[1] Vairavamurthy M A, Orr W L, Manowitz B. Geochemical transformations of sedimentary sulfur: An introduction[C]∥ACS Symposium Series. Washington DC: American Chemical Society, 1995, 612: 1-15.
[2] Froelich P N, Klinkhammer G P, Bender M L,et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J].Geochimica et Cosmochimica Acta,1979, 43(7): 1 075-1 090.
[3] Berner R A. Early Diagenesis: A Theoretical Approach[M]. New Jersey: Princeton University Press, 1980.
[4] JØrgensen B B. Mineralization of organic matter in the sea bed—The role of sulphate reduction[J].Nature, 1982, 296:643-645.
[5] Martens C S, Albert D B, Alperin M J. Biogeochemical processes controlling methane in gassy coastal sediments—Part 1. A model coupling organic matter flux to gas production, oxidation and transport[J].Continental Shelf Research, 1998, 18(14/15): 1 741-1 770.
[6] Berner R A, Petsch S T, Lake J A,et al. Isotope fractionation and atmospheric oxygen, implications for Phanerozoic O2 evolution[J].Science, 2000, 287(5 458): 1 630-1 633.
[7] Berner R A, Canfield D E. A new model for atmospheric oxygen over Phanerozoic time[J].Amorican Journal of Science,1989, 289:333-361.
[8] Rowe N P, Jones T P. Devonian charcoal[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1/4): 331-338.
[9] Watson A J. Consequences for the Biosphere of Forest and Grassland Fires[D].Reading: University of Reading, 1978.
[10] Borowski W S, Paull C K, Ussler W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J].Geology,1996, 24(7): 655-658.
[11] Yang T, Jiang S, Ge L,et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J].Chinese Science Bulletin, 2010, 55(8): 752-760.
[12] Iversen N, JØrgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J].Limnology and Oceanography, 1985, 30(5): 944-955.
[13] JØrgensen B B, Parkes R J. Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark)[J].Limnology and Oceanography, 2010, 55(3): 1 338-1 352.
[14] Burns S J. Carbon Isotopic evidence for coupled sulfate reduction-methane oxidation in Amazon Fan Sediments[J].Geochimica et Cosmochimica Acta, 1998, 62(5): 797-804.
[15] Wu Zijun,Zhou Huaiyang,Peng Xiaotong,et al. Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island (Pearl River Estuary), southern China[J].Chinese Science Bulletin,2006, 51(17): 2 006-2 015.[吴自军,周怀阳,彭晓彤,等. 甲烷厌氧氧化作用:来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据[J]. 科学通报, 2006, 51(17): 2 052-2 059.]
[16] Chen Y, Ussler III W, Haflidason H,et al. Sources of methane inferred from pore-waterδ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway[J].Chemical Geology, 2010, 275(3/4): 127-138.
[17] Burdige D J, Komada T. Anaerobic oxidation of methane and the stoichiometry of remineralization processes in continental margin sediments[J].Limnology and Oceanography, 2011, 56(5): 1 781.
[18] Snyder G T, Hiruta A, Matsumoto R,et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea[J].Deep-Sea Research Part II, 2007, 54(11): 1 216-1 239.
[19] Pancost R D, Damst E J S S, De Lint S,et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria[J].Applied and Environmental Microbiology, 2000, 66(3): 1 126-1 132.
[20] Hinrichs K U, Hayes J M, Sylva S P,et al. Methane-consuming archaebacteria in marine sediments[J].Nature, 1999, 398(6 730): 802-805.
[21] Guan Hongxiang, Chen Duofu, Song Zhiguang. Biomarkers and bacterial process in the sediments of gas seep site[J].Marine Geology & Quaternary Geology,2007, (5): 75-83.[管红香,陈多福,宋之光. 冷泉渗漏区海底微生物作用及生物标志化合物[J]. 海洋地质与第四纪地质, 2007, (5): 75-83.]
