Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (12): 1325-1332    DOI: 10.11867/j.issn.1001-8166.2014.12.1325
综述与评述     
大气沉降对海洋初级生产过程与氮循环的影响研究进展
高会旺1, 姚小红1, 郭志刚2, 韩志伟3, 高树基4
1. 海洋环境与生态教育部重点实验室,中国海洋大学,山东 青岛,266100; 2. 复旦大学环境科学与工程系,上海, 200433; 3. 中国科学院东亚区域气候环境重点实验室,中国科学院大气物理研究所,北京,100029; 4. 近海海洋环境科学国家重点实验室,厦门大学,福建 厦门,361005
Atmospheric Deposition Connected with Marine Primary Production, Nitrogen Cycle: A Review
Gao Huiwang1, Yao Xiaohong1, Guo Zhigang2, Han Zhiwei3, Kao Shuh-Ji4
1.Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; 2.Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; 3. Key Laboratory of Regional Climate-Environment for East Asia, Chinese Academy of Sciences, Institute of Atmospheric Physics, Beijing 100029, China; 4. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
 全文: PDF(970 KB)  
摘要:

大气沉降通过为海洋提供外源性氮、磷和铁等微量元素,可显著影响海洋氮、碳循环过程,并产生气候效应。一方面促进海洋初级生产和生物固氮,增强海洋吸收二氧化碳的能力;另一方面影响海洋氮、碳循环路径,增加海洋生物源气溶胶排放量,间接影响气候变化。由于大气沉降对海洋生态系统及气候变化的重要影响,相关科学问题已成为海洋科学与大气科学交叉研究的热点,被多个国际研究计划列为核心研究内容。在大气污染物排放持续增加与沙尘事件频发的背景下,大气沉降对我国东部陆架海(黄海、东海)及其邻近西北太平洋碳、氮循环过程的影响日趋增强,因此该海区已成为大气沉降及其气候影响研究的代表性海域。结合分子生物学和实验生态学手段理解大气沉降影响下的海洋初级生产过程,利用同位素示踪技术研究大气沉降对海洋氮循环的影响,以及获得大气沉降影响下海洋生物源气溶胶排放的观测证据将是未来研究的重点方向。

关键词: 海洋初级生产过程海洋生物源气溶胶海洋生物地球化学循环大气物质入海通量    
Abstract:

Atmospheric Deposition (AD) provides external nutrients such as nitrogen (N), phosphorus (P) and iron (Fe) supporting the growth of phytoplankton in oceans and thereby exerts obvious impacts on carbon and nitrogen cycles and climate change associated. Specifically, the external nutrients derived from atmospheric deposition can promote the marine primary production and nitrogen fixation that enhance the ocean capacity in absorbing CO2; AD may also change a few pathways of carbon and nitrogen cycles in oceans and increase the emissions of biogenic aerosol and radioactive gases such as N2O, DMS, etc. Due to the underlying important impacts on climate and environmental change, AD and processes related have become the hot topics of multidisciplinary studies in the areas of ocean and atmospheric sciences, and the focus of some international core projects such as Surface Ocean Lower Atmosphere Study (SOLAS), an International Study of Marine Biogeochemical Cycles of Trace Elements and Their Isotopes (GEOTRACES) and Integrated Marine Biogeochemistry and Ecosystem Research (IMBER). With the severe air pollution and high frequencies of Asian dust events, as the downwind areas of big cities and dust sources, the East China Sea and adjacent North Pacific have received increasing influences of AD. Limited studies showed that the increase of AD indeed caused significant influence on carbon and nitrogen cycles in these immediately related oceanic areas and the study there would have a signature effect on global oceans. A multidisciplinary study on the impacts of AD in oceans, e.g., combing molecular biology and experimental ecology techniques to study primary production processes, utilizing isotopic techniques to trace the change of the nitrogen cycle, new evidences of ocean-biogenic aerosol emissions, etc. would be the focus in the future.

