地球科学进展 ›› 2020, Vol. 35 ›› Issue (10): 1041 -1051. doi: 10.11867/j.issn.1001-8166.2020.081

综述与评述 上一篇    下一篇

河冰遥感监测研究进展
李浩杰 1, 2( ),李弘毅 1( ),王建 1, 3,郝晓华 1   
  1. 1.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023
  • 收稿日期:2020-05-25 修回日期:2020-09-07 出版日期:2020-10-10
  • 通讯作者: 李弘毅 E-mail:lihaojie@lzb.ac.cn;lihongyi@lzb.ac.cn
  • 基金资助:
    国家自然科学基金面上项目“结合遥感数据的青藏高原典型流域季节性河冰春季径流贡献研究”(41971399);甘肃省自然科学基金项目“以遥感数据为主要驱动的山区积雪水文预报系统”(17JR5RA296)

Advances in Remote Sensing of River Ice

Haojie Li 1, 2( ),Hongyi Li 1( ),Jian Wang 1, 3,Xiaohua Hao 1   

  1. 1.Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China
  • Received:2020-05-25 Revised:2020-09-07 Online:2020-10-10 Published:2020-11-30
  • Contact: Hongyi Li E-mail:lihaojie@lzb.ac.cn;lihongyi@lzb.ac.cn
  • About author:Li Haojie (1986-), male, Minqin County, Gansu Province, Ph.D student. Research areas include hydrological remote sensing in cold regions. E-mail: lihaojie@lzb.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Study on identifying spring runoff contribution of seasonal river ice utilizing remote sensing data in a typical basin in the Tibetan Plateau”(41971399);The Natural Science Foundation of Gansu Province “The hydrological forecasting system of mountain snow cover driven by remote sensing data”(17JR5RA296)

河冰是寒冷季节河水冻结的一种常见现象,河水冻结会对水文、运输、环境等产生一系列的重要影响。河冰监测既可为研究寒冷地区水循环与水资源管理提供参考,也可为水利工程建设和航运安全提供依据。遥感技术可以实现对大范围河冰的快速观测,且成本低、时间和空间分辨率均较高,被认为是监测河冰的有效方法之一。首先,以不同类型传感器为顺序,客观地阐述当前河冰遥感监测研究与应用进展。多光谱遥感数据因其较高的空间分辨率和时间分辨率得到了广泛的应用,主要用于开河日/封河日、河冰分布范围与面积的监测。微波遥感数据因其独特的穿透能力常用来监测河冰类型与厚度。其次,探讨了河冰遥感监测技术未来的发展趋势,以及河冰遥感的机遇和挑战。当前无人机和探地雷达等一些新技术也应用到了河冰遥感监测领域,未来应加强多传感器联合监测以提高监测效果。河冰遥感研究需要与水文模型、气候模型相结合,实现遥感观测与模型的相互协作,优势互补,促进河冰监测更深入地研究。

River ice is a common phenomenon of water freezing in the cold season, which will have a series of important effects on hydrology, transportation, and the environment. River ice monitoring can not only provide a reference for the study of the water cycle and water resources management in cold regions, but also provide a basis for water conservancy project construction and shipping safety. Remote sensing technology can realize the rapid observation of a large range of river ice with low cost and high temporal and spatial resolution, which is considered as one of the effective methods to monitor river ice. In this paper, the research and application progress of remote sensing monitoring of river ice were described objectively in the order of different types of sensors. Multi-spectral remote sensing data have been widely used because of their high spatial and temporal resolution. They are mainly used to monitor the distribution range and area of river ice. Microwave remote sensing data are often used to monitor the type and thickness of river ice due to their unique penetrating ability. Secondly, the future development trend of river ice remote sensing monitoring technology as well as the opportunities and challenges of river ice remote sensing were discussed. At present, some new technologies such as Unmanned Aerial Vehicles (UAV) and Ground-Penetrating Radar (GPR) have also been applied to the field of remote sensing monitoring of river ice. In the future, multi-sensor joint monitoring should be strengthened to improve the monitoring effect. River ice remote sensing research needs to be combined with hydrological and climate models to realize the mutual-cooperation and complementary advantages of remote sensing observations and the models, and promote more in-depth research on river ice monitoring.

