地球科学进展 ›› 2017, Vol. 32 ›› Issue (3): 307 -318. doi: 10.11867/j.issn.1001-8166.2017.03.0307

上一篇    下一篇

非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响
黄奇波 1, 2, 3( ), 覃小群 2, 3, *( ), 刘朋雨 2, 3, 张连凯 2, 3, 苏春田 1, 2, 3   
  1. 1.中国地质大学环境学院,湖北 武汉 430074
    2.中国地质科学院岩溶地质研究所, 广西 桂林 541004
    3.国土资源部广西岩溶动力学重点实验室,广西 桂林 541004
  • 收稿日期:2016-11-14 修回日期:2017-02-03 出版日期:2017-03-20
  • 通讯作者: 覃小群 E-mail:qbohuang@karst.ac.cn;qxq@karst.ac.cn
  • 基金资助:
    中国地质调查局地质调查项目“西江中下游岩溶峰林区1∶ 5万水文地质环境地质调查”(编号:121201107000150005);国家自然科学基金项目“半干旱岩溶区溶蚀作用季节分异与影响机制”(编号:41302211)资助

The Influence of Allogenic Water and Sulfuric Acid to Karst Carbon Sink in Karst Subterranean River in Southern Hu’nan

Qibo Huang 1, 2, 3( ), Xiaoqun Qin 2, 3( ), Pengyu Liu 2, 3, Liankai Zhang 2, 3, Chuntian Su 1, 2, 3   

  1. 1.Environmental School,China University of Geosciences, Wuhan 430074, China
    2.Institute of Karst Geology, Chinese Academy of Geological Sciences,Guilin 541004, China
    3.Karst Laboratory of Karst Dynamics, Ministry of Land and Resources & Guangxi Zhuang Autonomous Region, Guilin 541004, China
  • Received:2016-11-14 Revised:2017-02-03 Online:2017-03-20 Published:2017-03-20
  • About author:

    First author:Huang Qibo(1982-), male, Pingxiang City, Jiangxi Province, Associate Professor. Research areas include karst geo-hydrology and Karst environment with global chang.E-mail:qbohuang@karst.ac.cn

  • Supported by:
    Project supported by the China Geology Survey “Hydrogeological and environmental geological survey of 1∶ 50 000 in peak-forest karst area of the middle and lower reaches of the Xijiang River Basin” (No.121201107000150005);The National Natural Science Foundation of China “Seasonal different and influence mechanism of the dissolution in the semi-arid karst area”(No.41302211)

研究非岩溶水和硫酸参与溶蚀对地下河流域岩溶碳汇通量的影响,有助于提高岩石风化碳汇通量估算精度,对于推进地质作用与全球气候变化研究意义重大。选取湘南北江上游武水河流域内4条典型地下河为对象,通过水化学对比分析,揭示硅酸盐岩风化对流域地下水化学的重要影响。运用Galy方法计算流域非岩溶地层中的硅酸盐岩风化消耗大气/土壤CO2对岩石风化碳汇的重要贡献,并评价了H2SO4参与下碳汇通量的扣除比例。结果显示:①流域内有非岩溶地层的L01,L02地下河, Na+,K+和SiO2浓度明显高于纯碳酸盐L03和L04地下河,非岩溶地层中的硅酸盐的风化对地下河水中K+,Na+,SiO2浓度有一定贡献;② 4条地下河的[Ca2++Mg2+]/[HCO3-]当量比值为1.05~1.15,[Ca2++Mg2+]/[HCO3-+SO42-]的当量比值为0.99~1.08,Ca2++Mg2+相对于HCO3-过量,过量的Ca2++Mg2+与SO42-相平衡,证实硫酸参与流域碳酸盐岩的溶蚀;③L01和L02地下河岩石风化消耗的CO2通量中非岩溶地层中的硅酸盐风化消耗所占比例分别为3.36%和2.22%,而L03和L04地下河中硅酸盐风化消耗比例小于0.50%,表明有非岩溶地层存在的地下河流域,其岩石风化消耗的CO2通量中硅酸盐风化消耗占有一定比例;④在考虑硫酸参与碳酸盐岩溶蚀时,4条地下河的碳汇通量分别扣除4.84%,4.52%,6.20%和9.36%。