Key words: Atmospheric deposition    Ocean-biogenic aerosol.    Marine primary production    Marine biogeochemical cycle
收稿日期: 2014-06-15 出版日期: 2014-12-20
:  P735  
基金资助:

国家重大科学研究计划项目“大气物质沉降对海洋氮循环与初级生产过程的影响及其气候效应”(编号:2014CB953700)资助

作者简介: 高会旺(1966-),男,山东曹县人,教授,主要从事大气物质沉降与海洋生态动力学研究
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高会旺
姚小红
高树基
韩志伟
郭志刚

引用本文:

高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.

Gao Huiwang, Yao Xiaohong, Guo Zhigang, Han Zhiwei, Kao Shuh-Ji. Atmospheric Deposition Connected with Marine Primary Production, Nitrogen Cycle: A Review. Advances in Earth Science, 2014, 29(12): 1325-1332.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.12.1325        http://www.adearth.ac.cn/CN/Y2014/V29/I12/1325

[1] Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic[J]. Nature, 1988, 331: 947-975.
[2] Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature,1994, 371: 123-129.
[3] Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the world ocean[J]. Global Biogeochemical Cycles, 1991, 5(3): 193-259.
[4] Gao Yuan, Duce R A. Air sea chemical exchange in coastal oceans[J]. Advances in Earth Science, 1997, 12(6): 553-563. [高原, Duce R A.沿海海—气界面的化学物质交换[J]. 地球科学进展, 1997, 12(6): 553-563.]
[5] Zhang J, Chen S Z, Yu Z G, et al. Factors influencing changes in rainwater composition from urban versus remote regions of the Yellow Sea[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D1): 1 631-1 644.
[6] Kim T W, Lee K, Najjar R G, et al. Increasing N abundance in the Northwestern Pacific Ocean due to atmospheric nitrogen deposition[J]. Science, 2011, 334(6 055): 505-509.
[7] Qi J H, Shi J H, Gao H W, et al. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China[J]. Atmospheric Environment, 2013, 81: 600-608.
[8] Prospero J M, Savoie D L. Effect of continental sources on nitrate concentrations over the Pacific Ocean[J]. Nature, 1989, 339(6 277): 687-689.
[9] Guerzoni S, Chester R, Dulac F, et al. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea[J]. Progress in Oceanography, 1999, 44(1): 147-190.
[10] Paerl H W, Whitall D R. Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: Is there a link?[J]. Ambio, 1999, 28(4): 307-311.
[11] Bopp L, Monfray P, Aumont O, et al. Potential impact of climate change on marine export production[J]. Global Biogeochemical Cycles, 2001, 15(1): 81-100.
[12] Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate[J]. Science, 2005, 308(5 718): 67-71.
[13] Duce R A, LaRoche J, Altieri K, et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean[J]. Science, 2008, 320(5 878): 893-897.
[14] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature,2013, 494: 459-462.
[15] Shi J H, Gao H W, Zhang J, et al. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D17304.
[16] Shi J H, Zhang J, Gao H W, et al. Concentration, solubility and deposition flux of atmospheric particulate nutrients over the Yellow Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 97: 43-50.
[17] Tan S C, Shi G Y, Shi J H, et al. Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008[J]. Journal of Geophysical Research: Ocean, 2011, 116: G02029.
[18] Tan S C, Yao X H, Gao H W, et al. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the north to equatorial Pacific[J]. PLoS ONE,2013, 8(2): E57656.
[19] Zamora L, Landolfi A, Oschlies A, et al. Atmospheric deposition of nutrients and excess N formation in the North Atlantic[J]. Biogeosciences, 2010, 7(2): 777-793.
[20] Furutani H, Meguro A, Iguchi H, et al. Geographical distribution and sources of phosphorus in atmospheric aerosol over the North Pacific Ocean[J]. Geophysical Research Letters, 2010, 37(3): L03805.
[21] Baker A R, Jickells T D. Mineral particle size as a control on aerosol iron solubility[J]. Geophysical Research Letters, 2006, 33(17): L17608.
[22] Takahashi Y, Higashi M, Furukawa T, et al. Change of iron species and iron solubility in Asian dust during the long-range transport from western China to Japan[J]. Atmospheric Chemistry and Physics, 2011, 11(21): 11 237-11 252.
[23] Li J, Wang Z, Zhuang G, et al. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super-duststorm in March 2010[J]. Atmospheric Chemistry and Physics, 2012, 12(16): 7 591-7 607.
[24] Mendez J, Guieu C, Adkins J. Atmospheric input of manganese and iron to the ocean: Seawater dissolution experiments with Saharan and North American dusts[J]. Marine Chemistry, 2010, 120(1): 34-43.