[22] Boetius A, Ravenschlag K, Schubert C J,et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature, 2000, 407(6 804): 623-626.
[23] Hoehler T M, Alperin M J, Albert D B,et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium[J].Global Biogeochemical Cycles, 1994, 8(4): 451-463.
[24] Kotelnikova S. Microbial production and oxidation of methane in deep subsurface[J].Earth-Science Reviews, 2002, 58(3/4): 367-395.
[25] Anderson B, Bartlett K, Frolking S,et al. Methane and Nitrous Oxide Emissions from Natural Sources[R]. Washington: United States Environmental Protection Agency, Office of Atmospheric Programs, 2010.
[26] Ming Hang, Chen Zhongyun, Chen Meici. Effect of environmental factors on methane-oxidizing activity in paddy soil[J].Acta Peologica Sinica, 2002,39(5):686-692.[闵航,陈中云,陈美慈. 水稻田土壤甲烷氧化活性及其环境影响因子的研究[J]. 土壤学报, 2002, 39(5): 686-692.]
[27] Reeburgh W S. “Soft Spot” in the Global Methane Budget[M]. Dordrecht: Kluwer Academic Publishers, 1996.
[28] Blair N E, Aller R C. Anaerobic methane oxidation on the Amazon shelf[J].Geochimica et Cosmochimica Acta, 1995, 59(18): 3 707-3 715.
[29] Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process[J].Annual Review of Microbiology, 2009, 63:311-334.
[30] Reeburgh W S, Alperin M J. Studies on anaerobic methane oxidation[J].Scope/Unep,1988, 66:367-375.
[31] Yin Xijie.Sulfur Cycle and Methane Biogeochemistry in the Sediments of Pearl Estuary[D].Beijing: University of Chinese Academy of Sciences,2008.[尹希杰. 珠江口沉积物中硫循环和海洋甲烷分布的生物地球化学研究[D].北京:中国科学院大学, 2008.]
[32] JØrgensen B, Kasten S. Sulfur Cycling and Methane Oxidation[M]∥Schulz H D , Zabel M, eds.Marine Geochemistry.Germany: Springer Berlin Heidelberg, 2006: 271-302.
[33] Dale A W, Regnier P, Knab N J,et al. Anaerobic Oxidation of Methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling[J].Geochimica et Cosmochimica Acta, 2008, 72(12): 2 880-2 894.
[34] Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J].Earth and Planetary Science Letters, 1976, 28(3): 337-344.
[35] Niewöhner C, Hensen C, Kasten S,et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the Upwelling Area off Namibia[J].Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464.
[36] Devol A H, Anderson J J, Kuivila K,et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J].Geochimica et Cosmochimica Acta, 1984, 48(5): 993-1 004.
[37] Reeburgh W S. Anaerobic methane oxidation: Rate depth distributions in Skay Bay sediments[J].Earth and Planetary Science Letters, 1980,(47): 655-658.
[38] Borowski W S, Hoehler T M, Alperin M J,et al. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates[C]∥Paull C K, Matsumoto R, Wallace P J,et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results. Texa:Ocean Drilling Program, 2000,164:86-99.
[39] Treude T, Krüger M, Boetius A,et al. Environmental control on anaerobic oxidation of methane in the gassy sediments of Eckernförde Bay (German Baltic)[J].Limnology and Oceanography, 2005,50(6): 1 771-1 786.
[40] Knab N J, Cragg B A, Borowski C,et al. Anaerobic Oxidation of Methane (AOM) in marine sediments from the Skagerrak (Denmark): I. Geochemical and microbiological analyses[J].Geochimica et Cosmochimica Acta, 2008, 72(12): 2 868-2 879.
[41] Orphan V J, House C H, Hinrichs K U,et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science, 2001, 293(5 529): 484-487.
[42] Alain K, Holler T, Musat F,et al. Microbiological investigation of methane-and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania[J].Environmental Microbiology, 2005, 8(4): 574-590.