Evaluating the impact of allogenic water and sulfuric acid on karst carbon sink not only helps to improve the accurate calculation of soil CO2 uptake by rock weathering, but also obtains a complete understanding of the global carbon cycle. Groundwater samples were collected from four karst subterranean rivers watershed within different lithology strata in Wushui Basin, upstream of Beijiang Basin, Hunan Province, for revealing the important impact of silicate weathering on hydrochemistry of groundwater. To estimate the contribution of soil CO2 uptake by silicate weathering to CO2 uptake by rock weathering, the Galy model was employed in this article. The important impact of sulfuric acid on CO2 uptake by carbonate weathering resulting from the substitution of carbonic acid by protons from sulfuric acid was investigated. Our results showed that the concentration of Na+, K+ and SiO2 in L01,L02 subterranean river with silicate strata in watershed were higher than that in L03,L04 subterranean river without silicate strata in watershed, which implied that the contribution of silicate weathering to Na+,K+ and SiO2 was very important in watershed within silicate strata . The changeable equivalent ratio between (Ca2++Mg2+) and HCO3- was 1.05 to 1.15, and the value of [Ca2++Mg2+]/[HCO3-+SO42-] was 0.99 to 1.08. The concentrations of Ca2+ and Mg2+ exceeded the equivalent concentrations of HC3-, and the excess of Ca2+ and Mg2+cations were compensated by SO42-, which suggested that sulfuric acid has an important influence on carbonate dissolution. The contribution of soil CO2uptake by silicate weathering to CO2 consumption in L01 and L02 subterranean river were 3.36% and 2.22%, respectively, whereas the contribution in L03, L04 subterranean river were less than 0.50%, indicating that the contribution of soil CO2 uptake by silicate weathering was important in the subterranean river basin within silicate strata. Due to the contributions made by sulfuric acid, the CO2 consumption in four subterranean rivers decreased by 4.84%, 4.52%, 6.20%, 9.36%, respectively.

中图分类号: 

图1 研究区水地质图
Fig.1 Gological sketch map of study area
表1 4条地下河的流量和岩性特征
Table 1 The characteristic of lithology and discharge in four kart subterranean rivers
表2 4条地下河不同月主要离子组成
Table 2 Major ionic concentrations in different seasons from four karst subterranean rivers
名称 时间 T/
pH Ca2+ Mg2+ Na+ K+ HC O 3 - Cl- S O 4 2 - N O 3 - SiO2 TDS SIC pCO2/
Pa
NICB
含量/%
Ca2+
含量/%
Mg2+
含量/%
HC O 3 -
含量/%
S O 4 2 -
含量/%
/(mmol/L) /(mg/L)
L01(邓家
地下河)
3月 17.5 7.63 1.823 0.731 0.070 0.027 4.844 0.079 0.146 0.091 5.40 257.72 0.39 6 026 -0.96 68.8 27.6 93.9 2.8
6月 17.8 7.43 1.778 0.910 0.090 0.039 4.876 0.080 0.115 0.114 5.31 259.21 0.18 9 661 1.90 63.1 32.3 94.0 2.2
8月 18.0 7.15 1.718 0.864 0.085 0.052 4.530 0.104 0.132 0.130 5.64 247.99 -0.14 17 258 2.63 63.2 31.8 92.5 2.7
11月 17.6 7.21 1.566 0.876 0.062 0.027 4.386 0.054 0.095 0.092 5.74 230.97 -0.13 14 488 2.59 61.8 34.6 94.8 2.1
平均值 17.7 7.36 1.721 0.845 0.077 0.037 4.659 0.079 0.122 0.107 5.52 248.97 0.08 11 858 1.54 64.2 31.6 93.8 2.5
L02(百里
地下河)
