地球科学进展 ›› 2014, Vol. 29 ›› Issue (9): 1075 -1084. doi: 10.11867/j.issn.1001-8166.2014.09.1075

上一篇    下一篇

基于水文模型的蒸散发数据同化实验研究
尹剑 1( ), 占车生 2, 顾洪亮 1, 王飞宇 2   
  1. 1. 安庆师范学院资源环境学院,安徽 安庆 246011
    2. 中国科学院地理科学与资源研究所,北京 100101
  • 收稿日期:2014-05-20 修回日期:2014-08-06 出版日期:2014-09-10
  • 基金资助:
    国家自然科学基金项目“基于水文模型的流域蒸散发数据同化适应性研究”(编号:41401042)和“一种高效的流域蒸散过程模拟方法及其不确定性研究”(编号:41271003)资助

A Case Study of Evapotranspiration Data Assimilation Based on Hydrological Model

Jian Yin 1( ), Chesheng Zhan 2, Hongliang Gu 1, Feiyu Wang 2   

  1. 1. School of Resources and Environment,Anqing Normal University,Anqing 246011,China
    2. Institute of Geographic Science and Natural Resource Research,CAS,Beijing 100101,China
  • Received:2014-05-20 Revised:2014-08-06 Online:2014-09-10 Published:2014-09-10

流域蒸散发定量估算一直是水科学领域的研究前沿,水文模型和遥感反演是当前估算区域蒸散发的常用手段。研究通过数据同化,集成水文模型和遥感模型的优势,耦合遥感蒸散发到水文模型中以实现多源数据下的蒸散发数据同化。选择北京市沙河流域为研究区,分布式时变增益水文模型作为模型算子,基于集合卡尔曼滤波同化算法,利用双层遥感模型模拟的蒸散发同化水文模型,并基于地面通量站观测的日蒸散发进行验证。结果表明,同化结果与观测数据相比平均绝对百分比误差较同化前减少,精度进一步提升,且当遥感观测输入频繁时精度改善明显。研究证明基于水文模型的蒸散发数据同化系统,是一种可实现输出精度更高和时序连续的区域蒸散发的新型模式。该成果将进一步丰富创新蒸散发估算的学科内容,为准确理解区域水循环规律提供科学依据。

The quantitative estimation of watershed Evapotranspiration (ET) has been an international frontier in water sciences for a long time. Hydrological models and remote sensing ET models are usually used to estimate regional ET at different spacetime scales, but these two methods are obviously insufficient to obtain precise and continuous regional ET. The hydrological models have the capability to simulate time-continuous daily or monthly ET processes, but the accuracy is not high compared with remote sensing ET models. The applicability of remote sensing ET models based on surface energy balance is restricted by the lack of high frequency and high resolution thermal data. A compromise between these two methodologies is represented by improving the optimization of hydrological models on the basis of a new ET series, which are produced by Data Assimilation (DA) scheme combining sparse remote estimates into the hydrological model. This study aimed to integrate the advantages of the two models to simulate the daily ET processes in Shahe River basin, Beijing. For this progect, the distributed hydrological model was fist constructed and the daily hydrological processes of 19992007 simulated. Then, the Ensemble Kalman Filter (EnKF) was used to assimilate the ET series calculated by remote sensing retrieval into the hydrological model to adjust the simulation. The results show that the ET estimation accuracy is improved after the data assimilation, and the MAPE between the DSMbased ETs and LASbased ETs in the study area is reduced. The integrated method is proved better, and improves the hydrology modeling accuracy. Therefore, the project successfully develops a new land surface ET mode with the advantages of hydrological model and remote sensing ET model, and the study founds the new method could simulate regional ET with high accuracy and continuous time series. The new land surface ET model not only follows the surface energy balance, but also meets the regional water balance, and has more perfect water thermal coupling mechanism. The study will further enrich the content of ET estimation disciplines, and provide a scientific basis for better understanding of the laws of regional water cycle.

