地球科学进展 ›› 2010, Vol. 25 ›› Issue (9): 941 -949. doi: 10.11867/j.issn.1001-8166.2010.09.0941

综述与评述 上一篇    下一篇

CO 2矿物捕获能力的研究进展
董林森,刘立 *,曲希玉,刘娜,郭欣欣   
  1. 吉林大学地球科学学院,吉林长春 130061
  • 收稿日期:2010-02-22 修回日期:2010-04-27 出版日期:2010-09-10
  • 通讯作者: 刘立(1955-),男,内蒙古喜桂图人,教授,主要从事储层、层序地层及沉积方面的研究.  E-mail:liuli0892@vip.sina.com
  • 基金资助:

    国家自然科学基金面上项目“CO2流体—火山碎屑岩相互作用研究:以海拉尔盆地为例”(编号:40972075);教育部高等学校博士学科点专项科研基金项目“CO2流体对火山碎屑岩改造作用的实验研究”(编号:20090061120043);吉林大学种子基金项目“含片钠铝石火山碎屑岩中的CO2注入与矿物捕获记录研究——以海拉尔盆地为例”(编号:40870421);吉林大学研究生创新研究计划项目“玄武岩的‘固碳’能力研究”(编号:20101062)资助.

Research Progress of Ability of Mineral Trapping of CO 2

Dong Linsen, Liu Li, Qu Xiyu, Liu Na, Guo Xinxin   

  1. College of Earth Sciences Jilin University,Changchun 130061,China
  • Received:2010-02-22 Revised:2010-04-27 Online:2010-09-10 Published:2010-09-10

全球碳存储的研究表明,CO2最稳定的存储方式是CO2的矿物捕获, 即将CO2注入到地下,使其以方解石、菱铁矿、白云石及片钠铝石等碳酸盐矿物的形式存在。适合CO2矿物捕获的岩石类型主要有火山岩、砂岩和火山碎屑岩。分析了3种岩石类型的金属元素含量、金属元素的释放能力、与CO2反应生成的矿物类型及对CO2的捕获量,并比较了3种岩石类型对CO2矿物捕获能力的差异。其中玄武岩等火山岩的金属离子含量高,但其孔隙空间有限,制约了成岩反应,且CO2注入后具有逸散的风险;砂岩分布广泛,有足够的孔隙利于流体注入,但是金属离子含量相对较低,对CO2的矿物捕获所需时间相对较长;火山碎屑岩则结合了前2种岩石类型在矿物捕获方面的优势,是一种理想的CO2矿物捕获的岩石类型。

A survey of the global carbon reservoirs suggests that the most stable, long-term storage mechanism for atmospheric CO2 is the formation of carbonate minerals such as calcite, dolomite, magnesite and dawsonite. The suitable rocks for mineral trapping are mainly  sandstones, pyroclastic rocks and volcanic rocks (basalt). Based on the two kinds of diagenetic reactions during  CO2-H2O-rock interaction processes, the content and release ability for metal element, the types of generated minerals and the amount of  CO2 capured among these three kinds of rocks were analyzed while  the differences on  CO2 capturing ablitily for these three kinds of rocks were  compared. Basalt contains abundant metal ions, but  restricts diagenetic reaction  due to pore space limitation.  As a result,  the injected  CO2 has the risk of a fugitive. Sandstones are widely distributed and there is sufficient porosity conducive to fluid injection, but metal ions content is relatively low, and  the time required for  CO2 capture minerals are relatively long. Pyroclastic rocks are a combination of the advantages of the two rock types and is an ideal rock type for mineral trapping of  CO2.