中图分类号: 

图1 河冰对电磁波散射作用示意图[ 8 ]
A:河冰的质地影响表面散射;B:杂质裂缝会导致体积散射
Fig.1 Scattering of electromagnetic waves by river ice[ 8 ]
A: Ice texture affects surface scatter;B: Impurities and cracks cause volume scattering
表1 河冰遥感监测常用数据
Table 1 The data for remote sensing monitoring of river ice
图2 黑河上游地区河冰与积雪实测光谱曲线对比
Fig.2 Comparison of measured spectral curves of river ice and snow in the upper reaches of the Heihe River
图3 典型河段河冰光学遥感影像
Fig.3 Remote sensing images and field photos of typical river ice
图4 八宝河流域及河冰观测区位置图[ 26 ]
Fig.4 Location of the Babao River Basin and river ice observation area[ 26 ]
图5 八宝河流域冰河冰厚度统计图
Fig.5 The thickness of river ice in Babao River Basin
1 Kang Shichang,Guo Wanqin,Wu Tonghua,et al. Cryospheric changes and their impacts on water resources in the Belt and Road regions[J]. Advances in Earth Science, 2020, 35(1): 1-17.
康世昌,郭万钦,吴通华,等. “一带一路”区域冰冻圈变化及其对水资源的影响[J].地球科学进展, 2020, 35(1): 1-17.
2 Tedesco M,Derksen C,Deems J S,et al. Remote Sensing of the Cryosphere[M]. Chichester:Wiley Blackwell,2015.
3 Yang Xiao,Tamlin M P,George H A. The past and future of global river ice [J]. Nature, 2020, 577(7 788): 69-73.
4 Li Hongyi,Wang Jian,Bai Yunjie,et al. The snow hydrological processes during a representa tive snow cover period in Binggou watershed in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2009, 31(2): 293-300.
李弘毅,王建,白云洁,等. 黑河上游冰沟流域典型积雪期水文情势[J]. 冰川冻土,2009, 31(2): 293-300.
5 Prowse T D,Beltaos S. Climatic control of river-ice hydrology:A review[J]. Hydrological Processes,2002, 16(4): 805-822.
6 Gao Peisheng,Jin Guohou. Investigation and analysis of river ice disaster in cold regions of North China[J]. Journal of China Institute of Water, 2003, 1(2): 159-164.
高霈生,靳国厚. 中国北方寒冷地区河冰灾害调查与分析[J]. 中国水利水电科学研究院学报,2003, 1(2): 159-164.
7 Cooley S W,Pavelsky T M. Spatial and temporal patterns in Arctic river ice breakup revealed by automated ice detection from MODIS imagery[J]. Remote Sensing of Environment, 2016, 175: 310-322.
8 Lindenschmidt K E,Syrenne G,Harrison R. Measuring ice thicknesses along the Red River in Canada using RADARSAT-2 satellite imagery[J]. Journal of Water Resource & Protection,2010, 2(11): 923-933.
9 He Houjun, Ma Xiaobing, Liu Xuegong, et al. Application of remote sensing technology in the monitoring of the ice situation of the Yellow River [J].China Flood and Drought Management, 2015, 25(6): 16-19.
何厚军,马晓兵,刘学工,等. 遥感技术在黄河凌情监测中的应用[J]. 中国防汛抗旱, 2015, 25(6): 16-19.
10 Zhang Zhizhong. Basic characteristics of river ice in the Urumqi River Basin[J]. Journal of Glaciology Geocryology,1992, 14(3): 267-270.
张志忠. 乌鲁木齐河流域河冰的基本特征[J]. 冰川冻土, 1992, 14(3): 267-270.
11 Shen Hongdao. Progress of river ice research [C]// China Ice Engineering Academic Symposium, 2011.[
沈洪道. 河冰研究进展[C]// 全国冰工程学术研讨会, 2011.]
12 Cook Timothy L,Bradley Raymond S. An analysis of past and future changes in the ice cover of two High-Arctic lakes based on Synthetic Aperture Radar (SAR) and Landsat imagery[J]. Arctic Antarctic & Alpine Research, 2010, 42(1): 9-18.
13 McGinnis D F, Schneider S R. Monitoring river ice break-up from space[J]. Photogrammetric Engineering & Remote Sensing, 1978, 44(1): 57-68.
14 Gatto Lawrence W. Monitoring river ice with Landsat images[J]. Remote Sensing of Environment, 1990, 32(1): 1-16.
15 Pavelsky T M,Smith L C. Spatial and temporal patterns in Arctic river ice breakup observed with MODIS and AVHRR time series[J]. Remote Sensing of Environment, 2004, 93(3):328-338.
16 Chaouch N,Temimi M,Romanov P,et al. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data[J]. Hydrological Processes, 2013, 28(1): 62-73.
17 Kraatz S,Khanbilvardi R,Romanov P. River ice monitoring with MODIS:Application over lower Susquehanna River[J]. Cold Regions ence and Technology, 2016, 131(11): 116-128.
18 Muhammad P,Claude Duguay,Kang Kevin. Monitoring ice break-up on the Mackenzie River using MODIS data[J]. The Cryosphere, 2016, 10(2): 569-584.