[43] Joye S B, Boetius A, Orcutt B N,et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J].Chemical Geology, 2004, 205(3/4): 219-238.
[44] Michaelis W, Seifert R, Nauhaus K,et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J].Science, 2002, 297(5 583): 1 013-1 015.
[45] Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates[J].Marine Geology, 1999, 159(1/4): 131-154.
[46] Treude T, Niggemann J, Kallmeyer J,et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin[J].Geochimica et Cosmochimica Acta, 2005, 69(11): 2 767-2 779.
[47] Regnier P, Dale A W, Arndt S,et al. Quantitative analysis of Anaerobic Oxidation of Methane (AOM) in marine sediments: A modeling perspective[J].Earth-Science Reviews, 2011, 106(1): 105-130.
[48] Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review[J].Antonie van Leeuwenhoek, 2002, 81(1): 271-282.
[49] Holmkvist L, Ferdelman T G, Jorgensen B B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)[J].Geochimica et Cosmochimica Acta, 2011, 75(12): 3 581-3 599.
[50] Canfield D E. Reactive iron in marine sediments[J].Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632.
[51] Raiswell R, Berner R A. Pyrite formation in euxinic and semi-euxinic sediments[J].American Journal of Science, 1985, 285(8): 710-724.
[52] Poulton S W, Krom M D, Raiswell R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide[J].Geochimica et Cosmochimica Acta,2004, 68(18): 3 703-3 715.
[53] Holmkvist L, Ferdelman T G, Jorgensen B B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)[J].Geochimica et Cosmochimica Acta,2011, 75(12): 3 581-3 599.
[54] Canfield D E, Raiswell R, Bottrell S H. The reactivity of sedimentary iron minerals toward sulfide[J].American Journal of Science, 1992, 292(9): 659-683.
[55] Fossing H, JØrgensen B B. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark[J].Geochimica et Cosmochimica Acta, 1990, 54(10): 2 731-2 742.
[56] Wehrmann L M, Templer S P, Brunner B,et al. The imprint of methane seepage on the geochemical record and early diagenetic processes in cold-water coral mounds on Pen Duick Escarpment, Gulf of Cadiz[J].Marine Geology, 2011, 282(1/2): 118-137.
[57] Amend J P, Edwards K J, Lyons T W. Sulfur Biogeochemistry: Past and Present[M]. Colorado: Geological Society of America, 2004.
[58] Rickard D. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 ℃: The rate equation[J].Geochimica et Cosmochimica Acta, 1997, 61(1): 115-134.
[59] Wijsman J W M, Middelburg J J, Herman P M J,et al. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J].Marine Chemistry, 2001, 74(4): 261-278.
[60] Hensen C, Zabel M, Pfeifer K,et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments[J].Geochimica et Cosmochimica Acta, 2003, 67(14): 2 631-2 647.
[61] Lim Y C, Lin S, Yang T F,et al. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan[J].Marine and Petroleum Geology, 2011, 28(10): 1 829-1 837.
[62] JØrgensen B B, Böttcher M E, Lüschen H,et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J].Geochimica et Cosmochimica Acta, 2004, 68(9): 2 095-2 118.
[63] Böttcher M E, Smock A M, Cypionka H. Sulfur isotope fractionation during experimental precipitation of iron(II) and manganese(II) sulfide at room temperature[J].Chemical Geology, 1998, 146(3/4): 127-134.
[64] Neretin L N, Böttcher M E, JØrgensen B B,et al. Pyritization processes and greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea[J].Geochimica et Cosmochimica Acta, 2004, 68(9): 2 081-2 093.
[65] Riedinger N, Pfeifer K, Kasten S,et al. Diagenetic alteration of magnetic signals by Anaerobic Oxidation of Methane related to a change in sedimentation rate[J].Geochimica et Cosmochimica Acta, 2005, 69(16): 4 117-4 126. |