地球科学进展 ›› 2021, Vol. 36 ›› Issue (2): 185 -197. doi: 10.11867/j.issn.1001-8166.2021.014

研究论文 上一篇    下一篇

两种耦合模糊控制的局地化方法研究
常明恒 1( ), 左洪超 1( ), 摆玉龙 2, 段济开 1   
  1. 1.兰州大学大气科学学院,甘肃 兰州 730000
    2.西北师范大学物理与电子工程学院,甘肃 兰州 730070
  • 收稿日期:2020-10-09 修回日期:2021-01-16 出版日期:2021-04-13
  • 通讯作者: 左洪超 E-mail:changmh19@lzu.edu.cn;zuohch@lzu.edu.cn
  • 基金资助:
    国家自然科学基金项目“中国西北干旱区均匀下垫面上稳定边界层非湍运动和湍流相互作用的观测研究”(41875009)

Two Localization Methods Based on Fuzzy Control

Mingheng CHANG 1( ), Hongchao ZUO 1( ), Yulong BAI 2, Jikai DUAN 1   

  1. 1.College of Atmosphere Science,Lanzhou University,Lanzhou 730000,China
    2.College of Physics and Electrical Engineering,Northwest Normal University,Lanzhou 730070,China
  • Received:2020-10-09 Revised:2021-01-16 Online:2021-04-13 Published:2021-04-19
  • Contact: Hongchao ZUO E-mail:changmh19@lzu.edu.cn;zuohch@lzu.edu.cn
  • About author:Chang Mingheng (1992-), male, Qin’an County, Gansu Province, Ph. D student. Research areas include data assimilation observation error. E-mail: changmh19@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Observational study on the interaction between nonturbulence and turbulence in the stable boundary layer over the uniform underlying surface in the arid region of Northwest China”(41875009)

在集合数据同化过程中,由于远距离的观测与同化状态之间存在着虚假相关,局地化方法受到广泛关注。此外,由于集合数的限制,容易引起欠采样和协方差被低估等现象,使得滤波效果欠佳。因此,提出模糊控制算法,模糊控制算法主要用于判断观测点与状态更新点之间的距离来匹配相应的观测权重,进而调整局地化系数来更新背景误差协方差和观测误差协方差矩阵,从而得到有效的状态估计。基于背景误差协方差局地化方法和观测误差协方差局地化方法,耦合模糊控制,形成了新的算法—模糊控制的背景误差协方差局地化方法和模糊控制的观测误差协方差局地化方法。利用Lorenz-96模型,在小集合数和局地化半径下,得出模糊控制的背景误差协方差局地化方法和模糊控制的观测误差协方差局地化方法有较好的同化性能。通过分析泰勒图谱甄别出新算法与观测点具有高度的相关性以及较小的空间变异性。最后,在不同维数的模糊控制器下,新算法的有效性进一步得到验证。为今后数据同化误差处理方面提供了良好的研究平台。

In the process of ensemble data assimilation, due to the false correlation between the remote observation and the assimilation state, which affects the performance of DA, more attention has been paid to the localization methods. In addition, because of the limited ensemble size, it is easy to cause phenomena such as under-sampling and underestimation of covariance, which makes the filtering effect divergent. The fuzzy control algorithm is proposed, which is mainly used to judge the distance between the observation point and the state update point to assign the corresponding observation weight to the observation point, and then adjust the localization coefficient to update the background error covariance and observation error covariance, respectively. Thus, an effective state estimation is obtained. Based on BL and RL method, coupled with fuzzy control, the Background Covariance Fuzzy (BCF) and Fuzzy Observation Covariance (FOC) were proposed. We conducted an experiment on the Lorenz-96 model, and the BCF and the FOC method exhibited better assimilation effect with the small ensemble size and localization radius. By analyzing the Taylor diagram, it was found that the new algorithms had a high correlation with the observation point and small spatial variability. Finally, the robustness of BCF and FOC algorithms was further verified under the different dimensional fuzzy controller. It will provide a good research platform for data assimilation error processing in the future.