19 Beaton A,Whaley R,Corston K,et al. Identifying historic river ice breakup timing using MODIS and Google Earth Engine in support of operational flood monitoring in Northern Ontario[J]. Remote Sensing of Environment, 2019, 224: 352-364.
20 Sakai T,Hatta S,Okumura M,et al. Use of Landsat TM/ETM+ to monitor the spatial and temporal extent of spring breakup floods in the Lena River,Siberia[J]. International Journal of Remote Sensing, 2015, 36(3/4): 719-733.
21 Zhao Shuixia,Li Changyou,Li Chao,et al. Processes of river ice and ice-jam formation in Shensifenzi Bend of the Yellow River[J]. Journal of Hydraulic Engineering,2017, 48(3): 351-358.
赵水霞,李畅游,李超,等. 黄河什四份子弯道河冰生消及冰塞形成过程分析[J]. 水利学报, 2017, 48(3): 351-358.
22 Li Chao,Li Changyou,Zhao Shuixia,et al. Interpretation and analysis of river ice process based on remote sensing data[J]. Advances in Science & Technology of Water Resources, 2016, 36(3): 52-56.
李超,李畅游,赵水霞,等. 基于遥感数据的河冰过程解译及分析[J]. 水利水电科技进展, 2016, 36(3): 52-56.
23 Hall D K, Riggs G A. Normalized-Difference Snow Index (NDSI)[M]// Bishop M P, Bj?rnsson H, Haeberli W, et al. Encyclopedia of Snow,Ice and Glaciers. Dordrecht: Springer Netherlands, 2011.
24 Liu Liangming,Xu Qi,Yang Siquan. Identification of river ice on the Yellow River using landsat images[C]// International Conference on Geoinformatics. IEEE, 2010.
25 Yan Junjie,Liu Liangming,Ma Haolu,et al. Application of MODIS data on the ice folld monitoring of Yellow River[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8): 679-681.
鄢俊洁,刘良明,马浩录,等. MODIS数据在黄河凌汛监测中的应用[J]. 武汉大学学报:信息科学版, 2004, 29(8): 679-681.
26 Li Haojie, Li Hongyi, Wang Jian, et al. Monitoring high-altitude river ice distribution at the basin scale in the northeastern Tibetan Plateau from a Landsat time-series spanning 1999-2018[J]. Remote Sensing of Environment, 2020, 247: 111 915.
27 Wang H B,Wang G H,Tang X M,et al. Yellow River icicle hazard dynamic monitoring using UAV aerial remote sensing technology[J]. IOP Conference Series:Earth and Environmental Science,2014,18:012043. DOI:10.1088/1755-1315/18/1/012043.
doi: 10.1088/1755-1315/18/1/012043    
28 Knut A, Christian H, Tuhtan J A, et al. Brief communication:Mapping river ice using drones and structure from motion[J]. The Cryosphere, 2018, 12(2): 627-633.
29 Monique Bernier,Yves Gauthier. Monitoring the cryosphere using Radarsat-1 and SSM/I data:An overview of CRYSYS related accomplishments at INRS-ETE[C]//IEEE International Conference on Geoscience & Remote Sensing Symposium, 2006.
30 Martin Jasek,Yves Gauthier,Jimmy Poulin,et al. Monitoring of freeze-up on the peace river at the vermilion rapids using RADARSAT-2 SAR data[C]//CGU HS Committee on River Ice Processes and the Environment 17th Workshop on River Ice Edmonton, Alberta, 2013.
31 Karl-Erich Lindenschmidt,Sanden J J,Allyson Demski, et al. Characterising river ice along the Lower Red River using RADARSAT-2 imagery[C]//16th CRIPE Workshop on the Hydraulics of Ice Covered Rivers, 2011.
32 Mermoz S,Allain S,Bernier M,et al. Retrieval of river ice thickness from C-band polsar data[C]// IEEE International Geoscience and Remote Sensing Symposium, 2012.
33 Los H,Pawlowski B. The use of sentinel-1 imagery in the analysis of river ice phenomena on the lower vistula in the 2015-2016 winter season[C]// Signal Processing Symposium, 2017.
34 K?m?ri M,Alho P,Colpaert A,et al. Spatial variation of river-ice thickness in a meandering river[J]. Cold Regions Science and Technology, 2017, 137: 17-29.
35 Lei Ruibo, Li Zhijun, Qin Jianmin, et al. Investigation of new technologies for in-situ ice thickness observation[J]. Advances in Water Science,2009, 20(2): 287-292.
雷瑞波,李志军,秦建敏,等. 定点冰厚观测新技术研究[J]. 水科学进展,2009,20(2): 287-292.
36 Li Zhijun, Han Ming, Qin Jianmin, et al. States and advances in monitor of ice thickness change[J]. Advances in Water Science,2005, 16(5): 753-757.
李志军,韩明,秦建敏,等. 冰厚变化的现场监测现状和研究进展[J]. 水科学进展, 2005, 16(5): 753-757.
37 Li Haojie, Li Hongyi, Wang Jian, et al. Extending the ability of near-infrared images to monitor small river discharge on the northeastern Tibetan Plateau[J]. Water Resources Research,2019, 55(11): 8 404-8 421.
