地球科学进展 ›› 2013, Vol. 28 ›› Issue (7): 765 -773. doi: 10.11867/j.issn.1001-8166.2013.07.0765

综述与评述 上一篇    下一篇

海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响
吴自军,任德章,周怀阳   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2012-12-14 修回日期:2013-05-20 出版日期:2013-07-10
  • 通讯作者: 吴自军(1973-),男,安徽安庆人,副教授,主要从事海洋生物地球化学研究.wuzj@tongji.edu.cn E-mail:wuzj@tongji.edu.cn
  • 基金资助:

    大洋“十二五”课题“大西洋多金属硫化物成矿潜力与资源环境评价”(编号:DY125-12-R-01);国家自然科学基金项目“东海陆架沉积物硫酸盐还原及自生硫化铁的形成:甲烷厌氧氧化(AOM)的影响与贡献”(编号:41176065)资助.

Anaerobic Oxidation of Methane (AOM) and Its Influence on Inorganic Sulfur Cycle in Marine Sediments

Wu Zijun, Ren Dezhang, Zhou Huaiyang   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2012-12-14 Revised:2013-05-20 Online:2013-07-10 Published:2013-07-10

甲烷厌氧氧化作用(AOM)在调控全球甲烷收支平衡以及缓解因甲烷引起的温室效应等方面扮演着十分重要的角色,成为近些年来海洋生物地球化学领域的研究热点之一。一般而言,海洋沉积物孔隙水硫酸盐还原主要是通过2种反应途径来完成,即氧化有机质途径和AOM途径。长期以来,与有机质氧化途径相关的硫酸盐还原作用研究已有充分展示,而由AOM驱动的硫酸盐还原及其对自生硫化铁形成与埋藏的重要贡献却被严重低估。侧重从生物地球化学、同位素地球化学等角度,综述近些年来不同环境条件下海洋沉积物AOM作用发生的地球化学证据和AOM对沉积物孔隙水硫酸盐消耗比例的贡献大小及其调控因素。AOM过程产生的H2S会与沉积物中活性铁结合形成自生铁硫化物。与沉积物浅表层条件相比,AOM过程固定的自生铁硫化物不容易发生再氧化,更利于在沉积物中埋藏保存起来。AOM与海洋沉积物硫酸盐还原作用相偶联,由AOM驱动的硫酸盐还原过程对海底自生铁硫化物形成与埋藏的重要贡献不容忽视。该综述有助加深对海洋沉积物AOM作用的认识及其对硫循环的全面理解。

The process of AOM plays a significant role in regulating the global balance of methane budget and reducing the greenhouse effect driven by methane emission into atmosphere. Therefore, AOM occurring in marine sediments has become a hot research topic of biogeochemistry in recent years. Generally,sulfate reduction occurs mainly through two pathways, e.g., oxidation organic matter and AOM. Currently, a lot of literatures documented the sulfate reduction driven by the organic matter, however, sulfur cycle driven by AOM was seriously underestimated. Here, based on the views of biogeochemistry and isotope geochemistry, we review the biogeochemistry evidence of AOM process occurring and the controlling factors of sulfate reduction through the AOM pathway. The process of AOM can produce H2S and it further react with reactive iron, forming the iron sulfur minerals. Comparing to the surface sediments, the iron sulfur minerals formation due to AOM are not easy oxidation and therefore buried favorably in the marine sediments. Thus, the roles of sulfate reduction and authigenic iron sulfide minerals formation driven by AOM should not be neglected. We hope this review paper will be helpful to better understand the AOM process and sulfur cycle in marine sediments.

中图分类号: 

[1] Vairavamurthy M A, Orr W L, Manowitz B. Geochemical transformations of sedimentary sulfur: An introduction[C]ACS Symposium Series. Washington DC: American Chemical Society, 1995, 612: 1-15.

[2] Froelich P N, Klinkhammer G P, Bender M L,et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J].Geochimica et Cosmochimica Acta,1979, 43(7): 1 075-1 090.

[3] Berner R A. Early Diagenesis: A Theoretical Approach[M]. New Jersey: Princeton University Press, 1980.

[4] JØrgensen B B. Mineralization of organic matter in the sea bed—The role of sulphate reduction[J].Nature, 1982, 296:643-645.

[5] Martens C S, Albert D B, Alperin M J. Biogeochemical processes controlling methane in gassy coastal sediments—Part 1. A model coupling organic matter flux to gas production, oxidation and transport[J].Continental Shelf Research, 1998, 18(14/15): 1 741-1 770.

[6] Berner R A, Petsch S T, Lake J A,et al. Isotope fractionation and atmospheric oxygen, implications for Phanerozoic O2 evolution[J].Science, 2000, 287(5 458): 1 630-1 633.

[7] Berner R A, Canfield D E. A new model for atmospheric oxygen over Phanerozoic time[J].Amorican  Journal of Science,1989, 289:333-361.

[8] Rowe N P, Jones T P. Devonian charcoal[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/4): 331-338.