[25] Pollard R T, Salter I, Sanders R J, et al. Southern Ocean deep-water carbon export enhanced by natural iron fertilization[J]. Nature, 2009, 457(7 229): 577-580.
[26] DiTullio G R, Laws E A. Impact of an atmospheric-oceanic disturbance on phytoplankton community dynamics in the North Pacific Central Gyre[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1991, 38(10): 1 305-1 329.
[27] Duarte C M, Dachs J, Llabrés M, et al. Aerosol inputs enhance new production in the subtropical northeast Atlantic[J]. Journal of Geophysical Research: Biogeosciences, 2006, 111: G04006.
[28] Krishnamurthy A, Moore J K, Mahowald N, et al. Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry[J]. Global Biogeochemical Cycles, 2009, 23(3): GB3016.
[29] Paytan A, Mackey K R M, Chen Y, et al. Toxicity of atmospheric aerosols on marine phytoplankton[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4 601-4 605.
[30] Liu Y, Zhang T R, Shi J H, et al. Responses of chlorophyll a to added nutrients, Asian dust, and rainwater in an oligotrophic zone of the Yellow Sea: Implications for promotion and inhibition effects in an incubation experiment[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1 763-1 772.
[31] Mahowald N, Baker A, Bergametti G, et al. Atmospheric global dust cycle and iron inputs to the ocean[J]. Global Biogeochemical Cycles, 2005, 19(4): GB4025.
[32] Mahowald N M, Engelstaedter S, Luo C, et al. Atmospheric iron deposition: Global distribution, variability, and human perturbations[J]. Annual Review of Marine Science, 2009, 1: 245-278.
[33] Gassó S, Stein A, Marino F, et al. A combined observational and modeling approach to study modern dust transport from the Patagonia Desert to East Antarctica[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 8 287-8 303.
[34] Law C S, Brévière E, de Leeuw G, et al. Evolving research directions in Surface Ocean-Lower Atmosphere (SOLAS) science[J]. Environmental Chemistry, 2013, 10(1): 1-16.
[35] Suddick E C, Steenwerth K, Garland G M, et al. Discerning agricultural management effects on nitrous oxide emissions from conventional and alternative cropping systems: A California case study[M]∥Guo Lei, Laura Mcconnellei, Amrith Gunasekara, eds. Understanding Greenhouse Gas Emissions from Agricultural Management. Oxford: Oxford University Press Inc., 2011: 203-226.
[36] Gruber N. The marine nitrogen cycle: Overview and challenges[M]∥Capone D, et al, eds. Nitrogen in the Marine. Environment. Amsterdam, the Netherlands: Elsevier, 2008.
[37] Ye Y, Völker C, Bracher A, et al. Environmental controls on N 2 fixation by Trichodesmium in the tropical eastern North Atlantic Ocean—A model-based study[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 64: 104-117.
[38] Christodoulaki S, Petihakis G, Kanakidou M, et al. Atmospheric deposition in the Eastern Mediterranean: A driving force for ecosystem dynamics[J]. Journal of Marine Systems, 2013, 109/110: 78-93.
[39] Deutsch C, Sarmiento J L, Sigman D M, et al. Spatial coupling of nitrogen inputs and losses in the ocean[J]. Nature, 2007, 445(7 124): 163-167.
[40] Kustka A, Carpenter E J, Sañudo-Wilhelmy S A. Iron and marine nitrogen fixation: Progress and future directions[J]. Research in Microbiology, 2002, 153(5): 255-262.
[41] Ward B B, Devol A H, Rich J J, et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea[J]. Nature, 2009, 461(7 260): 78-81.
[42] Falkowski P. Ocean science: The power of plankton[J]. Nature, 2012, 483(7 387): S17-S20.
[43] Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium: A globally significant cyanobacterium[J]. Science, 1997, 276(5 316): 1 221-1 229.
[44] Karl D, Letelier R, Tupas L, et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean[J]. Nature, 1997, 388(6 642): 533-538.
[45] Kao S J, Terence Yang J Y, Liu K K, et al. Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2033.
[46] Mills M M, Ridame C, Davey M, et al. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic[J]. Nature, 2004, 429(6 989): 292-294.
[47] Gruber N, Sarmiento J L. Global patterns of marine nitrogen fixation and denitrification[J]. Global Biogeochemical Cycles, 1997, 11(2): 235-266.
[48] Shibata M, Ohkawa H, Kaneko T, et al. Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20):11 789-11 794.
[49] Barcelos e Ramos J, Biswas H, Schulz K, et al. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium[J]. Global Biogeochemical Cycles, 2007, 21(2): GB2028.
[50] Hutchins D A, Fu F X, Zhang Y, et al. CO 2 control of Trichodesmium N 2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry[J]. Limnology and Oceanography, 2007, 52(4): 1 293-1 304.
