地球科学进展 ›› 2018, Vol. 33 ›› Issue (2): 213 -224. doi: 10.11867/j.issn.1001-8166.2018.02.0213

新学科·新技术·新发现 上一篇    

利用工业CT对致密砂岩裂缝三维定量评价——以塔里木盆地库车凹陷巴什基奇克组砂岩为例
张亦弛( ), 马新仿 *( ), 张士诚, 韩珊, 秦思捷, 张弛   
  1. 中国石油大学(北京)石油工程学院,北京 102249
  • 收稿日期:2017-07-27 修回日期:2017-12-04 出版日期:2018-02-20
  • 通讯作者: 马新仿 E-mail:9665095@qq.com;552943533@qq.com
  • 基金资助:
    国家自然科学基金项目“致密油压裂水平井渗流机理研究”(编号:51574255)资助

Three-dimensional Quantitative Fracture Analysis of Tight Gas Sandstones Using Industrial Computed Tomography: A Case of Bashijiqike Member in Tarim Basin

Yichi Zhang( ), Xinfang Ma *( ), Shicheng Zhang, Shan Han, Sijie Qin, Chi Zhang   

  1. China University of Petroleum, Beijing 102249, China
  • Received:2017-07-27 Revised:2017-12-04 Online:2018-02-20 Published:2018-02-20
  • Contact: Xinfang Ma E-mail:9665095@qq.com;552943533@qq.com
  • About author:

    First authors:Zhang Yichi(1991-),male,Yizheng City, Jiangsu Province,Master student. Research areas include oil and natural gas engineering. E-mail:9665095@qq.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “The research of Horizontal Well fracturing in tight oil reservoirs”(No.51574255)

利用高分辨率工业CT成像系统(ICT)对致密砂岩裂缝进行三维定量评价具有不破坏样品的优点。利用二维切片、三维可视化软件对裂缝网格进行定量评价,首先扫描岩心样品产生灰度图像,同时测量相对应的裂缝面积、长度、张开度、孔隙度和密度;利用体积渲染软件对二维切片进行叠加产生完整的三维图像,开启的裂缝被标注蓝绿色、方解石充填的裂缝被标注品红色;利用三维计数方法计算开启的裂缝和开裂缝的比表面积、体积、裂缝孔隙度和张开度。通过ICT技术在大气压力下计算裂缝孔隙度和张开度比成像测井技术在地层真实压力下计算的数值要大,最后通过计算裂缝渗透率判断裂缝之间的连通性。裂缝密度的分布、裂缝的张开度决定了致密砂岩储层渗透率和产量。

Fractures are the main fluid-flow pathways in tight-oil sandstones, and they have significant influence on tight-oil distribution, exploration, and development. Cores and image logs are commonly unavailable because of their high costs. Therefore, employing conventional logs for fracture detection is imperative for tight-oil sandstones. Fractures, such as intragranular fractures, grain-edge fractures, and transgranular fractures, are abundant in the tight sandstones. Fractures improve storage and permeability and impact distribution of natural gas. Tight gas sandstone samples are imaged at high resolution industrial X-ray computed tomography (ICT) systems to provide a three-dimensional quantitative characterization of the fracture geometries. ICT has the advantage of performing three-dimensional fracture imaging in a nondestructive way. Fracture networks were quantitatively analyzed using a combination of 2-D slice analysis and 3-D visualization and counting. The core samples were firstly scanned to produce grayscale slices, and the corresponding fracture area, length, aperture and fracture porosity as well as fracture density were measured. Then, the 2-D slices were stacked to create a complete 3-D image using volume-rendering software. The open fractures (vug) were colored cyan whereas the calcite-filled fractures (high density objects) were colored magenta. The surface area and volume of both open fractures and high density fractures were calculated by 3-D counting. Then, the fracture porosity and fracture aperture were estimated by 3-D counting. The fracture porosity and aperture from ICT analysis performed at atmospheric pressure were higher than those calculated from image logs at reservoir conditions. At last, the fracture connectivity was determined through the comparison of fracture parameters with permeability. Distribution of fracture density and fracture aperture determined the permeability and producibility of tight gas sandstones. Altogether, combined X-ray tomography, image processing help visualize and quantify the complexity and heterogeneity of naturally fractured geological samples in views of applications to integrated reservoir petrophysical and geomechanical characterization.

