地球科学进展 ›› 2013, Vol. 28 ›› Issue (7): 774 -782. doi: 10.11867/j.issn.1001-8166.2013.07.0774

综述与评述 上一篇    下一篇

植被覆盖度遥感估算研究进展
 贾坤 1, 姚云军 1, 魏香琴 2*, 高 帅 2 , 江 波 1, 赵 祥 1   
  1. 1.北京师范大学全球变化与地球系统科学研究院, 北京 100875; 
    2.中国科学院遥感与数字地球研究所,北京 100101
  • 收稿日期:2013-03-06 修回日期:2013-05-15 出版日期:2013-07-10
  • 通讯作者: 魏香琴(1982-),女,河北衡水人,助理研究员,主要从事定量遥感和航天遥感论证研究. E-mail:weixq@irsa.ac.cn
  • 基金资助:

    国家测绘地理信息局科技领军人才科技资助专项资金;国家自然科学基金项目“集成热红外和微波遥感的农田蒸散估算方法研究”(编号:41201331) 资助.

A Review on Fractional Vegetation Cover Estimation Using Remote Sensing

Jia Kun 1, Yao Yunjun 1, Wei Xiangqin 2, Gao Shuai 2, Jiang Bo 1, Zhao Xiang 1   

  1. 1. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China;
    2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2013-03-06 Revised:2013-05-15 Online:2013-07-10 Published:2013-07-10

植被覆盖度是刻画地表植被覆盖的重要参数,在全球变化研究、地表过程模拟和水文生态模型中发挥着重要作用。遥感能够反映不同空间尺度的植被覆盖信息及其变化趋势,是获取区域及全球植被覆盖度参数的一个重要手段。综合分析了用于植被覆盖度估算的遥感数据源,包括高光谱数据、多光谱数据、微波数据和激光雷达数据。而且分析了各种常用的植被覆盖度遥感估算方法及其优缺点,并评价了现有基于遥感数据的植被覆盖度产品及存在问题。最后,针对目前研究中存在的问题,讨论了植被覆盖度遥感估算研究的发展趋势,指出高时空分辨率长时间序列的全球植被覆盖度数据集、多源遥感数据融合和同化技术是未来植被覆盖度遥感估算研究的主要方向。 

Fractional vegetation cover is a key parameter for characterizing land surface vegetation coverage, and plays an important role in global change research, earth surface processes simulation and hydro-ecological models. Remote sensing can provide the vegetation coverage information and variation trend on different spatial scales, and become the important means in obtaining the information of regional or global fractional vegetation cover. In this paper, the commonly used remote sensing data sources including hyperspectral data, multispectral data, microwave data and LiDAR data for fractional vegetation cover estimation are analyzed, and multispectral data will be the long term main data source for fractional vegetation cover estimation because of  the advantage of  its easily acquisition, wide coverage and continuous observation advantages. Then, characteristics  and advantages of different estiation methods are analyzed, which include  the regression model, the pixel unmixing model, the machine learning method, the physical model, the spectral gradient difference and the forest canopy density mapping model. The dimidiate pixel model of the pixel unmixing model is extensively used for its simple form and certain physical significance, and the neural network method is widely used for generating products because of its extendibility and rapidity of calculation. Furthermore, the existing remote sensing data based fractional vegetation cover products are presented. However, the validation results indicate that almost all of the fractional vegetation cover products have underestimation problem and variational estimation accuracy in different regions. Finally, the fractional vegetation cover estimation research prospect is discussed and high spatial-temporal resolution global fractional vegetation cover dataset, multi-source remote sensing data fusion and assimilation method are the future development of fractional vegetation cover estimation using remote sensing data.

中图分类号: 

[1] Jones C, Lowe J, Liddicoat S,et al. Committed terrestrial ecosystem changes due to climate change[J].Nature Geoscience, 2009, 2(7): 484-487.

[2] Steffen W, Sanderson A, Tyson P D,et al. Global Change and the Earth System: A Planet under Pressure[M]. Berlin: Springer, 2004.

[3] Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J].Remote Sensing of Environment, 2002, 80(1): 76-87.

[4] Qin Wei, Zhu Qingke, Zhang Xuexia,et al. Review of vegetation covering and its measuring and calculating method[J].Journal of Northwest A&F University (Natural Science Edition), 2006, 34(9): 163-170.[秦伟, 朱清科, 张学霞,等. 植被覆盖度及其测算方法研究进展[J]. 西北农林科技大学学报:自然科学版, 2006, 34(9): 163-170.]