中图分类号: 

图1 BLRL算法的预报和更新过程
Fig.1 The prediction and update process of BL and RL algorithms
图1 BLRL算法的预报和更新过程
Fig.1 The prediction and update process of BL and RL algorithms
图2 局地化函数的选取
Fig.2 The selection of localization function
图2 局地化函数的选取
Fig.2 The selection of localization function
图3 三角隶属度函数
Fig.3 The triangular membership function
图3 三角隶属度函数
Fig.3 The triangular membership function
表1 模糊控制规则表
Table 1 The rule table of fuzzy control
表1 模糊控制规则表
Table 1 The rule table of fuzzy control
图4 BCFFOC算法的区别
Fig.4 The difference between BCF and FOC algorithms
图4 BCFFOC算法的区别
Fig.4 The difference between BCF and FOC algorithms
图5 集合数对4种方法同化效果的影响
Fig.5 The influence of ensemble size on assimilation effect of four algorithms
图5 集合数对4种方法同化效果的影响
Fig.5 The influence of ensemble size on assimilation effect of four algorithms
图6 不同集合数下4种同化方法的MAE变化情况
Fig.6 The MAE changes of four assimilation algorithms
图6 不同集合数下4种同化方法的MAE变化情况
Fig.6 The MAE changes of four assimilation algorithms
图7 集合数和局地化半径对4种同化算法的影响
Fig.7 The influence of ensemble size and localization radius with the different ensemble sizes on the four assimilation algorithms
图7 集合数和局地化半径对4种同化算法的影响
Fig.7 The influence of ensemble size and localization radius with the different ensemble sizes on the four assimilation algorithms
图8 观测数据随时间步长的变化曲线
Fig.8 The change curve of observation data over time
图8 观测数据随时间步长的变化曲线
Fig.8 The change curve of observation data over time
图9 4种同化算法的泰勒图
Fig.9 The Taylor diagram of the four assimilation algorithms
图9 4种同化算法的泰勒图
Fig.9 The Taylor diagram of the four assimilation algorithms
图10 4种算法的RMSE值和AES值比较
Fig.10 The comparison between RMSE and AES of four algorithms
图10 4种算法的RMSE值和AES值比较
Fig.10 The comparison between RMSE and AES of four algorithms
表2 4种算法同化性能比较
Table 2 The performance of the four algorithms
表2 4种算法同化性能比较
Table 2 The performance of the four algorithms
图11 L5L10L15L20BCFFOCRMSE值比较
Fig.11 The comparison RMSE of the BCF and FOC methods under the dimension is L5L10L15 and L20
图11 L5L10L15L20BCFFOCRMSE值比较
Fig.11 The comparison RMSE of the BCF and FOC methods under the dimension is L5L10L15 and L20
1 KALMAN R E,BUCY R S. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering,1961,96:95-108.
KALMAN R E,BUCY R S. New results in linear filtering and prediction theory[J]. Journal of Basic Engineering,1961,96:95-108.
2 GRIMBLE M J. Polynomial systems approach to optimal linear filtering and prediction[J]. International Journal of Control,1985,41(6):1 545-1 564.
GRIMBLE M J. Polynomial systems approach to optimal linear filtering and prediction[J]. International Journal of Control,1985,41(6):1 545-1 564.
3 EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research,1994,99 (C5):10 143-10 162.
EVENSEN G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research,1994,99 (C5):10 143-10 162.
4 EVENSEN G,Leeuwen P J VAN. An ensemble Kalman smoother for nonlinear dynamics[J]. Monthly Weather Review,2000,128(6):1 852-1 867.
EVENSEN G,Leeuwen P J VAN. An ensemble Kalman smoother for nonlinear dynamics[J]. Monthly Weather Review,2000,128(6):1 852-1 867.
5 EVENSEN G. The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics,2003,53(4):343-367.
EVENSEN G. The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics,2003,53(4):343-367.
6 HAMILL T M,WHITAKER J S,SNYDER C. Distance-dependent filtering of background error covariance estimates in an Ensemble Kalman Filter[J]. Monthly Weather Review,2001,129(11):2 776-2 790.
HAMILL T M,WHITAKER J S,SNYDER C. Distance-dependent filtering of background error covariance estimates in an Ensemble Kalman Filter[J]. Monthly Weather Review,2001,129(11):2 776-2 790.
