochimica et Cosmochimica Acta, 2013, 118: 1-17. [5] Yuan Daoxian. Carbon cycle and globle karst[J]. Quaternary Science, 1993, 13(1): 1-6. [袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1): 1-6.] [6] Weng Jintao. The effect of carbonate rocks on global carbon cycle[J]. Advances in Earth Science, 1995, 10(2): 154-158. [翁金桃. 碳酸盐岩在全球碳循环过程中的作用[J]. 地球科学进展, 1995, 10(2): 154-158.] [7] Jiang Z C, Yuan D X. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 22(1): 33-35. [8] He Shiyi, Pan Genxing, Cao Jianhua, et al. Research on characteristics of carbon cycle in epi-karst ecological system[J]. Quaternary Science, 2000, 20(4): 383-390. [何师意, 潘根兴, 曹建华, 等. 表层统碳循环特征研究[J]. 第四纪研究, 2000, 20(4): 383-390.] [9] Liu Z H. Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO 2 sink[J]. Acta Geologica Sinica, 2001, 75(3): 275-278. [10] Pan Genxing, He Shiyi, Cao Jianhua, et al. Variation of δ 13 C in karst soil in Yaji karst experiment site, Guilin[J]. Chinese Science Bulletin, 2002, 47(6): 500-503. [11] Cao Jianhua, Pan Genxing, Yuan Daoxian, et al. Seasonal changes of dissolved organic carbon in soil: Its environmental implication in karst area[J]. Ecology and Environment, 2005, 14(2): 224-229. [曹建华, 潘根兴, 袁道先, 等. 岩溶地区土壤溶解有机碳的季节动态及环境效应[J]. 生态环境, 2005, 14(2): 224-229.] [12] Wang F S, Liu C Q, Wang B L, et al. Disrupting the riverine DIC cycling by series hydropower exploitation in karstic area[J]. Applied Geochemistry, 2011, 26(Suppl.1): S375-S378. [13] Yan J H, Wang Y P, Zhou G Y, et al. Carbon uptake by karsts in the Houzhai Basin, southwest China[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G04012): 1-10. [14] Yan J H, Li J M, Ye Q, et al. Concentrations and exports of solutes from surface runoff in Houzhai Karst Basin, southwest China[J]. Chemical Geology, 2012, 304/305: 1-9. [15] Yang R, Liu Z H, Zeng C, et al. Response of epikarst hydrochemical changes to soil CO 2 and weather conditions at Chenqi, Puding, SW China[J]. Journal of Hydrology, 2012, 468/469: 151-158. [16] Zhang C, Wang J L, Pu J B, et al. Bicarbonate daily variations in a Karst River: The carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica, 2012, 86(4): 973-979. [17] Jiang Y J. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and δ 13 C DIC in Nandong, Southwest China[J]. Journal of Contaminant Hydrology, 2013, 152: 1-11. [18] Zhang Xingbo, Jiang Yongjun, Qiu Shulan, et al. Agricultural activities and carbon cycling in karst areas in Southwest China: Dissolving carbonate rocks and CO 2 sink[J]. Advances in Earth Science, 2012, 27(4): 466-476. [张兴波, 蒋勇军, 邱述兰, 等. 农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476.] [19] Jiang Y J, Hu Y J, Schirmer M. Biogeochemical controls on daily cycling of hydrochemistry and δ 13 C of dissolved inorganic carbon in a karst spring-fed pool[J]. Journal of Hydrology, 2013, 478: 157-168. [20] Jiang Z C, Lian Y Q, Qin X Q. Carbon cycle in the epikarst systems and its ecological effects in South China[J]. Environmental Earth Sciences, 2013, 68(1): 151-158. [21] Zhang Meiliang, Lin Yushi, Ran Jingcheng, et al. The characteristics of karst caves development in Libo, Guizhou[J]. Carsologica Sinica, 2000, 19(1): 13-20. [张美良, 林玉石, 冉景丞, 等. 贵州荔波岩溶洞穴发育特征[J]. 中国岩溶, 2000, 19(1): 13-20.] [22] Chen Changming. Karst cave development and mineral deposit features in Hunan boundary[J]. Geotectonica et Metallogenia, 1994, 18(2): 183-190. [陈长明. 试论湖南境内喀斯特洞穴发育及成矿特征[J]. 