3月 17.2 7.65 1.783 0.485 0.074 0.012 4.290 0.050 0.118 0.055 5.21 229.14 0.35 5 105 -0.09 75.7 20.6 95.1 2.6
6月 17.5 7.24 1.768 0.534 0.037 0.022 4.342 0.041 0.073 0.057 6.16 226.11 0.05 6 486 0.84 74.9 22.6 96.2 1.6
8月 17.7 7.32 1.798 0.306 0.052 0.039 3.838 0.078 0.140 0.085 6.07 215.30 -0.05 13 428 0.22 81.9 13.9 92.7 3.4
11月 17.2 7.47 1.571 0.353 0.044 0.019 3.553 0.041 0.106 0.065 5.29 193.00 -0.01 9 931 0.51 79.1 17.8 94.4 2.8
平均值 17.4 7.42 1.730 0.420 0.052 0.023 4.006 0.052 0.109 0.065 5.68 215.89 0.09 8 738 0.37 77.9 18.7 94.6 2.6
L03(大泉
地下河)
3月 18.0 7.73 2.049 0.177 0.023 0.010 4.114 0.056 0.133 0.099 4.74 227.39 0.49 4 111 -0.57 90.7 7.8 93.5 3.0
6月 18.1 7.57 2.033 0.167 0.025 0.019 3.975 0.046 0.128 0.104 5.23 221.74 0.31 5 768 0.73 90.6 7.4 93.5 3.0
8月 18.5 6.99 1.912 0.173 0.051 0.024 3.618 0.066 0.123 0.112 5.46 207.30 -0.32 20 277 2.44 88.5 8.0 92.3 3.1
11月 18.0 7.14 2.089 0.184 0.038 0.014 4.108 0.041 0.111 0.076 5.30 226.81 -0.09 16 106 1.66 89.8 7.9 94.7 2.6
平均值 18.2 7.36 2.021 0.175 0.034 0.017 3.954 0.052 0.124 0.098 5.18 220.81 0.10 11 566 1.07 89.9 7.8 93.5 2.9
L04(夏家
地下河)
3月 17.7 7.87 1.702 0.399 0.023 0.011 3.648 0.052 0.208 0.111 4.12 211.68 0.49 2 630 0.12 79.7 18.7 90.8 5.2
6月 18.0 7.73 1.785 0.398 0.026 0.019 3.875 0.042 0.181 0.108 5.48 219.30 0.40 3 873 0.28 80.1 17.8 92.1 4.3
8月 18.1 7.65 1.867 0.446 0.038 0.019 4.090 0.073 0.201 0.132 5.08 233.60 0.36 4 920 -0.13 78.7 18.8 91.0 4.5
11月 17.8 7.60 1.806 0.409 0.036 0.013 3.942 0.037 0.148 0.087 5.14 219.06 0.28 5 321 1.34 79.8 18.1 93.6 3.5
平均值 17.9 7.71 1.790 0.413 0.031 0.016 3.888 0.051 0.184 0.109 4.96 220.91 0.38 4 186 0.40 79.6 18.4 91.9 4.4
图2 主要离子Piper图
Fig.2 Piper diagram of ionic concentration in the samplers
图3 地下河水饱和指数(SI C)与 pCO 2的关系
Fig.3 The correlation between SI C and pCO 2 in karst subterranean river
图4 4条地下河中Cl -与Na +的关系(a)和与K +的关系(b)
Fig.4 Variationsof Cl - vs. Na + (a)and vs. K + (b) in four karst subterranean river
图5 SiO 2含量与(Na ++K +)/(Na ++K ++Cl -)变化关系
Fig.5 Variations of SiO 2 vs. (Na ++K +)/(Na ++K ++Cl -) in karst subterranean river
图6 地下水SIc和 pCO 2季节动态
Fig.6 Temporal change of SIc and pCO 2 in karst subterranean river
图7 4条地下河中N O 3 - /Cl -与S O 4 2 - /Cl -的关系
Fig.7 Four variations of N O 3 - /Cl - vs. S O 4 2 - /Cl - in four karst subterranean river
图8 地下河Ca 2++Mg 2+与HC O 3 - + S O 4 2 - 关系
Fig.8 Ca 2++Mg 2+ vs.HC O 3 - + S O 4 2 - in karst subterranean river
图9 [Ca 2++Mg 2+]/[HC O 3 - ]与[S O 4 2 - ]/[HC O 3 - ]的当量比值关系
Fig.9 Equivalent ratios of [ Ca 2++ Mg 2+]/[ HC O 3 - ] vs.[ S O 4 2 - ] /[ HC O 3 - ] in karst subterranean rivers
表3 4条地下河岩石风化CO 2通量计算结果
Table 3 CO 2consumption flux by rock weathering in four karst subterranean rivers
[1] Amiotte-Suchet P, Probst J L, Ludwig W.Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2):1 038.