[5] Li Qiaoping, Ding Yihui. Research progress in the effect of vegetation change on regional climate[J].Journal of Nanjing Institute of Meteorology, 2004, 27(1): 131-140.[李巧萍,丁一汇. 植被覆盖变化对区域气候影响的研究进展[J]. 南京气象学院学报, 2004, 27(1): 131-140.]

[6] Qi J, Marsett R C, Moran M S,et al. Spatial and temporal dynamics of vegetation in the San Pedro river basin area[J].Agricultural and Forest Meteorology, 2000, 105(1): 55-68.

[7] Yao Yunjun, Cheng Jie, Zhao Shaohua,et al. Estimation of farmland evapotranspiration: A review of methods using thermal infrared remote sensing data[J]. Advances in Earth Science, 2012, 27(2): 1 308-1 318.[姚云军,程洁,赵少华,等. 基于热红外遥感的农田蒸散估算方法研究综述[J]. 地球科学进展, 2012, 27(2): 1 308-1 318.]

[8] Zhang X, Wu B, Ling F,et al. Identification of priority areas for controlling soil erosion[J].Catena, 2010, 83(1): 76-86.

[9] Liang S, Li X, Wang J. Advanced Remote Sensing: Terrestrial Information Extraction and Applications[M]. Pennsylvania: Academic Press, 2012.

[10] García-Haro F J, Coca F C, Miralles J M. Inter-comparison of SEVIRI/MSG and MERIS/ENVISAT biophysical products over Europe and Africa[C]∥Proceedings of the 2nd MERIS/(A)ATSR User Workshop. Frascati: ESA SP-666,2008.

[11] Jia K, Wu B, Tian Y,et al. Vegetation classification method with biochemical composition estimated from remote sensing data[J].International Journal of Remote Sensing, 2011, 32(24): 9 307-9 325.

[12] Kenneth M G, Timothy M, Lynn F. Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments[J].Remote Sensing Environment, 2000, 72(3): 360-374.

[13] Li Xiaosong, Li Zengyuan, Gao Zhihai,et al. Estimation of vegetation cover in desertified regions from hyperion imageries using NDVI and partial least squares regression[J].Journal of Desert Research, 2011, 31(1): 162-167.[李晓松,李增元,高志海,等. 基于NDVI 与偏最小二乘回归的荒漠化地区植被覆盖度高光谱遥感估测[J]. 中国沙漠, 2011, 31(1): 162-167.]

[14] Zhang X, Liao C, Li J,et al. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data[J].International Journal of Applied Earth Observation and Geoinformation, 2013, 21:506-512.

[15] Baret F, Weiss M, Lacaze R,et al. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production[J].Remote Sensing of Environment, 2013,doi: 10.1016/j.rse.2012.12.027.

[16] [JP3]Voorde T V D, Vlaeminck J, Canters F. Comparing different approaches for mapping urban vegetation cover from Landsat ETM+ data: A case study on Brussels[J].Sensors, 2008, 8: 3 880-3 902.[JP]

[17] Chen Qiao, Chen Yongfu. A study on estimation of vegetation fraction by using QuickBird imagery[J].Forest Research, 2005, 18: 375-380.[陈巧,陈永富. QuickBird遥感数据监测植被覆盖度的研究[J]. 林业科学研究, 2005, 18: 375-380.]

[18] Zribi M, Le Hégarat-Mascle S, Taconet O,et al. Derivation of wild vegetation cover density in semi-arid region: ERS2/SAR evaluation[J].International Journal of Remote Sensing, 2003, 24: 1 335-1 352.

[19] Bao Yansong, Liu Liangyun, Wang Jihua,et al. Estimation of soil water content and wheat coverage with ASAR image[J].Journal of Remote Sensing, 2006, 10: 263-271.[鲍艳松,刘良云,王纪华,等. 利用ASAR图像监测土壤含水量和小麦覆盖度[J]. 遥感学报, 2006, 10: 263-271.]

[20] Andersen H E, McGaughey R J, Reutebuch S E. Estimating forest canopy fuel parameters using LiDAR data[J].Remote Sensing of Environment, 2005, 94: 441-449.

[21] Cui Yaokui, Zhao Kaiguang, Fan Wenjie,et al. Retrieving crop fractional cover and LAI based on airborne Lidar data[J]. Journal of Remote Sensing, 2011, 15: 1 276-1 288.[崔要奎,赵开广,范闻捷,等. 机载Lidar数据的农作物覆盖度及LAI反演[J]. 遥感学报, 2011, 15: 1 276-1 288.]