中图分类号: 

图1 ICT二维切片(a),(b)和连续二维切片(c)叠加重构三维模型
Fig.1 Example of ICT 2D slices (a),(b) and the reconstructed 3D volume (c) by a stack of contiguous slices
图2 岩心和成像测井资料分析裂缝
GR.自然伽马曲线;M2R3,M2Rx.电阻率曲线;AC.声波测井曲线;FVDC.裂缝密度;FVTL.裂缝长度;FVPA.裂缝孔隙度;FVA.裂缝张开度
Fig.2 Fracture analysis using a combination of cores and image logs
GR: Gamma Ray. M2R3 and M2Rx:High definition induction log. AC: Acoustic log. FVDC: Corrected Fracture Density.
FVTL: Fracture length. FVPA: Apparent Fracture Porosity. FVA: Fracture aperture
图3 ICT分析岩心分割体
(a) ks 2-2-8井,6 718.42~6 718.71 m,一条方解石充填的裂缝,裂缝长度0.1 mm;(b)6 680.42 m,4条张开度为0.4~0.8 mm的方解石充填的裂缝;(c)6 767.5 m,2条发育在岩心边缘的诱导缝;(d)6 734.84 m,无裂缝发育;(e)通过CT圆周扫描图像测量裂缝的倾向和倾角;(f)二维切片分析开启裂缝和高密度裂缝的长度、张开度
Fig.3 ICT analysis of core segments
(a) A long, calcite-filled, hair-line (0.1 mm), Well ks 2-2-8; 6 718.42~6 718.71 m. (b) Segment 6 680.42 m: Four, thin-aperture (0.4~0.8 mm),calcite-filled. (c) Segment 6 767.5 m: Two coring induced petal fractures on the edge of the core. (d)Segment 6 734.83 m; No fractures. (e) The directional fracture measurements (azimuth and dip) were conducted on the circumferential CAT scan images. (f) Two-dimensional slice analysis of fracture length and aperture for both vugs (open fracture) and high density (closed fracture) objects
图4 CT模型下的裂缝参数相互关系图
(a)开启的裂缝长度与张开度交会图;(b)方解石充填的裂缝长度与张开度交会图;(c)切片中裂缝张开度与裂缝面积交会图;(d)裂缝长宽比与圆度交会图
Fig.4 Crossplots showing the relationships between parameters of fracture in CT model
(a) Open fracture aperture and fracture length.(b) Calcite-filled fracture aperture and fracture length. (c) Fracture area in a slice and fracture aperture. (d) Crossplot of degree of roundness and length to width ratio for open fractures
图5 ICT重构内部结构
(a)ICT圆周测量;(b)CT重构图像;(c)三维体积渲染开启的裂缝(蓝绿色);(d)三维体积渲染方解石充填的裂缝
Fig.5 Interior structure reconstructed by ICT analysis
(a) ICT Circumferential View. (b) Images reconstructed by computed tomography. (c) 3-D Volume-rendering of open fractures (colored cyan). (d) 3-D Volume-rendering of calcite-filled fractures
图6 样品中裂缝三维体积渲染模型
(a)分割体深度6 682.38 m;(b)分割体深度6 723.3 m;(c)分割体深度6 715.0 m;红色箭头为局部发育的孔隙;(a)中亮点代表二维图像下的裂缝中充填的矿物组分如方解石等;(b)中蓝色代表三维动态图像下的裂缝
Fig.6 Three-dimensional volume rendering of fractures for sample
(a) Segment 6 682.38 m. (b) Segment 6 723.3 m. (c) Segment 6 715.0 m. Note the locally distributed pores (red arrow).(a) The bright spots represent mineral components filled in the fractures under the two-dimensional image such as calcite, et al. (b)The blue color represents the cracks in the 3D dynamic image
图7 薄片展示砂岩孔隙结构
(a)粒间孔(红色箭头)粒内孔(蓝色箭头);(b)伊利石颗粒形成的微孔隙(红色箭头);(c)自然裂缝(红色粗线);(d)裂缝(蓝色)
Fig.7 Photomicrographs showing the pore systems of the sandstones
(a) Intergranular pores (red arrow) and intragranular pores (blue arrow). (b) Micropores (red arrow) associated with the illite (IL).(c) Natural fractures (red dashed lines). (d) Fractures are present(blue)