[9] Watson A J. Consequences for the Biosphere of Forest and Grassland Fires[D].Reading: University of Reading, 1978.

[10] Borowski W S, Paull C K, Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J].Geology,1996, 24(7): 655-658.

[11] Yang T, Jiang S, Ge L,et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J].Chinese Science Bulletin, 2010, 55(8): 752-760.

[12] Iversen N, JØrgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J].Limnology and Oceanography, 1985, 30(5): 944-955.

[13] JØrgensen B B, Parkes R J. Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark)[J].Limnology and Oceanography, 2010, 55(3): 1 338-1 352.

[14] Burns S J. Carbon Isotopic evidence for coupled sulfate reduction-methane oxidation in Amazon Fan Sediments[J].Geochimica et Cosmochimica Acta, 1998, 62(5): 797-804.

[15] Wu Zijun,Zhou Huaiyang,Peng Xiaotong,et al. Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island (Pearl River Estuary), southern China[J].Chinese Science Bulletin,2006, 51(17): 2 006-2 015.[吴自军,周怀阳,彭晓彤,等. 甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J]. 科学通报, 2006, 51(17): 2 052-2 059.]

[16] Chen Y, Ussler III W, Haflidason H,et al. Sources of methane inferred from pore-waterδ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway[J].Chemical Geology, 2010, 275(3/4): 127-138.

[17] Burdige D J, Komada T. Anaerobic oxidation of methane and the stoichiometry of remineralization processes in continental margin sediments[J].Limnology and Oceanography, 2011, 56(5): 1 781.

[18] Snyder G T, Hiruta A, Matsumoto R,et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea[J].Deep-Sea Research Part II, 2007, 54(11): 1 216-1 239.

[19] Pancost R D, Damst E J S S, De Lint S,et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria[J].Applied and Environmental Microbiology, 2000, 66(3): 1 126-1 132.

[20] Hinrichs K U, Hayes J M, Sylva S P,et al. Methane-consuming archaebacteria in marine sediments[J].Nature, 1999, 398(6 730): 802-805.

[21] Guan Hongxiang, Chen Duofu, Song Zhiguang. Biomarkers and bacterial process in the sediments of gas seep site[J].Marine Geology & Quaternary Geology,2007, (5): 75-83.[管红香,陈多福,宋之光. 冷泉渗漏区海底微生物作用及生物标志化合物[J]. 海洋地质与第四纪地质, 2007, (5): 75-83.]

[22] Boetius A, Ravenschlag K, Schubert C J,et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature, 2000, 407(6 804): 623-626.

[23] Hoehler T M, Alperin M J, Albert D B,et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium[J].Global Biogeochemical Cycles, 1994, 8(4): 451-463.

[24] Kotelnikova S. Microbial production and oxidation of methane in deep subsurface[J].Earth-Science Reviews, 2002, 58(3/4): 367-395.

[25] Anderson B, Bartlett K, Frolking S,et al. Methane and Nitrous Oxide Emissions from Natural Sources[R]. Washington: United States Environmental Protection Agency, Office of Atmospheric Programs, 2010.

[26] Ming Hang, Chen Zhongyun, Chen Meici. Effect of environmental factors on methane-oxidizing activity in paddy soil[J].Acta Peologica Sinica, 2002,39(5):686-692.[闵航,陈中云,陈美慈. 水稻田土壤甲烷氧化活性及其环境影响因子的研究[J]. 土壤学报, 2002, 39(5): 686-692.]

[27] Reeburgh W S. “Soft Spot” in the Global Methane Budget[M]. Dordrecht: Kluwer Academic Publishers, 1996.

[28] Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon shelf[J].Geochimica et Cosmochimica Acta, 1995, 59(18): 3 707-3 715.

[29] Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process[J].Annual Review of Microbiology, 2009, 63:311-334.

[30] Reeburgh W S, Alperin M J. Studies on anaerobic methane oxidation[J].Scope/Unep,1988, 66:367-375.

[31] Yin Xijie.Sulfur Cycle and Methane Biogeochemistry in the Sediments of Pearl Estuary[D].Beijing: University of Chinese Academy of Sciences,2008.[尹希杰. 珠江口沉积物中硫循环和海洋甲烷分布的生物地球化学研究[D].北京:中国科学院大学, 2008.]

[32] JØrgensen B, Kasten S. Sulfur Cycling and Methane Oxidation[M]∥Schulz H D , Zabel M, eds.Marine Geochemistry.Germany: Springer Berlin Heidelberg, 2006: 271-302.

[33] Dale A W, Regnier P, Knab N J,et al. Anaerobic Oxidation of Methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling[J].Geochimica et Cosmochimica Acta, 2008, 72(12): 2 880-2 894.

[34] Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J].Earth and Planetary Science Letters, 1976, 28(3): 337-344.

[35] Niewöhner C, Hensen C, Kasten S,et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the Upwelling Area off Namibia[J].Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464.

[36] Devol A H, Anderson J J, Kuivila K,et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J].Geochimica et Cosmochimica Acta, 1984, 48(5): 993-1 004.