7 BISHOP C H,ETHERTON B J,MAJUMDAR S J. Adaptive sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical aspects[J]. Monthly Weather Review,2001,129(3):420-436.
BISHOP C H,ETHERTON B J,MAJUMDAR S J. Adaptive sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical aspects[J]. Monthly Weather Review,2001,129(3):420-436.
8 MIYOSHI T,YAMANE S,ENOMOTO T. Localizing the error covariance by physical distances within a Local Ensemble Transform Kalman Filter (LETKF)[J]. Sola,2007,3:89-92.
MIYOSHI T,YAMANE S,ENOMOTO T. Localizing the error covariance by physical distances within a Local Ensemble Transform Kalman Filter (LETKF)[J]. Sola,2007,3:89-92.
9 HUNT B R,KOSTELICH E J,SZUNYOGH I. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman Filter[J]. Physica D:Nonlinear Phenomena,2007,230(1):112-126.
HUNT B R,KOSTELICH E J,SZUNYOGH I. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman Filter[J]. Physica D:Nonlinear Phenomena,2007,230(1):112-126.
10 MIYOSHI T,YAMANE S. Local ensemble transform Kalman Filtering with an AGCM at a T159/L48 resolution[J]. Monthly Weather Review,2007,135(11):3 841-3 861.
MIYOSHI T,YAMANE S. Local ensemble transform Kalman Filtering with an AGCM at a T159/L48 resolution[J]. Monthly Weather Review,2007,135(11):3 841-3 861.
11 FAN Zheng,LI Hong,LIU Xiangwen,et al. Global ocean data assimilation system design and algorithm acceleration based on local Ensemble Transform Kalman Filter[J]. Advances in Earth Science,2019,34(5):531-539.
FAN Zheng,LI Hong,LIU Xiangwen,et al. Global ocean data assimilation system design and algorithm acceleration based on local Ensemble Transform Kalman Filter[J]. Advances in Earth Science,2019,34(5):531-539.
范峥,李宏,刘向文,等. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展,2019,34(5):531-539.
范峥,李宏,刘向文,等. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展,2019,34(5):531-539.
12 KEPERT J D. Covariance localisation and balance in an Ensemble Kalman Filter[J]. Quarterly Journal of the Royal Meteorological Society:A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography,2009,135(642):1 157-1 176.
KEPERT J D. Covariance localisation and balance in an Ensemble Kalman Filter[J]. Quarterly Journal of the Royal Meteorological Society:A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography,2009,135(642):1 157-1 176.
13 NERGER L,JANJIĆ T,SCHRÖTER J,et al. A regulated localization scheme for ensemble—Based Kalman Filters[J]. Quarterly Journal of the Royal Meteorological Society,2012,138(664):802-812.
NERGER L,JANJI? T,SCHR?TER J,et al. A regulated localization scheme for ensemble—Based Kalman Filters[J]. Quarterly Journal of the Royal Meteorological Society,2012,138(664):802-812.
14 LUO Xiaodong,LORENTZEN R J,VALESTRAND R,et al. Correlation—Based adaptive localization for ensemble-based history matching: Applied to the norne field case study[J]. SPE Reservoir Evaluation & Engineering,2019,14(1):412-465.
LUO Xiaodong,LORENTZEN R J,VALESTRAND R,et al. Correlation—Based adaptive localization for ensemble-based history matching: Applied to the norne field case study[J]. SPE Reservoir Evaluation & Engineering,2019,14(1):412-465.
15 RAANES P N,BOCQUET M,CARRASSI A. Adaptive covariance inflation in the Ensemble Kalman Filter by Gaussian scale mixtures[J]. Quarterly Journal of the Royal Meteorological Society,2019,145(718):53-75.
RAANES P N,BOCQUET M,CARRASSI A. Adaptive covariance inflation in the Ensemble Kalman Filter by Gaussian scale mixtures[J]. Quarterly Journal of the Royal Meteorological Society,2019,145(718):53-75.
