地球科学进展 ›› 2014, Vol. 29 ›› Issue (9): 1065 -1074. doi: 10.11867/j.issn.1001-8166.2014.09.1065

上一篇    下一篇

中国长焰煤物性特征及其煤层气资源潜力
简阔 2( ), 傅雪海 1, 2, 3, 王可新 1, 2, 张玉贵 4   
  1. 1.中国矿业大学 资源与地球科学学院,江苏 徐州 221008
    2.中国矿业大学 煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221008
    3.新疆大学地质与矿业工程学院,新疆维吾尔自治区 乌鲁木齐 830047
    4.河南理工大学 安全科学与工程学院,河南 焦作 454000
  • 收稿日期:2014-05-12 修回日期:2014-08-09 出版日期:2014-09-10
  • 基金资助:
    国家自然科学基金项目“新疆低煤级储层煤层气成藏模式研究”(编号:41362009);新疆维吾尔族自治区引进高层次人才及“天山学者”启动基金项目(编号:11100213)资助

Physical Characteristics and CBM Resources Potential of Long Flame Coal in China

Kuo Jian 1, 2( ), Xuehai Fu 1, 2, 3, Kexin Wang 1, 2, Yugui Zhang 4   

  1. 1. School of Resources and Geoscience, China University of Mining and Technology , Xuzhou,Jiangsu 221008,China
    2. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process ,Ministry of Education , China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
    3. School of Geology and Mining Engineering, Xinjiang University, Xinjiang Uygur Autonomous Regions, Urumqi 830047, China
    4. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
  • Received:2014-05-12 Revised:2014-08-09 Online:2014-09-10 Published:2014-09-10

为了评价我国长焰煤储层煤层气开发前景,对全国范围内的34个长焰煤煤样(测试18个/收集16个),进行了煤岩组分、平衡水分、工业分析和物性特征分析,以及等温吸附实验和煤表面能计算。结果表明:长焰煤的平衡水分、干燥无灰基挥发分、空气干燥基水分随煤化程度的增加而减少,孔隙率随煤化程度增大而增大,且孔容分布不均,以大孔最多,约占40%,孔比表面积以过渡孔和微孔占绝对优势,二者约占97%;长焰煤的朗缪尔体积随惰质组含量的增加而趋于增大,随镜质组含量的增加呈减少趋势,且煤表面能ΔγL和朗缪尔体积均随煤化程度的增加而增大,随温度的升高而减小,煤表面能对甲烷吸附控制作用明显。估算全国2 000 m以浅长焰煤煤层气资源量为4.3万亿m3,长焰煤孔隙率高,孔径结构分布连续,且连通性较好,其煤层气资源具有开发潜力。当前我国低煤级煤层气尚未取得规模性商业开发的突破,本文为低煤级煤层气开发提供了长焰煤储层的基础研究,指明了其物性特征及优势,梳理了不同区域的长焰煤煤层气资源,对低煤级中长焰煤煤层气开发具有一定指导意义。

In order to evaluate the development prospects of coalbed methane (CBM) of Long flame coal reservoirs, we analyzed the coal maceral, equilibrium moisture content, industry analysis and physical characteristics of 34 long flame coal samples (testing 18/collecting 16) nationwide. Moreover, Isothermal adsorption experiments and the calculation of coal surface energy were carried out. The results show that: equilibrium moisture, dry ash-free volatile and air-dried basis moisture of long flame coal decrease with increasing degree of coalification, but porosity increases with increasing degree of coalification. And the pore volume is unevenly distributed, the macropore accounts for most of the total volume (about 40%), the specific surface area of transition pore and micro pore has an absolute advantage (about 97%). Langmuir volume shows an increasing trend with increasing inertinite content, and shows an decreasing trend with increasing vitrinite content. Besides , both ΔγL and Langmuir volume increases with the increase of degree of coalification, and decreases with increasing temperature, so it is obvious that coal surface energy controls the action of methane adsorption. Nationwide, The CBM resources of long flame coal within the 2000m were estimated at 4.3×1012 m3.The porosity of long flame coal is larger, pore connectivity is better, and pore size distribution is continuous. Thus, the CBM resources of long flame coal has the development potential. At present, the low rank CBM development in our country has not yet achieved a breakthrough in the scale of commercial development. In this paper, we provided a basis for the study of long flame coal reservoir for low rank CBM development, pointed out its physical characteristics and advantages, and combed CBM resources of long flame coal located in different regions, which has certain guiding significance for CBM development of long flame coal in the low rank coal.