中图分类号: 

图1 研究区示意图需要彩色印刷
Fig.1 Map of the study area
表1 研究收集的数据信息
Table 1 The data list for the study
图2 流域蒸散同化技术路线图
Fig.2 The schematic framework of watershed evapotranspiration data assimilation
图3 DTVGM模拟流域月蒸散量(1999—2007年)
Fig.3 The monthly ET simulated by DTVGM with out data assimilation (1999-2007)
图4 不同方式获得的区域日蒸散发比较
Fig.4 The ET of typical day by different method
图5 1999—2007年沙河流域逐日流域平均蒸散发(5日移动均线)
Fig.5 Average daily ET processes in the Shahe river basin in 1999-2007 (5 days moving average curve)
图6 日蒸散发的DTVGM模拟和同化结果比较(2002年、2007年)
Fig. 6 The comparation of ET in typical days through DTVGM and data assimilation (2002, 2007)
表2 DTVGM模拟、数据同化输出与ET-Watch模型估算的年蒸散发比较
Table 2 The Comparation of yearly ET simulated by DTVGM, DA and ET-Watch
[1] Cammalleri C, Agnese C, Ciraolo G, et al. Actual evapotranspiration assessment by means of a coupled energy/hydrologic balance model: Validation over an olive grove by means of scintillometry and measurements of soil water contents[J]. Journal of Hydrology, 2010, 392(1/2): 70-82.
[2] Liu C, Zhang D, Liu X, et al. Spatial and temporal change in the potential evapotranspiration sensitivity to meteorological factors in China (1960-2007)[J]. Journal of Geographical Sciences, 2012, 22(1): 3-14.
[3] Cheng Guodong, Zhao Wenzhi. Green water and its research progresses[J]. Advances in Earth Science, 2006, 21(3): 221-227.
程国栋, 赵文智. 绿水及其研究进展[J]. 地球科学进展, 2006, 21(3): 221-227.
[4] Zhang Wanchang, Gao Yongnian. Estimation of regional evapotranspiration using two source energy balance model and ETM+ imagery[J]. Scientia Geographica Sinica, 2009, 29(4): 523-528.
张万昌, 高永年. 区域土壤植被系统蒸散发二源遥感估算[J]. 地理科学, 2009, 29(4): 523-528.
[5] Zhang Jincun, Rui Xiaofang. Discussion of theory and methods for building a distributed hydrologic model[J]. Advances in Water Science,2007, 18(2): 286-292.
张金存, 芮孝芳. 分布式水文模型构建理论与方法述评[J]. 水科学进展, 2007, 18(2): 286-292.
[6] Song X, Zhan C, Kong F, et al. Advances in the study of uncertainty quantification of large-scale hydrological modeling system[J]. Acta Geographica Sinica, 2011, 21(5): 801-819.
[7] Liang Shunlin,Li Xin,Xie Xianhong. Land Surface Observation, Modeling and Data Assimilation[M]. Beijing: Higher Education Press, 2013.
梁顺林,李新,谢先红. 陆面观测、模拟和数据同化[M]. 北京: 高等教育出版社,2013.
[8] Zhang Ronghua, Du Junping, Sun Rui. Review of estimation and validation of regional evapotranspiration based on remote sensing[J]. Advances in Earth Science, 2012, 27(12): 1 295-1 307.
张荣华, 杜君平, 孙睿. 区域蒸散发遥感估算方法及验证综述[J]. 地球科学进展, 2012, 27(12): 1 295-1 307.
[9] Chen H, Yang D, Hong Y, et al. Hydrological data assimilation with the Ensemble Square-Root-Filter: Use of streamflow observations to update model states for real-time flash flood forecasting[J]. Advances in Water Resources, 2013, 59: 209-220.
[10] Gong Peng. Some essential questions in remote sensing science and technology[J]. Journal of Remote Sensing, 2009, 13(1): 13-23.
宫鹏. 遥感科学与技术中的一些前沿问题[J]. 遥感学报, 2009, 13(1): 13-23.
[11] Xie X, Zhang D. Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter[J]. Advances in Water Resources, 2010, 33(6): 678-690.
[12] Li Xin, Huang Chunlin, Che Tao, et al. Advance and prospect of land surface data assimilation research in China[J]. Progress in National Science, 2007, 17(2): 163-173.
李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, 17(2): 163-173.
[13] Xiong Chunhui, Zhang Lifeng, Guan Jiping, et al. Development and application of ensemble-variational data assimilation methods[J]. Advances in Earth Science, 2013, 28(6): 648-656.
熊春晖, 张立凤, 关吉平, 等. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.
[14] Wang Wen, Kou Xiaohua. Methods for hydrological data assimilation and advances of assimilating remotely sensed data into rainfall-runoff models[J]. Journal of Hohai University (Natural Sciences), 2009, 37(5): 556-562.
王文, 寇小华. 水文数据同化方法及遥感数据在水文数据同化中的应用进展[J]. 河海大学学报:自然科学版, 2009, 37(5): 556-562.
[15] Wang D, Cai X. Optimal estimation of irrigation schedule-an example of quantifying human interferences to hydrologic processes[J]. Advances in Water Resourses, 2007, 30(8): 1 844-1 857.