中图分类号: 

[1] Marchetti C. On geoengineering and the  CO2 problem[J].Climate Change,1977,1:59-68.
[2] Sun Shu. Geological problems of  CO2 underground storage and its significance on mitigating climate change[J]. China Basic Science, 2008, 3:17-22.[孙枢.  CO2地下封存的地质学问题及其对减缓气候变化的意义[J].中国基础科学,2008, 3:17-22.]
[3] Bachu S, GunterW D, Perkins E H. Aquifer disposal of  CO2:Hydrodynamic and mineral trapping[J].Energy Converse Management,1994, 35: 269-279.[4] Zerai B,Saylor B Z, Matisoff G. Computer simulation of  CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio[J]. Applied Geochemistry, 2006, 21: 223-240. 
[5] Bachu S. Sequestration of  CO2 in geological media in response to climate change: Road map for site selection using the transform of the geological space into the  CO2 phase space[J].Energy Conversion & Management,2002,43:87-102.
[6] Xu T F, Apps J A, Pruess K.Numerical simulation to study mineral trapping for  CO2 disposal in deep aquifers[J].Applied Geochemistry,2004, 19:917-936.
[7] Jiang Huaiyou,Sheng Pingping,Lu Ying,et al. Research on the calculation of  CO2 storage in the reservoir all over the world[J]. Advances in Earth Science,2009,24(10):1 122-1 129.[江怀友,沈平平,卢颖,等.世界油气储层二氧化碳埋存量计算研究[J]. 地球科学进展,2009,24(10):1 122-1 129.]
[8] Soong Y, Goodman A L, McCarthy-Jones J R, et al.Experimental and simulation studies on mineral trapping of  CO2 with brine[J].Energy Conversion and Management,2004,45: 1 845-1 859.
[9] Xu T F, Sonnenthal E, Spycher N, et al.TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and  CO2 geological sequestration[J].Computers & Geosciences,2006,32:145-165.
[10] Xu T F, Apps J A, Pruess K,et al.Mineral sequestration of carbon dioxide in a sandstone shale system[J].Chemical Geology,2005, 217:295-318.
[11] Baker J C, Bai G P, Hamilton P J, et al. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia[J].Journal of Sedimentary Research,1995,A65(3): 522-530.
[12] Moore J,Adams M,Allis R,et al.Mineralogical and geochemical consequences of the long-term presence of  CO2 in natural reservoirs: An example from the Springerville-St. Johns field,Arizona,and New Mexico,USA[J].Chemical Geology,2005,217:365-385.
[13] Worden R H. Dawsonite cement in the Triassic Lam formation, Shabwa basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction[J].Marine and Petroleum Geology, 2006, 23: 61-77.
[14] Liu Li, Gao Yuqiao,Qu Xiyu, et al. Petrology and carbon-oxygen isotope of inorganic  CO2 gas reservoir in Wuerxun depression, Hailaer basin[J]. Acta Petrologica Sinica,2006,22(8):1 861-1 868.[刘立,高玉巧,曲希玉,等. 海拉尔盆地乌尔逊凹陷无机 CO2气储集层的岩石学与碳氧同位素特征[J]. 岩石学报,2006,22(8):1 861-1 868.]
[15] Marini L. Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics and Reaction Path Modeling[M]. Elsevier, Amsterdam,2007:470.
[16] Flaathen T K, Gislason S R, OelkersE H, et al. Chemical evolution of the Mt. Hekla, Iceland, groundwaters: A natural analogue for  CO2 sequestration in basaltic rocks[J].Applied Geochemistry,2009,24:463-474.
[17] Wang Zonghua,Zhang Junying,Xu Jun,et al.A theoretical stuty on mineral carbonation for  CO2 sequestration[J].Journal of Engineering Thermophysics,2008,29(6):1 063-1 068.[王宗华,张军营,徐俊,等.  CO2矿物碳酸化隔离的理论研究[J].工程热物理学报,2008,29(6):1 063-1 068.]
[18] Watson M N, Zwingmann N, Lemon N M. The Ladbroke Grove-Katnook carbon dioxide natural laboratory: A recent  CO2 accumulation in a lithic sandstones reservoir[J].Energy,2004, 29: 1 457-1 466.
[19] Limantseva O A, Makhnachb A A, Ryzhenkoa B N,et al. Formation of dawsonite mineralization at the Zaozernyi deposit,Belarus[J].Geochemistry International,2008,46:62-76.