[51] Fu F X, Mulholland M R, Garcia N S, et al. Interactions between Changing pCO 2 , N 2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera[J]. Limnology and Oceanography, 2008, 53(6): 2 472-2 484.
[52] Czerny J, Barcelos e Ramos J, Riebesell U. Influence of elevated CO 2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena[J]. Biogeosciences, 2009, 6(2): 1 865-1 875.
[53] Zehr J P, Kudela R M. Nitrogen cycle of the open ocean: From genes to ecosystems[J]. Annual Review of Marine Science, 2011, 3:197-225.
[54] Voss M, Croot P, Lochte K, et al. Patterns of nitrogen fixation along 10°N in the tropical Atlantic[J]. Geophysical Research Letters, 2004, 31(23): L23S09.
[55] Baker A R, Weston K, Kelly S D, et al. Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: Links to primary productivity and nitrogen fixation[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2007, 54(10): 1 704-1 720.
[56] Song Guodong, Liu Sumei. Advances in studies of anaerobic ammonium oxidation in the marine environment[J]. Advances in Earth Science,2012, 27(5): 529-538. [宋国栋,刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.]
[57] Hong Yiguo. Marine nitrogen cycle recorded by nitrogen and oxygen isotope fractionation of nitrate[J]. Advances in Earth Science, 2013, 28(7): 751-764. [洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.]
[58] Kuypers M M M, Lavik G, Woebken D, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(18): 6 478-6 483.
[59] Lam P, Lavik G, Jensen M M, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4 752-4 757.
[60] Fiore C L, Jarett J K, Olson N D, et al. Nitrogen fixation and nitrogen transformations in marine symbioses[J]. Trends in Microbiology, 2010, 18(10): 455-463.
[61] Voss M, Montoya J. Nitrogen cycle: Oceans apart[J]. Nature, 2009, 461(7 260): 49-50.
[62] Myriokefalitakis S, Vignati E, Tsigaridis K, et al. Global modeling of the oceanic source of organic aerosols[J]. Advances in Meteorology, 2010, doi:10.1155/2010/939171.
[63] Facchini M C, Decesari S, Rinaldi M, et al. Important source of marine secondary organic aerosol from biogenic amines[J]. Environmental Science & Technology, 2008, 42(24): 9 116-9 121.
[64] ChenY, Patel N A, Crombie A, et al. Bacterial flavin-containing onooxygenase is trimethylamine monooxygenase[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): 17 791-17 796.
[65] Craciun S, Balskus E P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21 307-21 312.
[66] Altabet M A. Constraints on oceanic N balance/imbalance from sedimentary 15 N records[J]. Biogeosciences, 2007, 4: 75-86.
[67] Brandes J A, Devol A H, Deutsch C. New developments in the marine nitrogen cycle[J]. Chemical Reviews—Columbus, 2007, 107(2): 577-589.
[68] Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate[J]. Nature, 1987, 326(6 114): 655-661.
[69] Andreae M O, Crutzen P J. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry[J]. Science, 1997, 276(5 315): 1 052-1 058.
[70] Henrichs S M, Williams P M. Dissolved and particulate amino acids and carbohydrates in the sea surface microlayer[J]. Marine Chemistry, 1985, 17(2): 141-163.
[71] Kuznetsova M, Lee C. Dissolved free and combined amino acids in nearshore seawater, sea surface microlayers and foams: Influence of extracellular hydrolysis[J]. Aquatic Sciences-Research Across Boundaries, 2002, 64(3): 252-268.
[72] Aller J Y, Kuznetsova M R, Jahns C, et al. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols[J].Journal of Aerosol Science, 2005,36(5): 801-812.
[73] Mahowald M. Aerosol indirect effect on biogeochemical cycles and climate[J]. Science, 2011, 334(6 057): 794-796.
[74] Luo G, Yu F. Sensitivity of global cloud condensation nuclei concentrations to primary sulfate emission parameterizations[J].Atmospheric Chemistry and Physics, 2011, 11(5): 1 949-1 959.
[75] Yu F. A secondary organic aerosol formation model considering successive oxidation aging and kinetic condensation of organic compounds: Global scale implications[J].Atmospheric Chemistry and Physics, 2011, 11(3): 1 083-1 099.
[76] O’Dowd C D, Facchini M C, Cavalli F, et al. Biogenically driven organic contribution to marine aerosol[J].Nature, 2004, 431(7 009): 676-680.
[77] Meskhidze N, Nenes A. Phytoplankton and cloudiness in the Southern Ocean[J].Science,2006, 314(5 804): 1 419-1 423.
[78] Tan S C, Shi G Y, Wang H. Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas[J].Atmospheric Environment, 2012, 46: 299-308.