中图分类号: 

表1 2 000 m以浅长焰煤煤层气资源量
Table 1 CBM resources of long flame coal within the 2 000m
图1 Ro, maxMad, Vdaf的关系
Fig.1 The relation between Ro, max and Mad, Vdaf
表2 长焰煤煤岩工业分析、平衡水分(Me)及孔隙度测试结果
Table 2 Long flame coal rock identification, industry analysis, equilibrium moisture content(Me) and porosity test results
采样
地点

Ro,max
/%
Me
/%
工业分析 /% 煤岩显微组分
(%,去矿物基)
真密度/
(g/cm3)
视密度/
(g/cm3)
孔隙率(φ)/%
Mad Ad Vdaf 镜质组 惰质组 稳定组
吐哈 TH-1
TH-2
TH-3
TH-4
TH-5
TH-6
TH-7
TH-8*
TH-9
TH-10
TH-11*
0.50
0.53
0.54
0.54
0.55
0.56
0.56
0.57
0.65
0.65
0.65
8.79
11.85
6.78
10.14
7.75
11.61
13.62
/
/
11.66
/
4.31
6.69
3.61
3.37
4.63
7.74
10.78
2.59
3.84
/
4.74
4.82
14.01
7.29
12.46
4.14
3.51
0.40
3.18
7.77
5.25
2.38
43.47
40.25
47.55
44.15
40.69
39.76
38.07
34.50
41.72
29.36
23.73
69.78
75.00
87.01
90.52
76.99
85.68
72.20
65.52
62.81
36.42
6.34
26.17
18.48
2.89
1.81
17.72
10.79
24.69
20.53
31.20
59.05
87.51
3.32
5.83
10.89
8.15
4.71
3.29
2.56
3.95
4.79
2.93
6.14
1.31
1.43
1.34
1.42
1.36
1.35
/
1.41
/
/
1.46
1.28
1.39
1.30
1.36
1.30
1.28
/
1.28
/
/
1.26
2.29
2.80
2.99
4.23
4.41
5.19
/
9.22
/
/
13.70
准格尔 ZR-1*
ZR-2*
ZR-3*
ZR-4*
ZR-5
ZR-6
ZR-7
ZR-8
ZR-9*
ZR-10*
ZR-11*
ZR-12*
0.51
0.53
0.54
0.54
0.54
0.57
0.58
0.59
0.59
0.60
0.62
0.64
/
/
/
/
5.67
8.71
/
6.37
/
/
/
/
6.53
6.64
6.77
8.86
3.63
3.45
10.48
1.93
/
2.50
1.10
3.14
4.25
2.33
3.62
4.24
3.16
7.34
3.69
3.63
/
2.98
9.12
2.66
/
/
/
/
32.39
31.53
/
39.07
/
/
/
/
89.2
86.3
84.7
14.9
54.79
36.70
16.5
72.02
72.05
27.6
44.0
60.4
1.2
6.1
3.7
83.1
40.21
60.30
79.5
25.10
25.1
66.9
49.0
39
9.6
7.6
11.5
2.1
3.70
1.91
3.9
2.88
2.85
5.5
7.0
0.6
/
/
/
/
/
/
/
1.27
/
/
/
/
/
/
/
/
/
/
/
1.26
/
/
/
/
/
7.23
/
/
/
/
/
0.79
8.13
4.33
3.25
8.09
陕北 SB-1
SB-2
0.55
0.65
/
/
10.90
/
4.98
4.97
38.60
30.50
53.01
55.11
31.97
26.62
15.02
18.27
1.43
1.52
1.31
1.43
8.39
/
铁法 TF 0.64 8.87 4.37 19.78 30.68 94.65 4.60 0.75 / / /
伊犁 YL* 0.65 / / 4.92 27.60 14.29 79.18 6.54 1.57 1.38 12.10
海拉尔 HLR 0.60 7.68 3.63 8.16 46.42 94.30 0.50 5.20 1.38 1.10 20.29
老君庙 L 0.62 / 9.43 2.98 29.99 / / / / / 17.91
鄂尔多斯 E-1*
E-2*
E-3*
E-4*
0.59
0.59
0.59
0.59
/
/
/
/
4.30
4.14
3.86
5.37
5.89
7.19
12.63
10.90
40.45
40.13
39.69
38.05
83.1
71.0
51.9
50.9
8.0
14.7
26.4
32.3
6.7
13.0
17.3
14.6
1.37
1.40
1.50
1.45
1.30
1.30
1.41
1.30
3.60
5.60
3.91
7.40
黄陵 HL* 0.61 / / / / 65.49 21.56 12.96 1.38 1.28 7.25
表3 长焰煤孔容特征
Table 3 The characteristics of Long flame coal pore volume
表4 长焰煤比表面积特征