图8 裂缝品质参数相互关系图
(a)裂缝孔隙度与张开度交会图;(b)裂缝密度与孔隙度交会图;(c)裂缝渗透率与孔隙度交会图;(d)裂缝张开度和密度乘积与裂缝渗透率交会图
Fig.8 Crossplots showing the relationships between parameters of fracture
(a) Plot of fracture porosity versus facture aperture. (b) Plot of fracture porosity fracture density.(c) Plot of horizontal permeability versus facture porosity. (d) Plot of horizontal permeability versus fracture aperture multiplied by fracture density
[1] Jin Zhijun, Wang Minghui, Lu Xiuxiang, et al.The tectonics and petroleum system of the Qiulitagh fold and thrust belt, Northern Tarim Basin, NW China[J].Marine & Petroleum Geology, 2008, 25(1): 767-777.
doi: 10.1016/j.marpetgeo.2008.01.011     URL    
[2] Lai Jin, Wang Guiwen.Depositional and diagenetic controls on reservoir pore structure of tight gas sandstones reservoirs: Evidence from Lower Cretaceous Bashijiqike Formation in Kelasu Thrust belts, Kuqa depression in Tarim Basin of West China[J]. Resource Geology, 2015, 65(2): 55-75.
doi: 10.1111/rge.2015.65.issue-2     URL    
[3] Espinoza D N, Shovkun I, Makni O, et al.Natural and induced fractures in coal cores imaged through X-ray computed microtomography—Impact on desorption time[J]. International Journal of Coal Geology, 2016, 15(4): 165-175.
doi: 10.1016/j.coal.2015.12.012     URL    
[4] Wang Ke, Zhang Huiliang, Zhang Ronghu, et al.Comprehensive assessment of reservoir structural fracture with multiple methods in Keshen-2 gas field, Tarim Basin[J]. Acta Petrolei Sinica, 2015, 36(6): 673-687.
doi: 10.7623/syxb201506004     URL    
[5] Ameen M S, MacPherson K, Al-Marhoon M,et al. Diverse fracture properties and their impact on performance in conventional and tight-gas reservoirs, Saudi Arabia: The Unayzah, South Haradh case study[J]. AAPG Bulletin, 2012, 96(3): 459-492.
doi: 10.1306/06011110148     URL    
[6] Mazurier A, Sardiri P, Possi A M, et al.Development of a fracture network in crystalline rocks during weathering: Study of Bishop Creek chronosequence using X-ray computed tomography and 14C-PMMA impregnation method[J]. Geological Society of America Bulletin, 2016, 12(8): 1 438.
doi: 10.1130/B31336.1     URL    
[7] Huo Da, Pini R, Benson S M.A calibration-free approach for measuring fracture aperture distributions using X-ray computed tomography[J]. Geosphere, 2016, 12(2): 558-571.
doi: 10.1130/GES01175.1     URL    
[8] Kyle J R, Mote A S, Ketcham R A.High resolution X-ray computed tomography studies of Grasberg porphyry Cu-Au ores,Papua,Indonesia[J]. Mineralium Deposita, 2008, 4(3): 519-532.
doi: 10.1007/s00126-008-0180-8     URL    
[9] Yao Yanbin, Liu Dameng, Che Yao, et al.Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography[J]. International Journal of Coal Geology, 2009, 8(1): 113-123.
doi: 10.1016/j.coal.2009.08.001     URL    