[37] Reeburgh W S. Anaerobic methane oxidation: Rate depth distributions in Skay Bay sediments[J].Earth and Planetary Science Letters, 1980,(47): 655-658.

[38] Borowski W S, Hoehler T M, Alperin M J,et al. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates[C]Paull C K, Matsumoto R, Wallace P J,et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results. Texa:Ocean Drilling Program, 2000,164:86-99.

[39] Treude T, Krüger M, Boetius A,et al. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic)[J].Limnology and Oceanography, 2005,50(6): 1 771-1 786.

[40] Knab N J, Cragg B A, Borowski C,et al. Anaerobic Oxidation of Methane (AOM) in marine sediments from the Skagerrak (Denmark): I. Geochemical and microbiological analyses[J].Geochimica et Cosmochimica Acta, 2008, 72(12): 2 868-2 879.

[41] Orphan V J, House C H, Hinrichs K U,et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science, 2001, 293(5 529): 484-487.

[42] Alain K, Holler T, Musat F,et al. Microbiological investigation of methane-and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania[J].Environmental Microbiology, 2005, 8(4): 574-590.

[43] Joye S B, Boetius A, Orcutt B N,et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J].Chemical Geology, 2004, 205(3/4): 219-238.

[44] Michaelis W, Seifert R, Nauhaus K,et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J].Science, 2002, 297(5 583): 1 013-1 015.

[45] Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates[J].Marine Geology, 1999, 159(1/4): 131-154.

[46] Treude T, Niggemann J, Kallmeyer J,et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J].Geochimica et Cosmochimica Acta, 2005, 69(11): 2 767-2 779.

[47] Regnier P, Dale A W, Arndt S,et al. Quantitative analysis of Anaerobic Oxidation of Methane (AOM) in marine sediments: A modeling perspective[J].Earth-Science Reviews, 2011, 106(1): 105-130.

[48] Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review[J].Antonie van Leeuwenhoek, 2002, 81(1): 271-282.

[49] Holmkvist L, Ferdelman T G, Jorgensen B B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)[J].Geochimica et Cosmochimica Acta, 2011, 75(12): 3 581-3 599.

[50] Canfield D E. Reactive iron in marine sediments[J].Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632.

[51] Raiswell R, Berner R A. Pyrite formation in euxinic and semi-euxinic sediments[J].American Journal of Science, 1985, 285(8): 710-724.

[52] Poulton S W, Krom M D, Raiswell R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide[J].Geochimica et Cosmochimica Acta,2004, 68(18): 3 703-3 715.

[53] Holmkvist L, Ferdelman T G, Jorgensen B B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)[J].Geochimica et Cosmochimica Acta,2011, 75(12): 3 581-3 599.

[54] Canfield D E, Raiswell R, Bottrell S H. The reactivity of sedimentary iron minerals toward sulfide[J].American Journal of Science, 1992, 292(9): 659-683.

[55] Fossing H, JØrgensen B B. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark[J].Geochimica et Cosmochimica Acta, 1990, 54(10): 2 731-2 742.

[56] Wehrmann L M, Templer S P, Brunner B,et al. The imprint of methane seepage on the geochemical record and early diagenetic processes in cold-water coral mounds on Pen Duick Escarpment, Gulf of Cadiz[J].Marine Geology, 2011, 282(1/2): 118-137.

[57] Amend J P, Edwards K J, Lyons T W. Sulfur Biogeochemistry: Past and Present[M]. Colorado: Geological Society of America, 2004.

[58] Rickard D. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 ℃: The rate equation[J].Geochimica et Cosmochimica Acta, 1997, 61(1): 115-134.

[59] Wijsman J W M, Middelburg J J, Herman P M J,et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J].Marine Chemistry, 2001, 74(4): 261-278.

[60] Hensen C, Zabel M, Pfeifer K,et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments[J].Geochimica et Cosmochimica Acta, 2003, 67(14): 2 631-2 647.

[61] Lim Y C, Lin S, Yang T F,et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan[J].Marine and Petroleum Geology, 2011, 28(10): 1 829-1 837.

[62] JØrgensen B B, Böttcher M E, Lüschen H,et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J].Geochimica et Cosmochimica Acta, 2004, 68(9): 2 095-2 118.

[63] Böttcher M E, Smock A M, Cypionka H. Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature[J].Chemical Geology, 1998, 146(3/4): 127-134.

[64] Neretin L N, Böttcher M E, JØrgensen B B,et al. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea[J].Geochimica et Cosmochimica Acta, 2004, 68(9): 2 081-2 093.

[65] Riedinger N, Pfeifer K, Kasten S,et al. Diagenetic alteration of magnetic signals by Anaerobic Oxidation of Methane related to a change in sedimentation rate[J].Geochimica et Cosmochimica Acta, 2005, 69(16): 4 117-4 126.

[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[3] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[4] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[5] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[6] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[7] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[8] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[9] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[10] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
[11] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[12] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[13] 杨林, 董玉祥, 杜建会. 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.
[14] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
[15] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
阅读次数
全文


摘要