Table 4 The characteristics of Long flame coal surface area
图2 Ro, max与孔隙率 φ的关系
Fig.2 The relation between Ro, max and φ
图3 Ro, max与比孔容的关系
Fig.3 The relation between Ro ,max and specific pore volume
图4 Ro, max与孔比表面积的关系
Fig.4 The relation between Ro, max and Pore specific surface area
图5 VLMe的关系( T=30 ℃)
Fig.5 The relation between VL and Me ( T=30 ℃)
图6 长焰煤等温吸附曲线( T=30 ℃)
Fig.6 Isothermal adsorption curve of long flame coal ( T=30 ℃)
图7 长焰煤显微组分与 VL的关系( T=30 ℃)
Fig.7 The relation between Long flame coal macerals and VL( T=30 ℃)
表5 30 ℃时等温吸附数据及煤表面能计算结果
Table 5 Isothermal adsorption data and coal surface energy calculation results at 30 ℃
表6 不同温度下等温吸附数据及朗缪尔煤表面能计算结果
Table 6 Isothermal adsorption data and coal surface energy calculation results at different temperature
图8 Ro,maxVL, ΔγL的关系( T=30 ℃)
Fig.8 The relation between Ro,max and VL, ΔγL( T=30 ℃)
图9 温度与 VL, ΔγL的关系
Fig.9 The relation temperature between and VL, ΔγL
[1] Mao Bijie,Xu Huilong,Yuan Sanwei,et al. Coal Resources Prediction and Evaluation in China[M]. Beijing:Science Press,1999.
毛毕节,许惠龙,袁三畏,等. 中国煤炭资源预测与评价[M]. 北京:科学出版社,1999.
[2] Han Dexin. China Coal Petrology[M]. Xuzhou:China University of Mining and Technology Press,1996.
韩德馨. 中国煤岩学[M]. 徐州:中国矿业大学出版社,1996.
[3] Zhang Xinmin. China Coalbed Methane Geology and Resource Evaluation[M]. Beijing:Science Press,2002.
张新民. 中国煤层气地质与资源评价[M]. 北京:科学出版社,2002.
[4] Wang Tong,Wang Junmin,Fu Xuehai,et al. Coal and CBM Resources Accumulation and Exploration Evaluation in Xinjiang Area[R]. Urumqi: Xinjiang Bureau of Coal Geology,2013.
王佟,王俊民,傅雪海,等. 新疆地区煤炭与煤层气资源聚集规律及勘查评价[R]. 乌鲁木齐:新疆煤田地质局,2013.
[5] Liu Zheng,Tan Xuan,Wang Haisheng,et al. Coal Resources/Reserves Estimation in Baode Area[R]. Beijing:PetroChina CBM Limited Liability Company,2011.
刘正,谭轩,王海生,等. 保德区块煤炭资源/储量估算[R]. 北京:中石油煤层气有限责任公司,2011.
[6] Zhang Peihe. CBM development potential of low metamorphic coal—Jurassic in Ordos Basin as an example[J]. Coal Geology & Exploration,2007,35(1): 29-33.
张培河. 低变质煤的煤层气开发潜力——以鄂尔多斯盆地侏罗系为例[J]. 煤田地质与勘探,2007,35(1): 29-33.
[7] Chen Gang. Deep Low-Rank Coalbed Methane System and Reservoiring Mechanism—In the Case of the Cainan Block in Junggar Basin[D]. Xuzhou:China University of Mining and Technology,2014.
陈刚. 深部低阶含煤层气系统及其成藏机制——以准噶尔盆地彩南地区为例[D]. 徐州: 中国矿业大学,2014.
[8] Wang Kexin. Physical Simulation and Numerical Simulation of Adsorbed State, Solubel State and Free State Gas Volume in Low Rank Coal Reservoir[D]. Xuzhou:China University of Mining and Technology,2010.