[10] Deng Hang, Fitts J P, Peters C A.Quantifying fracture geometry with X-ray tomography: Technique of Iterative Local Thresholding (TILT) for 3D image segmentation[J]. Computational Geosciences, 2016, 20(1): 231-244.
doi: 10.1007/s10596-016-9560-9     URL    
[11] Kyle J R, Ketcham R A.Application of high resolution X-ray computed tomography to mineral deposit origin, evaluation, and processing[J]. Ore Geology Reviews, 2015, 6(5): 821-839.
doi: 10.1016/j.oregeorev.2014.09.034     URL    
[12] Dong Longjun,Wesseloo J,Potvin Y, et al.Discriminant models of blasts and seismic events in mine seismology[J]. International Journal of Rock Mechanics & Mining Sciences,2019,8(6):282-291.
doi: 10.1016/j.ijrmms.2016.04.021     URL    
[13] Ketcham R A.Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography[J]. Journal Structural Geology, 2005,2(7): 1 217-1 228.
doi: 10.1016/j.jsg.2005.02.006     URL    
[14] Remeysen K, Swennen R.Application of microfocus computed tomography in carbonate reservoir characterization:Possibilities and limitations[J]. Marine & Petroleum Geology, 2008,2(5): 486-499.
doi: 10.1016/j.marpetgeo.2007.07.008     URL    
[15] Kumar H, Lester E, Kingman S, et al.Inducing fractures and increasing cleat apertures in bituminous coal under isostatic stress via application of microwave energy[J]. International Journal of Coal Geology, 2011,88(1): 75-82.
doi: 10.1016/j.coal.2011.07.007     URL    
[16] Li Song, Tang Dazhen, Xu Hao, et al.Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography[J]. Computers & Geosciences, 2012,4(8): 220-227.
doi: 10.1016/j.cageo.2012.01.004     URL    
[17] Liu Wenya, Zeng Lianbo, Liu Zhong, et al.Fracture responses of conventional logs in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin,China[J]. AAPG Bulletin, 2016,100(9): 1 399-1 417.
doi: 10.1306/04041615129     URL    
[18] Khoshbakht F, Memarian H, Mohammadnia M.Comparison of Asmari, Pabdeh and Gurpi formation’s fractures, derived from image log[J]. Journal of Petroleum Science & Engineering, 2009, 6(7): 65-74.
doi: 10.1016/j.petrol.2009.02.011     URL    
[19] Lai Jin.Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs[J]. Progress in Geophysics, 2015, 30(4): 1 712-1 724.
URL    
[20] Lai Jin.Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: Examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa Depression, Tarim basin of China[J]. AAPG Bulletin, 2017, 101(6): 1-34.
doi: 10.1130/abs/2016AM-282012     URL    
[21] Zhang Ronghu, Yang H J, Wang J P, et al.The formation mechanism and exploration significance of ultra-deep, low-porosity and tight sandstone reservoirs in Kuqa depression, Tarim basin[J]. Acta Petrolei Sinica, 2014, 35(6): 1 057-1 069.
doi: 10.7623/syxb201406003     URL    
[22] Watanabe N, Ishibashi T, Ohsaki Y, et al.X-ray CT based numerical analysis of fracture flow for core samples under various confining pressures[J]. Engineering Geology, 2011, 12(3): 338-346.