[22] Koetz B, Morsdorf F, Sun G,et al. Inversion of a Lidar waveform model for forest biophysical parameter estimation[J].IEEE Geoscience and Remote Sensing Letters, 2006, 3: 49-53.

[23] North P R J. Estimation of fAPAR, LAI, and vegetation fractional cover from ATSR-2 imagery[J].Remote Sensing of Environment, 2002, 80: 114-121.

[24] Tian Qingjiu, Min Xiangjun. Advances in study on vegetation indices[J].Advances  in Earth Science, 1998, 13: 327-333.[田庆久, 闵祥军. 植被指数研究进展[J]. 地球科学进展, 1998, 13:327-333.]

[25] Xiao J F, Moody A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA[J].Remote Sensing of Environment, 2005, 98: 237-250.

[26] Rouse J W, Haas,R W, Schell J A,et al. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural  Vegetation[R]. NASA/GSFCT Type Ⅲ Final Report, 1974.

[27] Kaufman Y, Tanre D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS[J].IEEE Transactions on Geoscience and Remote Sensing, 1992, 30: 261-270.

[28] Pinty B, Verstraete M M. GEMI: A non-linear index to monitor global vegetation from satellites[J].Vegetatio, 1992, 101: 15-20.

[29] Huete A R. A Soil-Adjusted Vegetation Index (SAVI)[J].Remote Sensing of Environment, 1988, 25: 295-309.

[30] Qi J, Chenbouni A, Huete A R,et al. Modified Soil Adjusted Vegetation Index (MSAVI)[J].Remote Sensing of Environment, 1994, 48: 119-126.

[31] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information[J].Photogrammetric Engineering and Remote Sensing, 1977, 43: 1 541-1 552.

[32] McDaniel K C, Haas R H. Assessing mesquite-grass vegetation condition from Landsat[J].Photogrammetric Engineering and Remote Sensing, 1982, 48: 441-450.

[33] Pearson R L, Miller L D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grassland, Colorado[C]∥Proceedings of 8th International Symposium on Remote Sensing of Environment. Michigan, 1972.

[34] Carlson T N, Ripley D A. On the relationship between fractional vegetation cover, leaf area index, and NDVI[J].Remote Sensing of Environment, 1997, 62: 241-252.

[35] Boyd D S, Foody G M, Ripple W J. Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing[J].Applied Geography, 2002, 22: 375-392.

[36] Li Miaomiao, Wu Bingfang, Yan Changzhen, et al. Estimation of vegetation fraction in the upper basin of Miyun reservoir by remote sensing[J].Resource Science, 2004, 26: 153-159.[李苗苗, 吴炳方, 颜长珍,等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26: 153-159.]

[37] Zhang Xiwang, Liu Jianfeng, Zhang Bo. Spatial distribution analysis of vegetation fraction in Yiluo River basin[J].Heilongjiang Agriculture Sciences, 2010, 10: 105-108.[张喜旺, 刘剑锋, 张波. 伊洛河流域植被覆盖空间分异研究[J]. 黑龙江农业科学, 2010, 10: 105-108.]

[38] Jia Kun, Li Qiangzi, Tian Yichen,et al. A review of classification methods of remote sensing imagery[J].Spectroscopy and Spectral Analysis, 2011, 31: 2 618-2 623.[贾坤,李强子,田亦陈,等. 遥感影像分类方法研究进展[J]. 光谱学与光谱分析, 2011, 31: 2 618-2 623.]

[39] Gong P. Integrated analysis of spatial data from multiple sources: using evidential reasoning and artificial neural network techniques for geological mapping[J].Photogrammetric Engineering and Remote Sensing, 1996, 62: 513-523.

[40] Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.

[41] Su L. Optimizing support vector machine learning for semi-arid vegetation mapping by using clustering analysis[J].Journal of Photogrammetry and Remote Sensing, 2009, 64: 407-413.

[42] Huang C, Song K, Kim S,et al. Use of a dark object concept and support vector machines to automate forest cover change analysis[J].Remote Sensing of Environment, 2008, 112: 970-985.

[43] Hansen M C, DeFries R S, Townshend J R G,et al. Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data[J].Remote Sensing of Environment, 2002, 83: 303-319.

[44] Hansen M C, DeFries R S, Townshend J R G,et al. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm[J].Earth Interactions, 2007, 7: 1-15.

[45] Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J].International Journal of Remote Sensing, 1998, 19: 1 533-1 543.