王可新. 低煤级储层三相态含气量物理模拟与数值模拟研究[D]. 徐州: 中国矿业大学,2010.
[9] Fu Xuehai,Peng Jinning. Three level seepage numerical simulation of long-flame coal CBM in Tiefa[J]. Journal of China Coal Society,2007,32(5): 494-498.
傅雪海,彭金宁. 铁法长焰煤储层煤层气三级渗流数值模拟[J]. 煤炭学报,2007,32(5): 494-498.
[10] Fu Xuehai,Qin Yong. Coalbed methane production wells comparative study of Tiefa DT3 well and Qinnan TL007 well[J]. Journal of China Coal Society,2004,29(6): 712-716.
傅雪海,秦 勇. 铁法DT3井与沁南TL007井煤层气产能对比研究[J]. 煤炭学报,2004,29(6): 712-716.
[11] Jiang Zaibing,Li Bin’gang,Du Xinfeng,et al. CBM Exploration Wells Parametric Test of Jiaoping Ore District[R]. Xi’an:Xi’an Institute of Coal Research Institute,2009.
姜在炳,李彬刚,杜新锋,等. 焦坪矿区地面煤层气勘探井参数测试[R]. 西安:煤炭科学研究总院西安研究院,2009.
[12] Galimov E M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rock[J]. Chemical Geology, 1988,71: 77-95.
[13] Xu Yongchang.Gas Formation Theory and Application[M]. Beijing:Science Press,1994.
徐永昌. 天然气成因理论及应用[M]. 北京:科学出版社,1994.
[14] Fu Xiaokang.Study on the Reservoir Characteristics and the Exploration Potential of Low Rank Coal in the Western China[D]. Beijing:China University of Geosciences,2006.
傅小康. 中国西部低阶煤储层特征及其勘探潜力分析[D]. 北京: 中国地质大学,2006.
[15] Wei Yuanjiang. Preliminary Study on Low-rank Coal Reservoirs and Coalbed Methane Pool Forming in Zhungaer Basin, NW China[D]. Beijing:China University of Geosciences,2002.
蔚远江. 准噶尔盆地低煤级煤储层及煤层气成藏初步研究[D]. 北京:中国地质大学,2002.
[16] Su Xianbo,Chen Jiangfeng,Sun Junmin,et al. CBM Geology and Exploration[M]. Beijing:Science Press,2001.
苏现波,陈江峰,孙俊民,等. 煤层气地质学与勘探开发[M]. 北京: 科学出版社,2001.
[17] Chen Peng. China Coal Properties, Classification and Use[M]. Beijing:Chemical Industry Press,2001.
陈鹏. 中国煤炭性质、分类和利用[M]. 北京: 化学工业出版社,2001.
[18] Xie Yongqiang. Experimental Study of Low-rank Coalbed Methane Adsorption and Desorption Mechanism[D]. Xi’an:Xi’an University of Science and Technology, 2006.
谢勇强. 低阶煤煤层气吸附与解吸机理实验研究[D]. 西安: 西安科技大学,2006.
[19] Χoдoт B B.Coal and Gas Outburst[M]. Beijing:China Industry Press,1966.
宋世钊,王佑安,译.煤与瓦斯突出[M]. 北京:中国工业出版社,1966.
[20] Fu Xuehai,Qin Yong,Wei Chongtao. Coalbed Methane Geology[M]. Xuzhou:China University of Mining and Technology Press,2007.
傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007.
[21] Hou Quanlin,Li Huijun,Fan Junjia,et al. Research progress of tectonic coal structure and CBM hosting[J]. Science in China (Series D),2012,42(10):1 487-1 495.