[16] Moradkhami M. Review: Hydrologic remote sensing and land surface data assimilation[J]. Sensors, 2008, 8(5): 2 986-3 004.
[17] Schuurmans M, Troch A, Veldhuizen A, et al. Assimilation of remotely sensed latent heat flux in a distributed hydrological model[J]. Advances in Water Resources, 2003, 26(2): 151-159.
[18] Pan M, Wood E, Wójcik R, et al. Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation[J]. Remote Sensing of Environment, 2008, 112(4): 1 282-1 294.
[19] Qin C, Jia Y, Su Z, et al. Integrating remote sensing information into a distributed hydrological model for improving water budget predictions in large-scale basins through data assimilation[J]. Sensors, 2008, 8(7): 4 441-4 465.
[20] Pipunic C, Walker P, Western A. Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study[J]. Remote Sensing of Environment, 2008, 112(4): 1 295-1 305.
[21] Xia J, Wang G, Tan G, et al. Development of distributed time-variant gain model for nonlinear hydrological systems[J]. Science in China (Series D), 2005, 48(6): 713-723.
[22] Yin Jian,Wang Huixiao,Zhan Chesheng,et al. Land surface heat in the Shahe River Basin derived from emote sensing data[J]. Journal of Beijing Normal University(Natural Science), 2012, 48(5): 566-571.
尹剑,王会肖,占车生,等.沙河流域地表通量的定量遥感估算[J].北京师范大学学报:自然科学版, 2012, 48(5): 566-571.
[23] Zhang R, Tian J, Su H, et al. Two improvements of an operation al two-layer model for terrestrial surface heat flux retrieval[J]. Sensors, 2008, 8(10): 6 165-6 187.
[24] Zhan Chesheng, Yin Jian, Wang Huixiao, et al. The regional evapotranspiration estimation using a two-layer model based on quantitative remote sensing in Shahe River Basin[J].Journal of National Resource, 2013, 28(1): 161-170.
占车生, 尹剑, 王会肖, 等. 基于双层模型的沙河流域蒸散发定量遥感估算[J]. 自然资源学报, 2013, 28(1): 161-170.
[25] Jia Kun,Yao Yunjun,Wei Xiangqin,et al. A review on fractional vegetation cover estimation using remote sensing[J]. Advances in Earth Science, 2013, 28(7): 774-782.
贾坤, 姚云军, 魏香琴, 等. 植被覆盖度遥感估算研究进展[J]. 地球科学进展, 2013, 28(7): 774-782.
[26] Xia Jun, Ye Aizhong, Wang Rui, et al. Large scale distributed hydrological model of inter-basin water transfer and its application[J]. South-to-North Water Diversion and Water Science & Technology, 2011, 9(1): 1-7, 95.
夏军, 叶爱中, 王蕊, 等. 跨流域调水的大尺度分布式水文模型研究与应用[J]. 南水北调与水利科技, 2011, 9(1): 1-7, 95.
[27] Huang Chunlin, Li Xin. Experiments of soil moisture data assimilation system based on ensemble kalman filter[J]. Plateau Meteorology, 2006, 25(4): 665-671.
黄春林, 李新. 基于集合卡尔曼滤波的土壤水分同化试验[J]. 高原气象, 2006, 25(4): 665-671.
[28] Huang Chunlin, Li Xin. Sensitivity analysis on land data assimilation scheme of soil moisture[J]. Advances in Water Science, 2006, 17(4): 457-465.
黄春林, 李新. 土壤水分同化系统的敏感性试验研究[J]. 水科学进展, 2006, 17(4): 457-465.
[29] Duan Q, Sorooshian S, Gupta V. Effective and efficient global optimization for conceptual rainfall-runoff models[J]. Water Resources Research,1992, 28(4): 1 015-1 031.
[30] Wu Bingfang, Xiong Jun, Yan Na’na, et al. ET-Watch for monitoring regional evapotranspiration with remote sensing[J]. Advances in Water Science, 2008, 19(5): 671-678.
吴炳方, 熊隽, 闫娜娜, 等. 基于遥感的区域蒸散量监测方法——ET-Watch[J]. 水科学进展, 2008, 19(5): 671-678.
[1] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[2] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[3] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[4] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[7] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[8] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[9] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于 HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[10] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[11] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[12] 毛伏平, 张述文, 叶丹, 杨茜茜. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展, 2015, 30(6): 700-708.
[13] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[14] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[15] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
阅读次数
全文


摘要