16 MIYOSHI T,KONDO K. A multi-scale localization approach to an Ensemble Kalman Filter[J]. Sola,2013,9(1):170-173.
MIYOSHI T,KONDO K. A multi-scale localization approach to an Ensemble Kalman Filter[J]. Sola,2013,9(1):170-173.
17 KIRCHGESSNER P,NERGER L,BUNSEGERSTNER A. On the choice of an optimal localization radius in Ensemble Kalman Filter methods[J]. Monthly Weather Review,2014,142(6):2 165-2 175.
KIRCHGESSNER P,NERGER L,BUNSEGERSTNER A. On the choice of an optimal localization radius in Ensemble Kalman Filter methods[J]. Monthly Weather Review,2014,142(6):2 165-2 175.
18 NERGER L. On serial observation processing in localized Ensemble Kalman Filters[J]. Monthly Weather Review,2015,143(1):1 554-1 567.
NERGER L. On serial observation processing in localized Ensemble Kalman Filters[J]. Monthly Weather Review,2015,143(1):1 554-1 567.
19 KONDO K,MIYOSHI T. Impact of removing covariance localization in an Ensemble Kalman Filter: Experiments with 10 240 members using an intermediate AGCM[J]. Monthly Weather Review,2016,144(1):4 849-4 865.
KONDO K,MIYOSHI T. Impact of removing covariance localization in an Ensemble Kalman Filter: Experiments with 10 240 members using an intermediate AGCM[J]. Monthly Weather Review,2016,144(1):4 849-4 865.
20 WANG Rong,ZHANG Qiang,YUE Ping,et al. Summary and prospects of numerical simulation research of the atmospheric boundary layer[J]. Advances in Earth Science,2020,35(4):331-349.
WANG Rong,ZHANG Qiang,YUE Ping,et al. Summary and prospects of numerical simulation research of the atmospheric boundary layer[J]. Advances in Earth Science,2020,35(4):331-349.
王蓉,张强,岳平,等. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展,2020,35(4):331-349.
王蓉,张强,岳平,等. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展,2020,35(4):331-349.
21 ZHANG Qiang,YAO Yubi,LI Yaohui,et al. Research progress and prospect on the monitoring and early warning and mitigation technology of meteorological drought disaster in Northwest China[J]. Advances in Earth Science,2015,30(2):196-211.
ZHANG Qiang,YAO Yubi,LI Yaohui,et al. Research progress and prospect on the monitoring and early warning and mitigation technology of meteorological drought disaster in Northwest China[J]. Advances in Earth Science,2015,30(2):196-211.
张强,姚玉璧,李耀辉,等. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展,2015,30(2):196-211.
张强,姚玉璧,李耀辉,等. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展,2015,30(2):196-211.
22 WANG Peng,DENG Hongwei. Study on flood hazard risk zoning based on GIS and logistic regression model[J]. Advances in Earth Science,2020,35(10):1 064-1 072.
WANG Peng,DENG Hongwei. Study on flood hazard risk zoning based on GIS and logistic regression model[J]. Advances in Earth Science,2020,35(10):1 064-1 072.
王鹏,邓红卫. 基于GIS和Logistic回归模型的洪涝灾害区划研究[J]. 地球科学进展,2020,35(10):1 064-1 072.
王鹏,邓红卫. 基于GIS和Logistic回归模型的洪涝灾害区划研究[J]. 地球科学进展,2020,35(10):1 064-1 072.
23 MA Yaoming,HU Zeyong,TIAN Lide,et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science,2014,29(2):207-215.
MA Yaoming,HU Zeyong,TIAN Lide,et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science,2014,29(2):207-215.
马耀明,胡泽勇,田立德,等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展,2014,29(2):207-315.
马耀明,胡泽勇,田立德,等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展,2014,29(2):207-315.
24 DOU Fangli,LU Qifeng,GUO Yang. Overview of researches on all-sky satellite microwave data variational assimilation[J]. Advances in Earth Science,2019,34(11):1 120-1 130.
DOU Fangli,LU Qifeng,GUO Yang. Overview of researches on all-sky satellite microwave data variational assimilation[J]. Advances in Earth Science,2019,34(11):1 120-1 130.
窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展,2019,34(11):1 120-1 130.
窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展,2019,34(11):1 120-1 130.
