地球科学进展 ›› 2014, Vol. 29 ›› Issue (12): 1333 -1340. doi: 10.11867/j.issn.1001-8166.2014.12.1333

综述与评述 上一篇    下一篇

喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *
罗维均, 王世杰, 刘秀明   
  1. 1. 中国科学院地球化学研究所 环境地球化学国家重点实验室,贵州 贵阳 550002; 2. 中国科学院普定喀斯特生态系统观测研究站,贵州 普定 562100
  • 收稿日期:2014-07-09 修回日期:2014-09-29 出版日期:2014-12-20
  • 通讯作者: 王世杰(1966-),男,浙江台州人,研究员,主要从事环境地球化学研究. E-mail:wangshijie@vip.skleg.cn
  • 基金资助:

    国家重大科学研究计划项目“基于水—岩—土—气—生相互作用的喀斯特地区碳循环模式及调控机理”(编号:2013CB956700); 贵州省科技计划项目“碳汇动态及通量长期自动监测系统建设”(编号:黔科合计Z字[2014]4004)资助

Research Progresses and Prospect of Chimney Effect about Carbon Cycle in the Karst Cave System

Luo Weijun Wang Shijie, Wang Shijie, Liu Xiuming   

  1. 1. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 2. Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding, 562100, China
  • Received:2014-07-09 Revised:2014-09-29 Online:2014-12-20 Published:2014-12-20

对全球碳循环的系统研究已有几十年的历史,至今已取得很多重要成果,但对占整个地球陆地面积约10%的喀斯特地区碳循环的研究却在近10~20年来才逐渐受到重视。近年来的研究表明,岩溶作用对全球碳循环具有重要影响。目前,科学家们对影响喀斯特地区碳循环的各种因素有了较为全面系统的认识,并对碳源或碳汇量进行了估算。然而,与非喀斯特地区不同,喀斯特地区普遍发育着大小和形态各异的溶洞/裂隙,为喀斯特地区地—气交换增加了一个通道(窗口),其在喀斯特地区碳循环过程中扮演着什么样的角色,至今还少有报道。已有研究显示,喀斯特洞穴具有明显的烟囱效应,是不可忽略的。综述前人的研究发现,洞穴系统碳循环研究还存在诸多问题有待进一步研究,如烟囱效应对区域和全球大气CO2的贡献;烟囱效应的区域差异、季节变化及其原因(驱动力);烟囱效应对当地生态系统的影响等。随着现代科学技术(如涡度相关、大孔径闪烁和同位素)的发展,为解决上述问题提供了可能。因此,有必要运用现有的先进手段对洞穴系统碳循环进行自动连续监测和研究,这对喀斯特地区碳循环,甚至全球碳循环研究均具有重要意义。

There is a long history of several decades for the systemic study of global carbon cycles, and many important achievements have been obtained. However, these studies of carbon cycles in the karst area that accounts for about 10% of the entire Earth’s land area were paid attention gradually only in the past twenty. Recent researches suggest that karstification has important effects of the global carbon cycle. At present, scientists have had a very comprehensive and systemic understanding of various factors affecting the carbon cycle in the karst area, and estimated the carbon source or sink. However, unlike nonkarst area, there are generally many caves and fractures that have various sizes and morphologies in the karst area. These caves and fractures provide gas exchange between epikarst zone and atmosphere with a channel (as a window) in the karst area. There have been few reports about the role of the channel in the carbon cycle in the karst area. Previous studies have shown there is an obvious chimney effect in the karst cave system, which cannot be ignored. However, through the overview of the previous studies on carbon cycle of chimney effect in the karst cave system, we found that there were still many problems need to be further studied, such as the contribution of chimney effect to regional and global atmospheric CO2; the regional differences, the seasonal changes and its reason (driving force) of chimney effect; the influences of chimney effect on the local ecosystem. With the development of modern science and technology (such as eddy covariance, large aperture scintillation and isotope), it becomes possible to solve the above problems. Therefore, it is necessary to use these advanced means for automatic and continuous monitoring and researching the carbon cycles in the karst cave system, which are of important significance for the researches of carbon cycles in the karst area, even for the global carbon cycle studies.