大地构造与成矿学, 1994, 18(2): 183-190.] [23] Wan Junwei, Shen Jifang, Chao Nianying. The characteristics of karst cave development and tourism resources in Banxia area of the Qingjiang River[J]. Carsologica Sinica, 1997, 16(3): 268-274. [万军伟, 沈继方, 晁念英. 清江半峡地区岩溶洞穴发育特征及其旅游资源[J]. 中国岩溶, 1997, 16(3): 268-274.] [24] Lu Yaoru, Jie Xianyi, Zhang Shanglin, et al. The development law and number of hydrogeology and engineering geology conditions of Chinese Yanrong (Karst)[J]. Acta Geologica Sinica, 1973, (1): 121-136. [卢耀如, 杰显义, 张上林, 等. 中国岩溶(喀斯特)发育规律及其若干水文地质工程地质条件[J]. 地质学报, 1973, (1): 121-136.] [25] Rongier G, Collon-Drouaillet P, Filipponi M. Simulation of 3D karst conduits with an object-distance based method integrating geological knowledge[J]. Geomorphology, 2014, 217: 152-164. [26] Fairchild I J, Baker A. Speleothem Science: From Process to Past Environments[M]. Chichest:Wiley-Blackwell, 2012. [27] Cuezva S, Fernandez-Cortes A, Benavente D, et al. Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Role of the surface soil layer[J]. Atmospheric Environment, 2011, 45(7): 1 418-1 427. [28] Kowalski A S, Serrano-Ortiz P, Janssens I A, et al. Can flux tower research neglect geochemical CO 2 exchange?[J].Agricultural and Forest Meteorology, 2008, 148(6): 1 045-1 054. [29] Sanchez-Cañete E P, Serrano-Ortiz P, Kowalski A S, et al. Subterranean CO 2 ventilation and its role in the net ecosystem carbon balance of a karstic shrubland[J]. Geophysical Research Letters, 2011, 38(9): L09802,doi:10.1029/2011GL047077. [30] Serrano-Ortiz P, Roland M, Sanchez-Moral S, et al. Hidden, abiotic CO 2 flows and gaseous reservoirs in the terrestrial carbon cycle: Review and perspectives[J]. Agricultural and Forest Meteorology, 2010, 150(3): 321-329. [31] Were A, Serrano-Ortiz P, Moreno de Jong C, et al. Ventilation of subterranean CO 2 and eddy covariance incongruities over carbonate ecosystems[J]. Biogeosciences, 2010, 7(3): 859-867. [32] Cigna A A. Modern trend in cave monitoring[J]. Acta Carsologica, 2002, 31(1): 35-54. [33] Troester J W, White W B. Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere[J]. Water Resources Research, 1984, 20(1): 153-156. [34] Ek C, Gewelt M. Carbon dioxide in cave atmospheres. New results in Belgium and comparison with some other countries[J]. Earth Surface Processes and Landforms, 1985, 10(2): 173-187. [35] Hoyos M, Soler V, Canaveras J, et al. Microclimatic characterization of a karstic cave: Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain)[J]. Environmental Geology, 1998, 33(4): 231-242. [36] Faimon J, Stelcl J, Sas D. Anthropogenic CO 2 -flux into cave atmosphere and its environmental impact: A case study in the Cisarska Cave (Moravian Karst, Czech Republic)[J]. Science of the Total Environment, 2006, 369(1/3): 231-245. [37] Hoyos M, Sandchez-Moral S, Canaveras J C, et al. Carbon Dioxide Fluxes in Karstic Caves (Altamira and Tito Bustillo Caves, Northern Spain)[Z]. Abstract Book, Friends of Karst-IGCP 379, WKU, USA, 1998: 34. [38] Bourges F, Mangin A, d’Hulst D. Carbon dioxide in karst cavity atmosphere dynamics: The example of the Aven d’Orgnac (Ardeche)[J]. Comptes Rendus de l’Academie des Sciences Series IIA Earth and Planetary Science, 2001, 333(11): 685-692. [39] Kowalczk A J, Froelich P N. Cave air ventilation and CO 2 outgassing by radon-222 modeling: How fast do caves breathe?