[2] Jacobson A D, Blum J D, Chamberlain C P, et al.Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps[J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 29-46.
[3] Amiotte-Suchet P, Probst J L.A global model for present-day atmospheric/soil CO2consumption by chemical erosion of continental rocks (GEM-CO2)[J].Tellus, 1995, 47(1):273-280.
[4] Luo Weijun,Wang Shijie,Liu Xiuming.Research progresses and prospect of chimney effect about carbon cycle in the Karst cave system[J]. Advances in Earth Science, 2014, 29(12):1 333-1 340.
[罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J]. 地球科学进展, 2014, 29(12):1 333-1 340.]
[5] Liu Z, Dreybrodt W.[J]. Geochimica et Cosmochimica Acta, 1997, 61(14):2 879-2 889.
[6] Liu Z, Dreybrodt W, Wang H.A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4):162-172.
[7] Liu Zaihua.New progress and prospects in the study of rock-weathering-related carbon sinks[J]. China Science Bulletin, 2012, 57(2/3):95-102.
[刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 2012, 57(2/3):95-102.]
[8] Pu Junbing,Jiang Zhongcheng,Yuan Daoxian,et al.Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report[J]. Advances in Earth Science,2015,30(10):1 081-1 090.
[蒲俊兵,蒋忠诚,袁道先,等. 岩石风化碳汇研究进展:基于 IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展,2015,30(10):1 081-1 090.]
[9] Liu Zaihua, Dreybrodt W, Liu Huan.Atmospheric CO2 sink: Silicate weathering or carbonate weathering?[J]. Quaternary Sciences, 2011, 31(3):426-430.
[刘再华, Dreybrodt W, 刘洹. 大气CO2汇:硅酸盐风化还是碳酸盐风化的贡献?[J]. 第四纪研究, 2011, 31(3):426-430.]
[10] Yuan D.The carbon cycle in karst[J]. Zeitschrift fur Geomorphologie Neue Folge, 1997, 108(Suppl.):91-102.
[11] Jiang Z C, Yuan D X.CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999, 22(1): 33-35.
[12] Xu Shengyou, Jiang Zhongcheng.Preliminary estimate the relationship between Karstification and CO2 sources and sink[J]. Chinese Science Bulletin, 1997, 42(9):953-956.
[徐胜友, 蒋忠诚. 我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J]. 科学通报, 1997, 42(9): 953-956.]
[13] Yuan Daoxian, Zhang Cheng.Karst dynamics theory in China and its practice[J]. Acta Geoscientica Sinica, 2008,29(3):355-365.
[袁道先, 章程. 岩溶动力学的理论探索与实践[J]. 地球学报, 2008, 29(3):355-365.]
[14] Huang Qibo, Liu Pengyu, Qin Xiaoqun, et al.The characteristics of karst carbon sink in the Guijiang Catchment[J]. Carsologica Sinica, 2011,30(4): 437-442.
[黄奇波,刘朋雨,覃小群,等.桂江流域岩溶碳汇特征[J].中国岩溶, 2011,30(4): 437-442.]
[15] Huang Fen, Tang Wei, Wang Jinliang, et al.The influence of allogenic water on karst carbon sink: A case study in the Maocun Subterranean River in Guilin, China[J]. Carsologica Sinica, 2011, 30(4): 417-421.