中图分类号: 

[1] Tissier G, Perrette Y, Dzikowski M, et al. Seasonal changes of organic matter quality and quantity at the outlet of a forested karst system (La Roche Saint Alban, French Alps)[J]. Journal of Hydrology, 2013, 482: 139-148.
[2] Atkinson T C. Carbon dioxide in the atmosphere of the unsaturated zone: An important control of groundwater hardness in limestones[J]. Journal of Hydrology, 1977, 35(1/2): 111-123.
[3] Crowther J. Carbon dioxide concentrations in some tropical karst soils, west malaysia[J]. CATENA,1983, 10(1/2): 27-39.
[4] Peyraube N, Lastennet R, Denis A, et al. Estimation of epikarst air p CO 2 using measurements of water δ 13 C TDIC , cave air p CO 2 and δ 13 C CO2 [J]. Geochimica et Cosmochimica Acta, 2013, 118: 1-17.
[5] Yuan Daoxian. Carbon cycle and globle karst[J]. Quaternary Science, 1993, 13(1): 1-6. [袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1): 1-6.]
[6] Weng Jintao. The effect of carbonate rocks on global carbon cycle[J]. Advances in Earth Science, 1995, 10(2): 154-158. [翁金桃. 碳酸盐岩在全球碳循环过程中的作用[J]. 地球科学进展, 1995, 10(2): 154-158.]
[7] Jiang Z C, Yuan D X. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 22(1): 33-35.
[8] He Shiyi, Pan Genxing, Cao Jianhua, et al. Research on characteristics of carbon cycle in epi-karst ecological system[J]. Quaternary Science, 2000, 20(4): 383-390. [何师意, 潘根兴, 曹建华, 等. 表层统碳循环特征研究[J]. 第四纪研究, 2000, 20(4): 383-390.]
[9] Liu Z H. Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO 2 sink[J]. Acta Geologica Sinica, 2001, 75(3): 275-278.
[10] Pan Genxing, He Shiyi, Cao Jianhua, et al. Variation of δ 13 C in karst soil in Yaji karst experiment site, Guilin[J]. Chinese Science Bulletin, 2002, 47(6): 500-503.
[11] Cao Jianhua, Pan Genxing, Yuan Daoxian, et al. Seasonal changes of dissolved organic carbon in soil: Its environmental implication in karst area[J]. Ecology and Environment, 2005, 14(2): 224-229. [曹建华, 潘根兴, 袁道先, 等. 岩溶地区土壤溶解有机碳的季节动态及环境效应[J]. 生态环境, 2005, 14(2): 224-229.]
[12] Wang F S, Liu C Q, Wang B L, et al. Disrupting the riverine DIC cycling by series hydropower exploitation in karstic area[J]. Applied Geochemistry, 2011, 26(Suppl.1): S375-S378.
[13] Yan J H, Wang Y P, Zhou G Y, et al. Carbon uptake by karsts in the Houzhai Basin, southwest China[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G04012): 1-10.
[14] Yan J H, Li J M, Ye Q, et al. Concentrations and exports of solutes from surface runoff in Houzhai Karst Basin, southwest China[J]. Chemical Geology, 2012, 304/305: 1-9.
[15] Yang R, Liu Z H, Zeng C, et al. Response of epikarst hydrochemical changes to soil CO 2 and weather conditions at Chenqi, Puding, SW China[J]. Journal of Hydrology, 2012, 468/469: 151-158.
[16] Zhang C, Wang J L, Pu J B, et al. Bicarbonate daily variations in a Karst River: The carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica, 2012, 86(4): 973-979.
[17] Jiang Y J. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and δ 13 C DIC in Nandong, Southwest China[J]. Journal of Contaminant Hydrology, 2013, 152: 1-11.
[18] Zhang Xingbo, Jiang Yongjun, Qiu Shulan, et al. Agricultural activities and carbon cycling in karst areas in Southwest China: Dissolving carbonate rocks and CO 2 sink[J]. Advances in Earth Science, 2012, 27(4): 466-476. [张兴波, 蒋勇军, 邱述兰, 等. 农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476.]
[19] Jiang Y J, Hu Y J, Schirmer M. Biogeochemical controls on daily cycling of hydrochemistry and δ 13 C of dissolved inorganic carbon in a karst spring-fed pool[J]. Journal of Hydrology, 2013, 478: 157-168.
[20] Jiang Z C, Lian Y Q, Qin X Q. Carbon cycle in the epikarst systems and its ecological effects in South China[J]. Environmental Earth Sciences, 2013, 68(1): 151-158.
[21] Zhang Meiliang, Lin Yushi, Ran Jingcheng, et al. The characteristics of karst caves development in Libo, Guizhou[J]. Carsologica Sinica, 2000, 19(1): 13-20. [张美良, 林玉石, 冉景丞, 等. 贵州荔波岩溶洞穴发育特征[J]. 中国岩溶, 2000, 19(1): 13-20.]