[J]. Earth and Planetary Science Letters, 2010, 289(1/2): 209-219. [40] Fernández P, Gutierrez I, Quindós L, et al. Natural ventilation of the paintings room in the Altamira cave[J]. Nature, 1986, 321: 585-589. [41] Perrier F, Richon P, Sabroux J C. Modelling the effect of air exchange on 222 Rn and its progeny concentration in a tunnel atmosphere[J]. Science of the Total Environment, 2005, 350(1/3): 136-150. [42] Richon P, Perrier F, Sabroux J C, et al. Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel[J]. Journal of Environmental Radioactivity, 2004, 78(2): 179-198. [43] Benavente J, Vadillo I, Carrasco F, et al. Air carbon dioxide contents in the vadose zone of a Mediterranean karst[J]. Vadose Zone Journal, 2010, 9(1): 126-136. [44] Faimon J, Libinská M, Zajíek P. Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian karst region of the Czech republic[J]. International Journal of Speleology, 2011, 41(1): 17-28. [45] Breecker D O, Payne A E, Quade J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation[J]. Geochimica et Cosmochimica Acta, 2012, 96: 230-246. [46] Keeling C D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et Cosmochimica Acta, 1958, 13(4): 322-334. [47] Mattey D P, Fairchild I J, Atkinson T C, et al. Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar[J].Geological Society, London (Special Publications), 2010, 336(1): 323-344. [48] Riechelmann D F C, Schröder-Ritzrau A, Scholz D, et al. Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site[J]. Journal of Hydrology, 2011, 409(3/4): 682-695. [49] Spötl C, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2 451-2 468. [50] Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmed in situ: Modern calibration of δ 18 O and δ 13 C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 4 929-4 950. [51] Mattey D P, Fisher R, Atkinson T C, et al. Methane in underground air in Gibraltar karst[J]. Earth and Planetary Science Letters, 2013, 374: 71-80. [52] Baldini J U L, Baldini L M, McDermott F, et al. Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Ballynamintra Cave, Ireland[J]. Journal of Cave and Karst Studies, 2006, 68(1): 4-11. [53] Frisia S, Fairchild I J, Fohlmeister J, et al. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 380-400. [54] Halbert E. Evaluation of carbon dioxide and oxygen data in atmospheres using the Gibbs triangle and cave air index[J]. Helictite, 1982, 20(2): 60-68. [55] Buecher R H. Microclimate study of Kartchner caverns, Arizona[J]. Journal of Cave and Karst Studies, 1999, 61(2): 108-120. [56] Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1/4): 105-153. [57] Batiot-Guilhe C, Seidel J L, Jourde H, et al. Seasonal variations of CO 2 and 222 Rn in a mediterranean sinkhole-spring (Causse d’Aumelas, SE France)[J]. International Journal of Speleology,2007, 36(1): 51-56. [58] Cowan B D, Osborne M C, Banner J L. Temporal variability of cave-air CO 2 in central Texas[J]. Journal of Cave & Karst Studies, 2013, 75(1): 38-50. [59] Desjardins R L. A technique to measure CO 2 exchange under field conditions[J]. International Journal of Biometeorology, 1974, 18(1): 76-93. [60] Wang Jiemin, Wang Weizhen, Ao Yinhuan, et al. Turbulence flux measurements under complicated conditions[J]. Advances in Earth Science, 2007, 22(8): 791-797. [王介民, 王维真, 奥银焕,等. 复杂条件下湍流通量的观测与分析[J]. 地球科学进展, 2007, 22(8): 791-797.] [61] Xu Ziwei, Huang Yongbin, Liu Shaomin. A study of the observation method of large aperture scintillometer[J]. Advances in Earth Science, 2013, 28(8): 875-889. [徐自为, 黄勇彬, 刘绍民. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.] |