25 GAO Li,CHEN Jing,ZHENG Jiawen,et al. Progress in researches on ensemble forecasting of extreme weather based on numerical models[J]. Advances in Earth Science,2019,34(7):706-716.
GAO Li,CHEN Jing,ZHENG Jiawen,et al. Progress in researches on ensemble forecasting of extreme weather based on numerical models[J]. Advances in Earth Science,2019,34(7):706-716.
高丽,陈静,郑嘉雯,等. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展,2019,34(7):706-716.
高丽,陈静,郑嘉雯,等. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展,2019,34(7):706-716.
26 MA Leiming. Development of artificial intelligence technology in weather forecast[J]. Advances in Earth Science,2020,35(6):551-560.
MA Leiming. Development of artificial intelligence technology in weather forecast[J]. Advances in Earth Science,2020,35(6):551-560.
马雷鸣. 天气预报中的人工智能技术进展[J]. 地球科学进展,2020,35(6):551-560.
马雷鸣. 天气预报中的人工智能技术进展[J]. 地球科学进展,2020,35(6):551-560.
27 CHANG Mingheng,BAI Yulong,MA Xiaoyan,et al. Localization analysis of data assimilation methods coupled with fuzzy control algorithms[J]. Advances in Earth Science,2018,33(8):874-883.
CHANG Mingheng,BAI Yulong,MA Xiaoyan,et al. Localization analysis of data assimilation methods coupled with fuzzy control algorithms[J]. Advances in Earth Science,2018,33(8):874-883.
常明恒,摆玉龙,马小艳,等. 一种新的耦合模糊控制局地化的同化方法[J]. 地球科学进展,2018,33(8):874-883.
常明恒,摆玉龙,马小艳,等. 一种新的耦合模糊控制局地化的同化方法[J]. 地球科学进展,2018,33(8):874-883.
28 MA Xiaoyan,BAI Yulong,TANG Lihong,et al. A new localization method based on fuzzy analysis of observation information[J]. Journal of Geo-information Science,2019,21(12):1 855-1 866.
MA Xiaoyan,BAI Yulong,TANG Lihong,et al. A new localization method based on fuzzy analysis of observation information[J]. Journal of Geo-information Science,2019,21(12):1 855-1 866.
马小艳,摆玉龙,唐丽红,等. 一种新的基于模糊分析观测信息的局地化方法[J]. 地球信息科学学报,2019,21(12):1 855-1 866.
马小艳,摆玉龙,唐丽红,等. 一种新的基于模糊分析观测信息的局地化方法[J]. 地球信息科学学报,2019,21(12):1 855-1 866.
29 LI Xin,LIU Feng,FANG Miao. Harmonizing models and observation: Data assimilation in Earth system science[J]. Science China Earth Sciences,2020,50(9):1 185-1 194.
LI Xin,LIU Feng,FANG Miao. Harmonizing models and observation: Data assimilation in Earth system science[J]. Science China Earth Sciences,2020,50(9):1 185-1 194.
李新,刘丰,方苗. 模型与观测的和弦:地球系统科学中的数据同化[J]. 中国科学:地球科学,2020,50(9):1 185-1 194.
李新,刘丰,方苗. 模型与观测的和弦:地球系统科学中的数据同化[J]. 中国科学:地球科学,2020,50(9):1 185-1 194.
30 OTT E,HUNT B R,SZUNYOGH I,et al. A local Ensemble Kalman Filter for atmospheric data assimilation[J]. Tellus Series A—Dynamic Meteorology and Oceanography,2004,56(5):415-428.
OTT E,HUNT B R,SZUNYOGH I,et al. A local Ensemble Kalman Filter for atmospheric data assimilation[J]. Tellus Series A—Dynamic Meteorology and Oceanography,2004,56(5):415-428.
31 MAMDANI E H. Application of fuzzy algorithms for control of simple dynamic plant[J]. Proceedings of the Institution of Electrical Engineers,1974,121(12):1 585-1 588.
MAMDANI E H. Application of fuzzy algorithms for control of simple dynamic plant[J]. Proceedings of the Institution of Electrical Engineers,1974,121(12):1 585-1 588.