[黄芬,唐伟, 汪进良,等.外源水对岩溶碳汇的影响——以桂林毛村地下河为例[J]. 中国岩溶, 2011,30(4): 417-421.]
[16] Amiotte-Suchet P, Probst A, Probst J L.Influence of acid rain on CO2 consumption by rock weathering: Local and global scales[J]. Water Air and Soil Pollution, 1995, 85(3):1 563-1 568.
[17] Gaillardet J, Dupré B, Louvat P, et al.Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999,159(1/4): 3-30.
[18] Kang Zhiqiang, Yuan Daoxian, Chang Yong, et al.The main controlling factor of karst carbon sequestration: About water cycle[J]. Journal of Jilin University (Earth Science Edition), 2011,41(5): 1 542-1 547.
[康志强,袁道先,常勇, 等. 岩溶碳汇的主控因子——水循环[J].吉林大学学报:地球科学版, 2011,41(5): 1 542-1 547.]
[19] Han G L, Liu C Q.Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China[J]. Chemical Geology, 2004,204(1/2): 1-21.
[20] Li S L, Calmels D, Han G L, et al.Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: Examples from Southwest China[J]. Earth Planetary Science Letters, 2008, 270(3/4):180-199.
[21] Li X D, Liu C Q, Harue M, et al.The use of environmental isotopic (C, Sr, S) and hydrochemical tracers tocharacterize anthropogenic effects on karst groundwater quality: A case study of the Shuicheng Basin, SW China[J]. Applied Geochemistry, 2010, 25(12):1 924-1 936.
[22] Li X D, Liu C Q, Liu X L, et al.Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using dual-isotopic data from the Jialing River, Southwest China[J]. Journal of Asian Earth Sciences, 2011, 42(3):370-380.
[23] Jiang Yongjun, Yuan Daoxian.Geochemical tracers to characterize effects of urbanization on karst groundwater quality from Nanshan underground river system, SW China[J]. Quaternary Science, 2014, 34(5):1 044-1 053.
[蒋勇军, 袁道先. 城市发展对岩溶地下水质影响的地球化学示踪——以重庆南山老龙洞地下河系统为例[J]. 第四纪研究, 2014, 34(5):1 044-1 053.]
[24] Zhang Xingbo,Jiang Yongjun,Qiu Shulan,et al.Agricultural activities and carbon cycling in karst areas in Southwest China: Dissolving carbonate rocks and CO2 sink[J]. Advances in Earth Science,2012,27(4):466-476.
[张兴波,蒋勇军,邱述兰,等. 农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例[J].地球科学进展,2012,27(4):466-476.]
[25] Jiang Y G.The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and δ13CDIC in Nandong, Southwest China[J]. Journal of Contaminant Hydrology, 2013,152:1-11,doi:10.1016/j.jcohyd.2013.05.010.
[26] Huang Qibo, Qin Xiaoqun, Liu Pengyu, et al.Influence of sulfuric acid to karst hydrochemical and δ13CDIC in the upper and middle reaches of Wu River[J]. Environmental Science, 2015,36(9):102-111.
[黄奇波, 覃小群, 刘朋雨,等. 硫酸对乌江中上游段岩溶水化学及δ13CDIC的影响[J]. 环境科学, 2015, 36(9):102-111.]
[27] Huang Qibo, Qin Xiaoqun, Liu Pengyu, et al.The impact of human activities to δ13CDIC of karst groundwater and carbon sink in the upper and middle reaches of of Wu River[J]. Quaternary Science,2016,36(6):1 358-1 369.
[黄奇波, 覃小群,刘朋雨, 等.人为活动对乌江中上游段岩溶地下水δ13CDIC及碳汇效应的影响[J].第四纪研究, 2016,36(6):1 358-1 369.]
[28] Albert Galy,Christian France-Lanord.Weathering processes in the Ganges-Brahmaputra Basin and theriverine alkalinity budget[J]. Chemical Geology, 1999, 159(1/4): 31-60.