[22] Chen Changming. Karst cave development and mineral deposit features in Hunan boundary[J]. Geotectonica et Metallogenia, 1994, 18(2): 183-190. [陈长明. 试论湖南境内喀斯特洞穴发育及成矿特征[J]. 大地构造与成矿学, 1994, 18(2): 183-190.]
[23] Wan Junwei, Shen Jifang, Chao Nianying. The characteristics of karst cave development and tourism resources in Banxia area of the Qingjiang River[J]. Carsologica Sinica, 1997, 16(3): 268-274. [万军伟, 沈继方, 晁念英. 清江半峡地区岩溶洞穴发育特征及其旅游资源[J]. 中国岩溶, 1997, 16(3): 268-274.]
[24] Lu Yaoru, Jie Xianyi, Zhang Shanglin, et al. The development law and number of hydrogeology and engineering geology conditions of Chinese Yanrong (Karst)[J]. Acta Geologica Sinica, 1973, (1): 121-136. [卢耀如, 杰显义, 张上林, 等. 中国岩溶(喀斯特)发育规律及其若干水文地质工程地质条件[J]. 地质学报, 1973, (1): 121-136.]
[25] Rongier G, Collon-Drouaillet P, Filipponi M. Simulation of 3D karst conduits with an object-distance based method integrating geological knowledge[J]. Geomorphology, 2014, 217: 152-164.
[26] Fairchild I J, Baker A. Speleothem Science: From Process to Past Environments[M]. Chichest:Wiley-Blackwell, 2012.
[27] Cuezva S, Fernandez-Cortes A, Benavente D, et al. Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Role of the surface soil layer[J]. Atmospheric Environment, 2011, 45(7): 1 418-1 427.
[28] Kowalski A S, Serrano-Ortiz P, Janssens I A, et al. Can flux tower research neglect geochemical CO 2 exchange?[J].Agricultural and Forest Meteorology, 2008, 148(6): 1 045-1 054.
[29] Sanchez-Cañete E P, Serrano-Ortiz P, Kowalski A S, et al. Subterranean CO 2 ventilation and its role in the net ecosystem carbon balance of a karstic shrubland[J]. Geophysical Research Letters, 2011, 38(9): L09802,doi:10.1029/2011GL047077.
[30] Serrano-Ortiz P, Roland M, Sanchez-Moral S, et al. Hidden, abiotic CO 2 flows and gaseous reservoirs in the terrestrial carbon cycle: Review and perspectives[J]. Agricultural and Forest Meteorology, 2010, 150(3): 321-329.
[31] Were A, Serrano-Ortiz P, Moreno de Jong C, et al. Ventilation of subterranean CO 2 and eddy covariance incongruities over carbonate ecosystems[J]. Biogeosciences, 2010, 7(3): 859-867.
[32] Cigna A A. Modern trend in cave monitoring[J]. Acta Carsologica, 2002, 31(1): 35-54.
[33] Troester J W, White W B. Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere[J]. Water Resources Research, 1984, 20(1): 153-156.
[34] Ek C, Gewelt M. Carbon dioxide in cave atmospheres. New results in Belgium and comparison with some other countries[J]. Earth Surface Processes and Landforms, 1985, 10(2): 173-187.
[35] Hoyos M, Soler V, Canaveras J, et al. Microclimatic characterization of a karstic cave: Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain)[J]. Environmental Geology, 1998, 33(4): 231-242.
[36] Faimon J, Stelcl J, Sas D. Anthropogenic CO 2 -flux into cave atmosphere and its environmental impact: A case study in the Cisarska Cave (Moravian Karst, Czech Republic)[J]. Science of the Total Environment, 2006, 369(1/3): 231-245.
[37] Hoyos M, Sandchez-Moral S, Canaveras J C, et al. Carbon Dioxide Fluxes in Karstic Caves (Altamira and Tito Bustillo Caves, Northern Spain)[Z]. Abstract Book, Friends of Karst-IGCP 379, WKU, USA, 1998: 34.
[38] Bourges F, Mangin A, d’Hulst D. Carbon dioxide in karst cavity atmosphere dynamics: The example of the Aven d’Orgnac (Ardeche)[J]. Comptes Rendus de l’Academie des Sciences Series IIA Earth and Planetary Science, 2001, 333(11): 685-692.
[39] Kowalczk A J, Froelich P N. Cave air ventilation and CO 2 outgassing by radon-222 modeling: How fast do caves breathe?[J]. Earth and Planetary Science Letters, 2010, 289(1/2): 209-219.
[40] Fernández P, Gutierrez I, Quindós L, et al. Natural ventilation of the paintings room in the Altamira cave[J]. Nature, 1986, 321: 585-589.
[41] Perrier F, Richon P, Sabroux J C. Modelling the effect of air exchange on 222 Rn and its progeny concentration in a tunnel atmosphere[J]. Science of the Total Environment, 2005, 350(1/3): 136-150.
[42] Richon P, Perrier F, Sabroux J C, et al. Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel[J]. Journal of Environmental Radioactivity, 2004, 78(2): 179-198.