[46] Baret F, Pavageau K, Béal D,et al. Algorithm Theoretical Basis Document for MERIS Top of Atmosphere Land Products (TOA-VEG)[R]. ESA, 2006.

[47] Tang Shihao, Zhu Qijiang, Wang Jindi,et al. Three band gradient difference vegetation index theoretical basis and its application[J].Science  in China (Series D), 2003, 33: 1 094-1 102.[唐世浩,朱启疆,王锦地,等. 三波段梯度差植被指数的理论基础及其应用[J].中国科学:D辑,2003, 33: 1 094-1 102.]

[48] Guli Jiapaer, Chen Xi, Bao Anming. Coverage extraction and up-scaling of sparse desert vegetation in arid area[J].Chinese Journal of Applied Ecology, 2009, 20: 2 925-2 934.[古丽·加帕尔,陈曦,包安明. 干旱区荒漠稀疏植被覆盖度提取及尺度扩展效应[J]. 应用生态学报,2009, 20: 2 925-2 934.]

[49] Rikimaru A, Roy P S, Miyatake S. Tropical forest cover density mapping[J].Tropical Ecology, 2002, 43: 39-47.

[50] Jiang Hong, Wang Xiaoqin, Chen Xing. A method for abstraction of vegetation density from SPOT image[J].Geo-information Science, 2005, 7: 113-116.[江洪,汪小钦,陈星. 一种以FCD模型从SPOT影像提取植被覆盖率的方法[J]. 地球信息科学,2005, 7: 113-116.]

[51] Baret F, Hagolle O, Geiger B,et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION Part 1: Principles of the algorithm[J].Remote Sensing of Environment, 2007, 110: 275-286.

[52] Smith J A. LAI inversion using a back-propagation neural network trained with a multiple scattering model[J].IEEE Transactions on Geoscience and Remote Sensing, 1993, 31:1 102-1 106.

[53] Roujean J  L, Bréon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J].Remote Sensing of Environment, 1995, 51: 375-384.

[54] Roujean J  L, Lacaze R. Global mapping of vegetation parameters from POLDER multiangular measurements for studies of surface-atmosphere interactions: A pragmatic method and its validation[J].Journal of Geophysical Research, 2002, 107: D12.

[55] Lacaze R, Richaume P, Hautecoeur O,et al. Advanced algorithms of the ADEOS2/POLDER2 land surface processing line: Application to the ADEOS1/POLDER1 data[C]Proceedings of the XXIIIth IEEE International Geoscience and Remote Sensing Symposium. Toulouse, 2003.

[56] Fillol E, Baret F, Weiss M,et al. Cover fraction estimation from high resolution SPOT HRV&HRG and medium resolution SPOT-VEGETATION sensors, Validation and comparison over South-West France[C]Proceedings of Second Recent Advances in Quantitative Remote Sensing Symposium. Valencia, 2006: 659-663.

[57] Camacho F, Jiménez-Muñoz J C, Martínez B,et al. Prototyping of FCOVER product over Africa based on existing CYCLOPES and JRC products for VGT4Africa[C]Proceedings of Second Recent Advances in Quantitative Remote Sensing Symposium. Valencia, 2006: 722-727.

[58] Camacho F, Cernicharo J, Lacaze R,et al. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products[J].Remote Sensing of Environment, 2013, doi: 10.1016/j.rse.2013.02.030.

[59] Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks[J].Nature, 2008, 451: 289-292.

[60] Liang Shunlin, Yuan Wenping, Xiao Qing,et al. Generation and applications of Global Land Surface Satellite (GLASS) products[J].Bulletin of Chinese Academy of Sciences, 2013, 28: 122-131.[梁顺林,袁文平,肖青,等. 全球陆表特征参量产品生成与应用研究[J]. 中国科学院院刊, 2013, 28: 122-131.]

[61] Xiao Z, Liang S, Wang J,et al. Real-time retrieval of Leaf Area Index from MODIS time series data[J].Remote Sensing of Environment, 2011, 115: 97-106.

[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[7] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[8] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[9] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[10] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[11] 肖雄新, 张廷军. 基于被动微波遥感的积雪深度和雪水当量反演研究进展[J]. 地球科学进展, 2018, 33(6): 590-605.
[12] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[13] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[14] 王建, 车涛, 李震, 李弘毅, 郝晓华, 郑照军, 肖鹏峰, 李晓峰, 黄晓东, 钟歆玥, 戴礼云, 李红星, 柯长青, 李兰海. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
[15] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
阅读次数
全文


摘要