[29] Han Guilin, Liu Congqiang.Hydrogechemistry of rivers in Guizhou Province China: Constraints on crustal weathering in karst terrain[J]. Advances in Earth Science,2005, 20(4): 394-406.
[韩贵琳, 刘丛强. 贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J]. 地球科学进展, 2005, 20(4): 394-406.]
[30] Liu Congqiang, Jiang Yingkui, Tao Faxiang, et al.Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China[J]. Geochimica,2008, 37(4): 404-414.
[刘丛强, 蒋颖魁, 陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414.]
[31] Qin Xiaoqun, Jiang Zhongcheng, Zhang Liankai, et al.The difference of the weathering rate between carbonate rocks and silicate rocks and its effects on the atmospheric CO2 consumption in the Pearl River Basin[J]. Geological Bulletin of China,2015,34(9):1 749-1 757.
[覃小群,蒋忠诚,张连凯,等.珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J]. 地质通报, 2015 ,34(9):1 749-1 757.]
[32] Zhang Liankai,Qin Xiaoqun,Liu Pengyu, et al.Chemical denudation rate and atmospheric CO2 consumption by H2CO3 and H2SO4 in the Yangtze River Catchment[J]. Geological Bulletin of China, 2016,90(8):1 933-1 943.
[张连凯,覃小群,刘朋雨,等.硫酸参与的长江流域岩石化学风化与大气CO2消耗[J]. 地质学报, 2016,90(8):1 933-1 943.]
[33] Zhu Xuanxiang.The present situation, cause of formation and countermeasure research of the acid rain in Hunan Province[J]. Technological Development of Enterprise,2006, 25(10):28-30.
[朱选祥. 湖南省酸雨现状、成因及对策研究[J].企业技术开发, 2006, 25(10):28-30.]
[34] Chen Jingsheng, He Dawei.Chemical characteristics and genesis of major ions in the Pearl River Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1999, 35(6): 786-793.
[陈静生, 何大伟. 珠江水系河水主要离子化学特征及成因[J]. 北京大学学报:自然科学版, 1999, 35(6):786-793.]
[35] Meybeck M.Pathways of major elements from land to ocean through rivers[M]∥Martin J M, Burton J D, Eisma D,eds.River Inputs to Ocean Systems.New York: United Nations Press, 1981:18-30.
[36] Li Jun, Liu Congqiang, Li Longbo, et al.The impacts of chemical weathering of carbonate rock by sulfuric acid on the cycling of dissolved inorganic carbon in Changjiang River water[J].Geochimica, 2010, 39(4): 305-313.
[李军, 刘丛强, 李龙波, 等. 硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响[J]. 地球化学, 2010, 39(4):305-313.]
[37] Pu Junbing, Yuan Daoxian, Jiang Yongjun, et al.Hydrogeochemistry and environmental meaning of Chongqing subterranean karst streams in China[J]. Advances in Water Science, 2010, 21(5): 628-636.
[蒲俊兵, 袁道先, 蒋勇军, 等. 重庆岩溶地下河水文地球化学特征及环境意义[J]. 水科学进展, 2010, 21(5):628-636.]
[38] Huang Qibo, Qin Xiaoqun, Liu Pengyu, et al.The impact of acid rain to δ13CDIC of karst groundwater and carbon sink in dry season in Guilin[J]. Earth Science—Journal of China University of Geosciences,2015, 40(7):1 237-1 247.
[黄奇波, 覃小群, 刘朋雨,等. 酸雨对桂林枯水期岩溶地下水δ13CDIC及碳汇效应的影响[J]. 地球科学——中国地质大学学报,2015, 40(7):1 237-1 247.]
[39] Huang Q B, Qin X Q, Yang Q Y, et al.Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using δ13CDIC and δ34S in karst area, Northern China[J]. Environmental Earth Science, 2016, 75(1):530-539.
[40] Pu Junbing.Dissolved inorganic carbon and stable carbon isotope in karst subterranean streams in Chongqing, China[J]. Carsologica Sinica, 2013, 32(2): 123-132.