侯泉林,李会军,范俊佳,等. 构造煤结构与煤层气赋存研究进展[J]. 中国科学:D辑,2012,42(10):1 487-1 495.
[22] Li Huoyin,Ogawa Y. Pore structure of sheared coals and related coalbed methane[J]. Environmental Geology, 2001,40:1 455-1 461.
[23] Zhang Zheng,Qin Yong,Wang Guoxiong,et al. Numerical description of coalbed methane desorption stages based on isothermal adsorption experiment[J]. Science in China (Series D),2013,43(8):1 352-1 358.
[24] Barker-Reed G R, Radchenco S A. The relationship between the pore structure of coal and gas-dynamic behavior of coal seams[J]. Mining Science and Technology,1989,8:109-131.
[25] Ju Yiwen,Bu Hongling, Wang Guochang. Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J]. Advances in Earth Science,2014,29(4):492-506.
琚宜文,卜红玲,王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展,2014,29(4):492-506.
[26] Zhang Qun,Yang Xilu. Isothermal adsorption characteristics of coal adsorbing methane under equilibrium moisture[J]. Journal of China Coal Society,1999,24(6):566-570.
张群,杨锡禄. 平衡水分条件下煤对甲烷的等温吸附特性研究[J]. 煤炭学报,1999,24(6):566-570.
[27] Ettinger I, Eremin I, Zimakov B, et al. Natural factors influeneing coal sorption properties. I. Petrography and sorption properties of coals[J]. Fuel,1966,45:267-275.
[28] Crosdale P J,Beamish B B,Valix M. Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology,1998, 35:147-158.
[29] Zhong Lingwen,Zhang Xinmin. The relationship between the adsorption capacity and degree of coalification,and petrographic constituent of coal[J]. Coal Geology & Exploration,1990,4:29-35.
钟玲文,张新民. 煤的吸附能力与其煤化程度和煤岩组成间的关系[J]. 煤田地质与勘探,1990,4:29-35.
[30] He Xueqiu,Wang Enyuan,Nie Baisheng,et al. Electromagnetic Dynamics of Coal Rheology[M]. Beijing:Science Press,2003.
何学秋,王恩元,聂百胜,等. 煤岩流变电磁动力学[M]. 北京:科学出版社,2003.
[31] Zhang Yugui,Zhang Zimin,Cao Yunxing. The structure of tectonic coal and outburst of gas[J]. Journal of China Coal Society,2007,32(3):281-284.
张玉贵,张子敏,曹运兴. 构造煤结构与瓦斯突出[J]. 煤炭学报,2007,32(3):281-284.
[32] Zhang Yugui,Cao Shengling,Xie Kechang. The index of degree of coalification in the evolution of coal structure[J]. Coal Conversion,2007,30(4):1-4.
张玉贵,曹升玲,谢克昌. 煤结构演化煤化度指标[J]. 煤炭转化,2007,30(4):1-4.
[33] Jiang Bo,Qin Yong,Jin Fali. XRD structure evolution of deformed coal in the condition of high temperature and high pressure[J]. Journal of China Coal Society,1998,23(2):188-193.
姜波,秦勇,金法礼. 高温高压实验变形煤XRD结构演化[J]. 煤炭学报,1998,23(2):188-193.