32 CHEN Yan,OLIVER D S. Ensemble-based closed-loop optimization applied to brugge field[J]. SPE Reservoir Evaluation & Engineering,2010,13 (1):56-71.
CHEN Yan,OLIVER D S. Ensemble-based closed-loop optimization applied to brugge field[J]. SPE Reservoir Evaluation & Engineering,2010,13 (1):56-71.
33 BAI Yulong,CHANG Mingheng,XU Baoxiong,et al. Application of fuzzy control to observational error covariance matrices for data assimilation[C] //Antonio J. Fuzzy systems and data mining IV. IOS Press,2019:553-562.
BAI Yulong,CHANG Mingheng,XU Baoxiong,et al. Application of fuzzy control to observational error covariance matrices for data assimilation[C] //Antonio J. Fuzzy systems and data mining IV. IOS Press,2019:553-562.
34 BERRY T,SAUER T. Correlation between system and observation errors in data assimilation[J]. Monthly Weather Review,2018,146(9):2 913-2 931.
BERRY T,SAUER T. Correlation between system and observation errors in data assimilation[J]. Monthly Weather Review,2018,146(9):2 913-2 931.
35 LU Yongnan,BAI Yulong,XU Baoxiong,et al. Observation error handling methods of data assimilation coupled with fuzzy control algorithms[J]. Remete Sensing Technology and Application,2017,32(3):459-465.
LU Yongnan,BAI Yulong,XU Baoxiong,et al. Observation error handling methods of data assimilation coupled with fuzzy control algorithms[J]. Remete Sensing Technology and Application,2017,32(3):459-465.
卢勇男,摆玉龙,徐宝兄,等. 耦合模糊控制算法的数据同化观测误差处理方法[J]. 遥感技术与应用,2017,32(3):459-465.
卢勇男,摆玉龙,徐宝兄,等. 耦合模糊控制算法的数据同化观测误差处理方法[J]. 遥感技术与应用,2017,32(3):459-465.
36 GREYBUSH S J,KALNAY E,MIYOSHI T,et al. Balance and Ensemble Kalman Filter localization techniques[J]. Monthly Weather Review,2011,139(2):511-522.
GREYBUSH S J,KALNAY E,MIYOSHI T,et al. Balance and Ensemble Kalman Filter localization techniques[J]. Monthly Weather Review,2011,139(2):511-522.
37 GASPARI G,COHN S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society,1999,125(554):723-757.
GASPARI G,COHN S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society,1999,125(554):723-757.
38 YIN Yunhua,CHEN Mine,ZHENG Bin,et al. Design and simulation of a fuzzy controller based on matlab[J]. Control Engineering of China,2007,14(5):488-490.
YIN Yunhua,CHEN Mine,ZHENG Bin,et al. Design and simulation of a fuzzy controller based on matlab[J]. Control Engineering of China,2007,14(5):488-490.
殷云华,陈闽鄂,郑宾,等. 基于Matlab的模糊控制器设计及仿真[J]. 控制工程,2007,14(5):488-490.
殷云华,陈闽鄂,郑宾,等. 基于Matlab的模糊控制器设计及仿真[J]. 控制工程,2007,14(5):488-490.
39 WANG Panbao,WANG Wei,MENG Nina,et al. Multi-objective energy management system for DC microgrids based on the maximum membership degree principle[J]. Journal of Modern Power Systems and Clean Energy,2018,6(4):668-678.
WANG Panbao,WANG Wei,MENG Nina,et al. Multi-objective energy management system for DC microgrids based on the maximum membership degree principle[J]. Journal of Modern Power Systems and Clean Energy,2018,6(4):668-678.
40 LORENZ E N,EMANUEL K A. Optimal sites for supplementary weather observations: Simulation with a small model[J]. Journal of the Atmospheric Sciences,1998,55(3):399-414.
LORENZ E N,EMANUEL K A. Optimal sites for supplementary weather observations: Simulation with a small model[J]. Journal of the Atmospheric Sciences,1998,55(3):399-414.
41 WU Guocan,ZHENG Xiaogu. Analysis programme in assimilation of Ensemble Transform Kalman Filter[J]. China Science Paper,2015,10(3):256-260.