[1] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[2] 孟伟庆, 胡蓓蓓, 刘百桥, 周俊. 基于生态系统的海洋管理:概念、原则、框架与实践途径[J]. 地球科学进展, 2016, 31(5): 461-470.
[3] 宋敏, 杨群慧, 王华, 季福武, 王虎, 潘安阳, 周怀阳. 完整极性脂质化合物对海洋微生物活动的指示及应用局限性[J]. 地球科学进展, 2015, 30(10): 1162-1171.
[4] 李佳霖, 秦松. 海洋微微型蓝细菌分子生态学研究进展[J]. 地球科学进展, 2015, 30(4): 477-486.
[5] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[6] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[7] 芮晓庆, 刘传联, 李志明. 颗石藻室内培养及应用研究进展[J]. 地球科学进展, 2014, 29(11): 1303-1313.
[8] 孙松, 孙晓霞. 海洋生物功能群变动与生态系统演变*[J]. 地球科学进展, 2014, 29(7): 854-858.
[9] 孙晓霞, 孙松. 海洋浮游生物图像观测技术及其应用[J]. 地球科学进展, 2014, 29(6): 748-755.
[10] 赵峰, 徐奎栋. 深海真核微生物多样性研究进展[J]. 地球科学进展, 2014, 29(5): 551-558.
[11] 刘慧, 苏纪兰. 基于生态系统的海洋管理理论与实践[J]. 地球科学进展, 2014, 29(2): 275-284.
[12] 王艳娜, 刘东艳. 海洋沉积硅藻研究方法与应用综述[J]. 地球科学进展, 2013, 28(12): 1296-1304.
[13] 刘昕明,林荣澄,黄丁勇. 深海热液口化能合成共生作用的研究进展[J]. 地球科学进展, 2013, 28(7): 794-801.
[14] 李 东, 李 祎, 郑天凌. 海洋溶藻功能菌作用机理研究的若干进展[J]. 地球科学进展, 2013, 28(2): 243-252.
[15] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.