[1] Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic[J]. Nature, 1988, 331: 947-975. [2] Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature,1994, 371: 123-129. [3] Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the world ocean[J]. Global Biogeochemical Cycles, 1991, 5(3): 193-259. [4] Gao Yuan, Duce R A. Air sea chemical exchange in coastal oceans[J]. Advances in Earth Science, 1997, 12(6): 553-563. [高原, Duce R A.沿海海—气界面的化学物质交换[J]. 地球科学进展, 1997, 12(6): 553-563.] [5] Zhang J, Chen S Z, Yu Z G, et al. Factors influencing changes in rainwater composition from urban versus remote regions of the Yellow Sea[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D1): 1 631-1 644. [6] Kim T W, Lee K, Najjar R G, et al. Increasing N abundance in the Northwestern Pacific Ocean due to atmospheric nitrogen deposition[J]. Science, 2011, 334(6 055): 505-509. [7] Qi J H, Shi J H, Gao H W, et al. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China[J]. Atmospheric Environment, 2013, 81: 600-608. [8] Prospero J M, Savoie D L. Effect of continental sources on nitrate concentrations over the Pacific Ocean[J]. Nature, 1989, 339(6 277): 687-689. [9] Guerzoni S, Chester R, Dulac F, et al. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea[J]. Progress in Oceanography, 1999, 44(1): 147-190. [10] Paerl H W, Whitall D R. Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: Is there a link?[J]. Ambio, 1999, 28(4): 307-311. [11] Bopp L, Monfray P, Aumont O, et al. Potential impact of climate change on marine export production[J]. Global Biogeochemical Cycles, 2001, 15(1): 81-100. [12] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5 718): 67-71. [13] Duce R A, LaRoche J, Altieri K, et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science, 2008, 320(5 878): 893-897. [14] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature,2013, 494: 459-462. [15] Shi J H, Gao H W, Zhang J, et al. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D17304. [16] Shi J H, Zhang J, Gao H W, et al. Concentration, solubility and deposition flux of atmospheric particulate nutrients over the Yellow Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 97: 43-50. [17] Tan S C, Shi G Y, Shi J H, et al. Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008[J]. Journal of Geophysical Research: Ocean, 2011, 116: G02029. [18] Tan S C, Yao X H, Gao H W, et al. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the north to equatorial Pacific[J]. PLoS ONE,2013, 8(2): E57656. [19] Zamora L, Landolfi A, Oschlies A, et al. Atmospheric deposition of nutrients and excess N formation in the North Atlantic[J]. Biogeosciences, 2010, 7(2): 777-793. [20] Furutani H, Meguro A, Iguchi H, et al. Geographical distribution and sources of phosphorus in atmospheric aerosol over the North Pacific Ocean[J]. Geophysical Research Letters, 2010, 37(3): L03805. [21] Baker A R, Jickells T D. Mineral particle size as a control on aerosol iron solubility[J]. Geophysical Research Letters, 2006, 33(17): L17608. [22] Takahashi Y, Higashi M, Furukawa T, et al. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan[J]. Atmospheric Chemistry and Physics, 2011, 11(21): 11 237-11 252. [23] Li J, Wang Z, Zhuang G, et al. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010[J]. Atmospheric Chemistry and Physics, 2012, 12(16): 7 591-7 607. [24] Mendez J, Guieu C, Adkins J. Atmospheric input of manganese and iron to the ocean: Seawater dissolution experiments with Saharan and North American dusts[J]. Marine Chemistry, 2010, 120(1): 34-43. [25] Pollard R T, Salter I, Sanders R J, et al. Southern Ocean deep-water carbon export enhanced by natural iron fertilization[J]. Nature, 2009, 457(7 229): 577-580. [26] DiTullio G R, Laws E A. Impact of an atmospheric-oceanic disturbance on phytoplankton community dynamics in the North Pacific Central Gyre[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1991, 38(10): 1 305-1 329. [27] Duarte C M, Dachs J, Llabrés M, et al. Aerosol inputs enhance new production in the subtropical northeast Atlantic[J]. Journal of Geophysical Research: Biogeosciences, 2006, 111: G04006. [28] Krishnamurthy A, Moore J K, Mahowald N, et al. Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry[J]. Global Biogeochemical Cycles, 2009, 23(3): GB3016. [29] Paytan A, Mackey K R M, Chen Y, et al. Toxicity of atmospheric aerosols on marine phytoplankton[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4 601-4 605. [30] Liu Y, Zhang T R, Shi J H, et al. Responses of chlorophyll a to added nutrients, Asian dust, and rainwater in an oligotrophic zone of the Yellow Sea: Implications for promotion and inhibition effects in an incubation experiment[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1 763-1 772. [31] Mahowald N, Baker A, Bergametti G, et al. Atmospheric global dust cycle and iron inputs to the ocean[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4025. [32] Mahowald N M, Engelstaedter S, Luo C, et al. Atmospheric iron deposition: Global distribution, variability, and human perturbations[J]. Annual Review of Marine Science, 2009, 1: 245-278. [33] Gassó S, Stein A, Marino F, et al. A combined observational and modeling approach to study modern dust transport from the Patagonia Desert to East Antarctica[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 8 287-8 303. [34] Law C S, Brévière E, de Leeuw G, et al. Evolving research directions in Surface Ocean-Lower Atmosphere (SOLAS) science[J]. Environmental Chemistry, 2013, 10(1): 1-16. [35] Suddick E C, Steenwerth K, Garland G M, et al. Discerning agricultural management effects on nitrous oxide emissions from conventional and alternative cropping systems: A California case study[M]∥Guo Lei, Laura Mcconnellei, Amrith Gunasekara, eds. Understanding Greenhouse Gas Emissions from Agricultural Management. Oxford: Oxford University Press Inc., 2011: 203-226. [36] Gruber N. The marine nitrogen cycle: Overview and challenges[M]∥Capone D, et al, eds. Nitrogen in the Marine. Environment. Amsterdam, the Netherlands: Elsevier, 2008. [37] Ye Y, Völker C, Bracher A, et al. Environmental controls on N 2 fixation by Trichodesmium in the tropical eastern North Atlantic Ocean—A model-based study[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 64: 104-117. [38] Christodoulaki S, Petihakis G, Kanakidou M, et al. Atmospheric deposition in the Eastern Mediterranean: A driving force for ecosystem dynamics[J]. Journal of Marine Systems, 2013, 109/110: 78-93. [39] Deutsch C, Sarmiento J L, Sigman D M, et al. Spatial coupling of nitrogen inputs and losses in the ocean[J]. Nature, 2007, 445(7 124): 163-167. [40] Kustka A, Carpenter E J, Sañudo-Wilhelmy S A. Iron and marine nitrogen fixation: Progress and future directions[J]. Research in Microbiology, 2002, 153(5): 255-262. [41] Ward B B, Devol A H, Rich J J, et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea[J]. Nature, 2009, 461(7 260): 78-81. [42] Falkowski P. Ocean science: The power of plankton[J]. Nature, 2012, 483(7 387): S17-S20. [43] Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium: A globally significant cyanobacterium[J]. Science, 1997, 276(5 316): 1 221-1 229. [44] Karl D, Letelier R, Tupas L, et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean[J]. Nature, 1997, 388(6 642): 533-538. [45] Kao S J, Terence Yang J Y, Liu K K, et al. Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2033. [46] Mills M M, Ridame C, Davey M, et al. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic[J]. Nature, 2004, 429(6 989): 292-294. [47] Gruber N, Sarmiento J L. Global patterns of marine nitrogen fixation and denitrification[J]. Global Biogeochemical Cycles, 1997, 11(2): 235-266. [48] Shibata M, Ohkawa H, Kaneko T, et al. Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20):11 789-11 794. [49] Barcelos e Ramos J, Biswas H, Schulz K, et al. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium[J]. Global Biogeochemical Cycles, 2007, 21(2): GB2028. [50] Hutchins D A, Fu F X, Zhang Y, et al. CO 2 control of Trichodesmium N 2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry[J]. Limnology and Oceanography, 2007, 52(4): 1 293-1 304. [51] Fu F X, Mulholland M R, Garcia N S, et al. Interactions between Changing pCO 2 , N 2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera[J]. Limnology and Oceanography, 2008, 53(6): 2 472-2 484. [52] Czerny J, Barcelos e Ramos J, Riebesell U. Influence of elevated CO 2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena[J]. Biogeosciences, 2009, 6(2): 1 865-1 875. [53] Zehr J P, Kudela R M. Nitrogen cycle of the open ocean: From genes to ecosystems[J]. Annual Review of Marine Science, 2011, 3:197-225. [54] Voss M, Croot P, Lochte K, et al. Patterns of nitrogen fixation along 10°N in the tropical Atlantic[J]. Geophysical Research Letters, 2004, 31(23): L23S09. [55] Baker A R, Weston K, Kelly S D, et al. Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: Links to primary productivity and nitrogen fixation[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(10): 1 704-1 720. [56] Song Guodong, Liu Sumei. Advances in studies of anaerobic ammonium oxidation in the marine environment[J]. Advances in Earth Science,2012, 27(5): 529-538. [宋国栋,刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.] [57] Hong Yiguo. Marine nitrogen cycle recorded by nitrogen and oxygen isotope fractionation of nitrate[J]. Advances in Earth Science, 2013, 28(7): 751-764. [洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.] [58] Kuypers M M M, Lavik G, Woebken D, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(18): 6 478-6 483. [59] Lam P, Lavik G, Jensen M M, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4 752-4 757. [60] Fiore C L, Jarett J K, Olson N D, et al. Nitrogen fixation and nitrogen transformations in marine symbioses[J]. Trends in Microbiology, 2010, 18(10): 455-463. [61] Voss M, Montoya J. Nitrogen cycle: Oceans apart[J]. Nature, 2009, 461(7 260): 49-50. [62] Myriokefalitakis S, Vignati E, Tsigaridis K, et al. Global modeling of the oceanic source of organic aerosols[J]. Advances in Meteorology, 2010, doi:10.1155/2010/939171. [63] Facchini M C, Decesari S, Rinaldi M, et al. Important source of marine secondary organic aerosol from biogenic amines[J]. Environmental Science & Technology, 2008, 42(24): 9 116-9 121. [64] ChenY, Patel N A, Crombie A, et al. Bacterial flavin-containing onooxygenase is trimethylamine monooxygenase[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): 17 791-17 796. [65] Craciun S, Balskus E P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21 307-21 312. [66] Altabet M A. Constraints on oceanic N balance/imbalance from sedimentary 15 N records[J]. Biogeosciences, 2007, 4: 75-86. [67] Brandes J A, Devol A H, Deutsch C. New developments in the marine nitrogen cycle[J]. Chemical Reviews—Columbus, 2007, 107(2): 577-589. [68] Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate[J]. Nature, 1987, 326(6 114): 655-661. [69] Andreae M O, Crutzen P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry[J]. Science, 1997, 276(5 315): 1 052-1 058. [70] Henrichs S M, Williams P M. Dissolved and particulate amino acids and carbohydrates in the sea surface microlayer[J]. Marine Chemistry, 1985, 17(2): 141-163. [71] Kuznetsova M, Lee C. Dissolved free and combined amino acids in nearshore seawater, sea surface microlayers and foams: Influence of extracellular hydrolysis[J]. Aquatic Sciences-Research Across Boundaries, 2002, 64(3): 252-268. [72] Aller J Y, Kuznetsova M R, Jahns C, et al. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols[J].Journal of Aerosol Science, 2005,36(5): 801-812. [73] Mahowald M. Aerosol indirect effect on biogeochemical cycles and climate[J]. Science, 2011, 334(6 057): 794-796. [74] Luo G, Yu F. Sensitivity of global cloud condensation nuclei concentrations to primary sulfate emission parameterizations[J].Atmospheric Chemistry and Physics, 2011, 11(5): 1 949-1 959. [75] Yu F. A secondary organic aerosol formation model considering successive oxidation aging and kinetic condensation of organic compounds: Global scale implications[J].Atmospheric Chemistry and Physics, 2011, 11(3): 1 083-1 099. [76] O’Dowd C D, Facchini M C, Cavalli F, et al. Biogenically driven organic contribution to marine aerosol[J].Nature, 2004, 431(7 009): 676-680. [77] Meskhidze N, Nenes A. Phytoplankton and cloudiness in the Southern Ocean[J].Science,2006, 314(5 804): 1 419-1 423. [78] Tan S C, Shi G Y, Wang H. Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas[J].Atmospheric Environment, 2012, 46: 299-308. |