38 Yan Kailin. Advances of ice hydraulics,ice regime observation and forecasting in rivers[J]. Journal of Hydraulic Engineering,2018, 49(1): 81-91.
杨开林. 河渠冰水力学、冰情观测与预报研究进展[J]. 水利学报,2018, 49(1): 81-91.
39 Gu Lihua,Ni Jin. Advance in river ice hydrology[J]. Journal of Anhui Technical College of Water Resources and Hydroelectric Power, 2008, 8(1): 24-26.
顾李华,倪晋. 河冰水文研究的进展[J]. 安徽水利水电职业技术学院学报, 2008, 8(1): 24-26.
40 Brian Morse, Faye Hicks. Advances in river ice hydrology 1999-2003[J]. Hydrological Processes, 2005, 19(1): 247-263.
41 Prowse T D. River-ice hydrology[M]//Encyclopedia of Hydrological Sciences. John Wiley & Sons, Ltd., 2006. DOI: 10.1002/0470848944.
doi: 10.1002/0470848944    
42 Brakenridge G R,Cohen S,Kettner A J,et al. Calibration of satellite measurements of river discharge using a global hydrology model[J]. Journal of Hydrology, 2012, 475: 123-136.
43 Sun Wenchao,Ishidaira Hiroshi,Bastola Satish,et al. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width:Toward real world applications[J]. Environmental Research, 2015, 139(5): 36-45.
44 Turcotte B,Morse B. A global river ice classification model[J]. Journal of Hydrology, 2013, 507: 134-148.
45 Zhang Fan,Mosaffa M,Chu Thuan, et al. Using remote sensing data to parameterize ice jam modeling for a northern inland delta[J]. Water, 2017, 9(5): 306.
46 Qin Dahe,Ding Yongjian. Cryospheric changes and their impacts:Present,trends and key issues[J]. Advances in Climate Change Research, 2009, 5(4): 187-195.
秦大河,丁永建. 冰冻圈变化及其影响研究——现状、趋势及关键问题[J]. 气候变化研究进展,2009, 5(4): 187-195.
47 Shiklomanov A I,Lammers R B. River ice responses to a warming Arctic—Recent evidence from Russian Rivers[J]. Environmental Research Letters, 2014, 9(3): 206-222.
48 Vuglinsky V,Valatin D. Changes in ice cover duration and maximum ice thickness for rivers and lakes in the Asian part of Russia[J]. Natural Resources, 2018, 9(3): 73-87.
49 Helama S, Jiang J, Korhonen J, et al. Quantifying temporal changes in Tornionjoki river ice breakup dates and spring temperatures in Lapland since 1802[J]. Journal of Geographical Sciences, 2013, 23(6): 1 069-1 079.
50 Li Ji,Hu Chunli,Li Fei,et al. Characters of river's freeze/thaw date and their responses to regional warming in Liaoning Province during 1981-2009[J]. Advances in Climate Change Research, 2011, 7(6): 418-422.
李辑,胡春丽,李菲,等. 1981—2009年辽宁省河流封冻期特征及对气候变暖的响应[J]. 气候变化研究进展, 2011, 7(6): 418-422.
51 Latifovic R,Pouliot D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record[J]. Remote Sensing of Environment,2007,106(4):492-507.
52 Liu Xiaodong,Chen Baode. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000, 20(14): 1 729-1 742.
53 Li Xin,Cheng Guodong,Jin Huijun,et al. Cryospheric change in China[J]. Global and Planetary Change,2008,62(3/4):210-218.
54 Yao Tandong, Onnie Thompson, Yang Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667.
55 Gou Peng,Ye Qinghua,Che Tao,et al. Lake ice phenology of Nam Co,Central Tibetan Plateau,China,derived from multiple MODIS data products[J]. Journal of Great Lakes Research,2017, 43(6): 989-998.
56 Jan Kropá?ek,Maussion F,Chen F,et al. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data [J]. The Cryosphere, 2013, 7(1): 287-301.
[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[4] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[5] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[6] 张苗苗, 陈晓东, 徐建桥, 崔小明, 刘明, 邢乐林, 穆朝民, 孙和平. 淮南深部地球物理实验场重力噪声水平初步分析[J]. 地球科学进展, 2021, 36(5): 500-509.
[7] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[8] 吴殿廷, 张文新, 王彬. 国土空间规划的现实困境与突破路径[J]. 地球科学进展, 2021, 36(3): 223-232.
[9] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[10] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
[11] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[12] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[13] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[14] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[15] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
阅读次数
全文


摘要