[蒲俊兵. 重庆地区岩溶地下河水溶解无机碳及其稳定同位素特征[J]. 中国岩溶, 2013, 32(2): 123-132.]
[41] Lü Jiemei,An Yanling,Wu Qixin, et al.Hydrochemical characteristics and sources of Qingshuijiang River Basin at wet season in Guizhou Province[J].Environmental Science, 2015, 36(5):1 565-1 572.
[吕婕梅,安艳玲,吴起鑫, 等.贵州清水江流域丰水期水化学特征及离子来源分析[J]. 环境科学, 2015, 36(5):1 565-1 572.]
[42] Wang Peng, Shang Yingnan, Shen Licheng, et al.Characteristics and evolution of hydrochemical compositions of freshwater lake in Tibetan Plateau[J]. Environmental Science, 2013,34(3):874-881.
[王鹏,尚英男,沈立成,等. 青藏高原淡水湖泊水化学组成特征及其演化[J]. 环境科学, 2013,34(3):874-881.]
[43] Chen Jingsheng, Wang Feiyue, Xia Xinghui.Geochemistry of water quality of the Yangtze River Basin[J]. Earth Science Frontiers, 2006,13(1):74-85.
[陈静生, 王飞越, 夏星辉. 长江水质地球化学[J]. 地学前缘, 2006, 13(1): 74-85.]
[44] Huang Qibo, Qin Xiaoqun, Liu Pengyu, et al.Major ionic features and their controlled factor in the Upper- Middle Reaches of Wu River[J]. Environmental Science, 2016, 37(5):1 779-1 787.
[黄奇波,覃小群,刘朋雨, 等.乌江中上游段河水主要离子化学特征及控制因素[J]. 环境科学, 2016, 37(5):1 779-1 787.]
[45] Liu Zaihua.Two important atmospheric CO2 sinks[J]. Chinese Science Bulletin, 2000, 45(21):2 348-2 351.
[刘再华. 大气CO2两个重要的汇[J]. 科学通报, 2000, 45(21):2 348-2 351.]
[46] Zhang Dong, Huang Xingyu, Li Chengjie.Sources of riverine sulfate in Yellow River and its tributaries determined by sulfur and oxygen isotopes[J]. Advances in Water Science, 2013, 24(3): 418-426.
[张东, 黄兴宇, 李成杰. 硫和氧同位素示踪黄河及支流河水硫酸盐来源[J]. 水科学进展, 2013, 24(3): 418-426.]
[47] Xu Xinhui, Gao Hongwen.Analysis of the distribution and causes of acid rain in southern China[J]. Sichuan Environment, 2011,30(4):135-139.
[许新辉, 郜洪文. 中国南方酸雨的分布特征及其成因分析[J]. 四川环境, 2011,30(4):135-139.]
[1] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[2] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展 *[J]. 地球科学进展, 2018, 33(11): 1112-1129.
[3] 刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.
[4] 蔡长娥, 邱楠生, 徐少华. Re-Os同位素测年法在油气成藏年代学的研究进展[J]. 地球科学进展, 2014, 29(12): 1362-1371.
[5] 吴自军,任德章,周怀阳. 海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J]. 地球科学进展, 2013, 28(7): 765-773.
[6] 张兴波,蒋勇军,邱述兰,曹敏,胡毅军. 农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476.
[7] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[8] 张建勇,刘文汇,腾格尔,王晓锋,卿颖,马凤良. 硫化氢形成与C 2+气态烷烃形成的同步性研究——几个模拟实验的启示[J]. 地球科学进展, 2008, 23(4): 390-400.
[9] 冯东,陈多福. 海底沉积物孔隙水钡循环对天然气渗漏的指示[J]. 地球科学进展, 2007, 22(1): 49-57.
[10] 蔡春芳;李宏涛. 沉积盆地热化学硫酸盐还原作用评述[J]. 地球科学进展, 2005, 20(10): 1100-1105.
[11] 钱云,符淙斌. SO 2排放、硫酸盐气溶胶和气候变化[J]. 地球科学进展, 1997, 12(5): 440-446.
阅读次数
全文


摘要