[34] Ju Yiwen,Jiang Bo,Hou Quanlin,et al. The structure of tectonic coal—Cause of the new classification and its geological significance[J]. Journal of China Coal Society,2004,29(5):513-517.
琚宜文,姜波,侯泉林,等. 构造煤结构——成因新分类及其地质意义[J]. 煤炭学报,2004,29(5):513-517.
[35] Yao Suping,Jiao Kun,Li Miaochun,et al. Advances in research of coal and kerogen nanostructure[J]. Advances in Earth Science,2012,27(4) :367-378.
姚素平,焦堃,李苗春,等. 煤和干酪根纳米结构的研究进展[J]. 地球科学进展,2012,27(4):367-378.
[36] Duan Lijiang, Tang Shuheng, Xia Zhaohui,et al. A review on gas sorption-induced coal swelling[J]. Advances in Earth Science,2012,27(3):262-267.
段利江,唐书恒,夏朝辉,等. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展,2012,27(3):262-267.
[37] Tan Muhua,Huang Yunyuan. Physical Chemistry of Surface[M]. Beijing:China Building Industry Press,1985:50-54.
谈慕华,黄蕴元. 表面物理化学[M]. 北京:中国建筑工业出版社,1985:50-54.
[38] Nie Baisheng,He Xueqiu,Wang Enyuan. Coal surface free energy and its application[J]. Journal of Taiyuan University of Technology,2000,31(4):346-348.
聂百胜,何学秋,王恩元. 煤的表面自由能及应用探讨[J]. 太原理工大学学报,2000,31(4):346-348.
[39] Wu Jun.The calculation of coal surface energy by adsorption method and significance[J]. Coal Geology & Exploration,1994,22(2):18-23.
吴俊. 煤表面能的吸附法计算及研究意义[J]. 煤田地质与勘探,1994,22(2):18-23.
[1] 康逊, 胡瑞璞, 胡文瑄, 谭静强. 准噶尔盆地下三叠统百口泉组烃类热氧化的氧化性物质研究[J]. 地球科学进展, 2021, 36(10): 1004-1014.
[2] 杨丽华, 刘池洋, 代双和, 周义军, 毕明波, 刘永涛. 鄂尔多斯盆地古峰庄地区断裂特征及油气地质意义[J]. 地球科学进展, 2021, 36(10): 1039-1051.
[3] 鲍园, 唐佳阳, 琚宜文, 安超. 鄂尔多斯盆地东南缘黄陵矿区中生代煤系烃源层构造—热演化过程与生物气生成[J]. 地球科学进展, 2021, 36(10): 993-1003.
[4] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[5] 陈愿愿,杨晓,邓小江,王小兰,何奇,程莉莉,陈科贵. 海鸥优化算法在四川盆地渝西区块 H井区页岩气储层最优化测井解释中的应用[J]. 地球科学进展, 2020, 35(7): 761-768.
[6] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[7] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[8] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[9] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例 *[J]. 地球科学进展, 2018, 33(11): 1154-1160.
[10] 陈科贵, 刘思序, 王兆峰, 张翼飞. 基于曲线重构的缝洞型碳酸盐岩储层测井识别研究——以南图尔盖盆地Karabulak油田Pz层为例[J]. 地球科学进展, 0, (): 15-.
[11] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[12] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
[13] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
[14] 张亦弛, 马新仿, 张士诚, 韩珊, 秦思捷, 张弛. 利用工业CT对致密砂岩裂缝三维定量评价——以塔里木盆地库车凹陷巴什基奇克组砂岩为例[J]. 地球科学进展, 2018, 33(2): 213-224.
[15] 李琦, 徐亮, 匡冬琴. 阿姆河右岸区块气藏酸气的成因与分布影响因素[J]. 地球科学进展, 2017, 32(11): 1183-1192.
阅读次数
全文


摘要