[23] Yasuhara H, Polak A, Mitani Y, et al.Evolution of fracture permeability through fluid-rock reaction under hydrothermal conditions[J]. Earth & Planetary Science Letters, 2006, 24(4): 33-36.
doi: 10.1016/j.epsl.2006.01.046     URL    
[24] Ishibashi T, Watanabe N, Hirano N, et al.Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation[J]. Journal of Geophysical Research: Solid Earth, 2015, 12(1): 106-124.
doi: 10.1002/2014JB011555     URL    
[25] Zeng Lianbo.Microfracturing in the Upper Triassic Sichuan basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins[J]. AAPG Bulletin, 2010, 94(12): 1 811-1 825.
doi: 10.1306/06301009191     URL    
[26] Wennberg O P,Casini G, Jonoud S, et al.The characteristics of open fractures in carbonate reservoirs and their impact on fluid flow:A discussion[J]. Petroleum Geoscience,2016,2(2):91-104.
doi: 10.1144/petgeo2015-003     URL    
[27] Li Q, Jiang Z, Liu K, et al.Factors controlling reservoir properties and hydrocarbon accumulation of lacustrine deep-water turbidites in the Huimin Depression, Bohai Bay Basin, East China[J]. Marine & Petroleum Geology, 2014, 5(7): 327-344.
doi: 10.1016/j.marpetgeo.2014.06.007     URL    
[28] Bisdom K, Bertotti G, Nick H M.The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks[J]. Journal of Geophysical Research: Solid Earth, 2016, 12(1): 4 045-4 063.
doi: 10.1002/2015JB012657     URL    
[29] Hou Guiting.The fractal analysis method of the crack[J]. Journal of Basic Science and Engineering, 1994,2(4): 299-304.
[侯贵廷. 裂缝的分形分析方法[J].应用基础与工程科学学报, 1994, 2(4): 299-304.]
URL    
[1] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
[2] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展, 2017, 32(9): 937-948.
[3] 冯建伟, 任启强, 徐珂. 基于地质力学方法的低渗透砂岩储层构造裂缝预测研究[J]. 地球科学进展, 2016, 31(9): 946-967.
[4] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[5] 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
[6] 王新娥, 许东晖, 孙之夫, 孙宗峰, 罗景美. 山东黄金资源钻探井测井资料分析方法与应用[J]. 地球科学进展, 2014, 29(3): 397-403.
[7] 李孝泽,屈建军,傅天阳,王学芳,董光荣. 六盘山北部寺口子砂岩研究现状、问题及意义[J]. 地球科学进展, 2012, 27(6): 644-650.
[8] 胡作维,李云,黄思静,吕杰,朱炳光. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展, 2012, 27(1): 14-25.
[9] 丁文龙,许长春,久凯,李超,曾维特,吴礼明. 泥页岩裂缝研究进展[J]. 地球科学进展, 2011, 26(2): 135-144.
[10] 董林森,刘立,曲希玉,刘娜,郭欣欣. CO 2矿物捕获能力的研究进展[J]. 地球科学进展, 2010, 25(9): 941-949.
[11] 张志强,郑军卫. 国际低渗透油气资源勘探开发技术进展[J]. 地球科学进展, 2009, 24(8): 854-864.
[12] 吴时国,孙运宝,孙启良,董冬冬,袁圣强,马玉波. 深水盆地中大型侵入砂岩的地震识别及其成因机制探讨[J]. 地球科学进展, 2008, 23(6): 562-569.
[13] 黄思静,佟宏鹏,黄可可,刘丽红,张雪花. 阴极发光分析在恢复砂岩碎屑长石含量中的应用 ——鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球科学进展, 2008, 23(10): 1013-1019.
[14] 王秀艳,王金哲,臧逸中,韩双平,陈江,李向全. 衡水地区地裂缝空间发育特征与地下水位降深关系[J]. 地球科学进展, 2006, 21(4): 417-423.
[15] 郑军卫;刘文汇;史斗. 塔里木盆地深层气勘探潜势[J]. 地球科学进展, 2004, 19(5): 802-807.
阅读次数
全文


摘要