WU Guocan,ZHENG Xiaogu. Analysis programme in assimilation of Ensemble Transform Kalman Filter[J]. China Science Paper,2015,10(3):256-260.
吴国灿,郑小谷. 集合转换卡尔曼滤波同化的一种分析方案[J]. 中国科技论文,2015,10(3):256-260.
吴国灿,郑小谷. 集合转换卡尔曼滤波同化的一种分析方案[J]. 中国科技论文,2015,10(3):256-260.
42 HAN Pei,SHU Hong,XU Jianhui. A comparative study of background error covariance localization in EnKF data assimilation[J]. Advances in Earth Science,2014,29(10):1 175-1 185.
HAN Pei,SHU Hong,XU Jianhui. A comparative study of background error covariance localization in EnKF data assimilation[J]. Advances in Earth Science,2014,29(10):1 175-1 185.
韩培,舒红,许剑辉. EnKF同化的背景误差协方差矩阵局地化对比研究[J]. 地球科学进展,2014,29(10):1 175-1 185.
韩培,舒红,许剑辉. EnKF同化的背景误差协方差矩阵局地化对比研究[J]. 地球科学进展,2014,29(10):1 175-1 185.
43 HOTEIT I,PHAM D,GHARAMTI M E,et al. Mitigating observation perturbation sampling errors in the stochastic EnKF[J]. Monthly Weather Review,2015,143(7):2 918-2 936.
HOTEIT I,PHAM D,GHARAMTI M E,et al. Mitigating observation perturbation sampling errors in the stochastic EnKF[J]. Monthly Weather Review,2015,143(7):2 918-2 936.
44 HOUTEKAMER P L,ZHANG Fuqing. Review of the Ensemble Kalman Filter for atmospheric data assimilation[J]. Monthly Weather Review,2016,144(12):4 489-4 532.
HOUTEKAMER P L,ZHANG Fuqing. Review of the Ensemble Kalman Filter for atmospheric data assimilation[J]. Monthly Weather Review,2016,144(12):4 489-4 532.
45 MA Xulin,YU Yueming,CHEN Dehui. The present situation and prospects of the adaptive observation[J]. Acta Meteorologica Sinica,2015,73(2):221-235.
MA Xulin,YU Yueming,CHEN Dehui. The present situation and prospects of the adaptive observation[J]. Acta Meteorologica Sinica,2015,73(2):221-235.
马旭林,于月明,陈德辉. 适应性观测研究现状和展望[J]. 气象学报,2015,3(2):21-235.
马旭林,于月明,陈德辉. 适应性观测研究现状和展望[J]. 气象学报,2015,3(2):21-235.
46 BAI Yulong,LU Yongnan,GUO Pengfei,et al. Observation error handling methods for data assimilation coupled with fuzzy control algorithms[C]//Antonio J. Fuzzy systems and data mining III. IOS Press,2017:152-159.
BAI Yulong,LU Yongnan,GUO Pengfei,et al. Observation error handling methods for data assimilation coupled with fuzzy control algorithms[C]//Antonio J. Fuzzy systems and data mining III. IOS Press,2017:152-159.
[1] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[2] 常明恒, 摆玉龙, 马小艳, 孟若玉, 王丽丽. 一种新的耦合模糊控制局地化的同化方法[J]. 地球科学进展, 2018, 33(8): 874-883.
[3] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[4] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[5] 毛伏平, 张述文, 叶丹, 杨茜茜. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展, 2015, 30(6): 700-708.
[6] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[7] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[8] 熊春晖,张立凤,关吉平,陶恒锐,苏佳佳. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.
[9] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[10] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
[11] 李得勤,段云霞,张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434.
[12] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[13] 李新,摆玉龙. 顺序数据同化的Bayes滤波框架[J]. 地球科学进展, 2010, 25(5): 515-522.
[14] 邢雅娟,刘东生,王鹏新. 遥感信息与作物生长模型的耦合应用研究进展[J]. 地球科学进展, 2009, 24(4): 444-451.
[15] 周剑,根绪,李新,杨永民,潘小多. 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展, 2008, 23(9): 965-973.
阅读次数
全文


摘要