[43] Benavente J, Vadillo I, Carrasco F, et al. Air carbon dioxide contents in the vadose zone of a Mediterranean karst[J]. Vadose Zone Journal, 2010, 9(1): 126-136.
[44] Faimon J, Libinská M, Zajíek P. Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian karst region of the Czech republic[J]. International Journal of Speleology, 2011, 41(1): 17-28.
[45] Breecker D O, Payne A E, Quade J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation[J]. Geochimica et Cosmochimica Acta, 2012, 96: 230-246.
[46] Keeling C D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et Cosmochimica Acta, 1958, 13(4): 322-334.
[47] Mattey D P, Fairchild I J, Atkinson T C, et al. Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar[J].Geological Society, London (Special Publications), 2010, 336(1): 323-344.
[48] Riechelmann D F C, Schröder-Ritzrau A, Scholz D, et al. Monitoring Bunker Cave (NW Germany): A prerequisite to interpret geochemical proxy data of speleothems from this site[J]. Journal of Hydrology, 2011, 409(3/4): 682-695.
[49] Spötl C, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2 451-2 468.
[50] Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmed in situ: Modern calibration of δ 18 O and δ 13 C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 4 929-4 950.
[51] Mattey D P, Fisher R, Atkinson T C, et al. Methane in underground air in Gibraltar karst[J]. Earth and Planetary Science Letters, 2013, 374: 71-80.
[52] Baldini J U L, Baldini L M, McDermott F, et al. Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Ballynamintra Cave, Ireland[J]. Journal of Cave and Karst Studies, 2006, 68(1): 4-11.
[53] Frisia S, Fairchild I J, Fohlmeister J, et al. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 380-400.
[54] Halbert E. Evaluation of carbon dioxide and oxygen data in atmospheres using the Gibbs triangle and cave air index[J]. Helictite, 1982, 20(2): 60-68.
[55] Buecher R H. Microclimate study of Kartchner caverns, Arizona[J]. Journal of Cave and Karst Studies, 1999, 61(2): 108-120.
[56] Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1/4): 105-153.
[57] Batiot-Guilhe C, Seidel J L, Jourde H, et al. Seasonal variations of CO 2 and 222 Rn in a mediterranean sinkhole-spring (Causse d’Aumelas, SE France)[J]. International Journal of Speleology,2007, 36(1): 51-56.
[58] Cowan B D, Osborne M C, Banner J L. Temporal variability of cave-air CO 2 in central Texas[J]. Journal of Cave & Karst Studies, 2013, 75(1): 38-50.
[59] Desjardins R L. A technique to measure CO 2 exchange under field conditions[J]. International Journal of Biometeorology, 1974, 18(1): 76-93.
[60] Wang Jiemin, Wang Weizhen, Ao Yinhuan, et al. Turbulence flux measurements under complicated conditions[J]. Advances in Earth Science, 2007, 22(8): 791-797. [王介民, 王维真, 奥银焕,等. 复杂条件下湍流通量的观测与分析[J]. 地球科学进展, 2007, 22(8): 791-797.]
[61] Xu Ziwei, Huang Yongbin, Liu Shaomin. A study of the observation method of large aperture scintillometer[J]. Advances in Earth Science, 2013, 28(8): 875-889. [徐自为, 黄勇彬, 刘绍民. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.]

[1] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[2] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[3] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[4] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[5] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[6] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[7] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[8] 王龙, KhalidLatif, MuhammadRiaz, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1005-1023.
[9] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[10] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[11] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[12] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[13] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[14] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[15] 张兴波,蒋勇军,邱述兰,曹敏,胡毅军. 农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476.
阅读次数
全文


摘要