[20] Robert J, Rosenbauer T, Tamer Koksalan, et al.Experimental investigation of  CO2 brine rock interactions at elevated temperature and pressure:Implications for  CO2 sequestration in deep-saline aquifers[J].Fuel Processing Technology, 2005, 86: 1581-1 597.
[21] Morad S, Ketzer J M, De Ros L F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins[J].Sedimental,2000, 47:95-120.
[22] Ketzer J M, Iglesias R, Einloft  S,et al. Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito formation (Permian), southern Brazil[J].Applied Geochemistry, 2009,24:760-767.
[23] Huang Wenming. Discussion on the geologic characteristics and genesis of Xiangyang sericite deposit in Nan′an county, Fujian province[J].Geology of Fujian,2008,27(1):13-18.[黄文明.福建南安向阳绢云母矿地质特征及成因探讨[J].福建地质,2008,27(1):13-18.]
[24] Golubev S V, Pokrovsky O S, Schott J.Experimental determination of the effects of dissolved  CO2 on the dissolution kinetics of Mg and Ca silicates at 25℃[J].Chemical  Geology,2005, 217:227-238.
[25] Oelkers E H, Cole D R. Carbon dioxide sequestration: A solution to a global problem[J].Elements,2008, 4:305-310.
[26] Koljonen T, Siikavirta H, Zevenhoven R, et al. CO2 capture, storage and reuse potential in Finland[J]. Energy, 2004,29:1 521- 1 527.
[27] Yao Jinmei, Zhou Xun, Li Juan, et al. Hydrogeochemical characteristics and evolution simulation of groundwater in basalts on the Leizhou peninsula, Guangdong, China[J].Geological Bulletin of China,2007, 26(3): 327- 334.[姚锦梅,周训,李娟,等. 广东雷州半岛玄武岩地下水水文地球化学特征及演化模拟[J]. 地质通报,2007,26(3):327-334.]
[28] Dang Zhi,Hou Ying.Experimental study on the dissolution kinetics of basalt-water interaction[J].Acta Petrologica sinica, 1995,11(1):9-15.[党志,侯瑛.玄武岩一水相互作用的溶解机理研究[J].岩石学报,1995,11(1):9-15.]
[29] Oelkers E H, Gíslason S R. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si, and oxalic acid concentration at 25 ℃ and pH = 3 and 11[J].Geochimica et Cosmochimica Acta,2001,65:3 671-3 681.
[30] Carroll S A, Knauss K G. Dependence of labradorite dissolution kinetics on  CO2 (aq), Al(aq), and temperature[J]. Chemical  Geology,2005, 217:213-225.
[31] Gao Ming,Chen Yun.Study on the interactions between water and basalt in a closed system[J].Journal of Nanjing University(Natural Sciences Edition),1995,31(3):476-486.[高明,陈芸.封闭体系中水与玄武岩作用的研究[J].南京大学学报:自然科学版,1995,31(3):476-486.]
[32] Schaef H T,McGrail B P. Dissolution of columbia river basalt under mildly acidic conditions as a function of temperature: Experimental results relevant to the geological sequestration of carbon dioxide[J].Applied Geochemistry,2009,24:980-987.
[33] Daniel E Giammar, Robert G Bruant Jr, Catherine A Peters. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide[J]. Chemical Geology,2005, 217: 257-276.
[34] Eileen Vard,Anthony E, Williams-Jones.A fluid inclusion study of vug minerals in dawsonite-altered phonolite sills, Montreal, Quebec: Implications for HFSE mobility[J].Contributions to Mineralogy and Petrology,1993,113:410-423.
[35] Stevenson J S, Stevenson L S. Contrasting dawsonite occurrences from Mont ST.Bruno,Quebec[J].Canadian Mineralogist, 1978,16: 471-474 .
[36] Rogers K L, Neuhoff P S, Pedersen A K,et al.  CO2 metasomatism in a basalt-hosted reservoir, Nuusuuaq, west Greenland[J]. Lithos,2006,92:55-82.
[37] Tobin K J, Colwell F S, Onstott T C, et al. Recent calcite spar in an aquifer waste plume: A possible example of contamination driven calcite precipitation[J].Chemical Geology,2000,169: 449-460.
[38] Zhang Ruilin. The carbonation and silicification of the ultrabasic rock and its ore-porming action[J].Northwestern Geology, 1977,(1):64-67.[张瑞林.超基性岩的碳酸盐化—硅化及其成矿作用[J].西北地质,1977,(1):64-67.]
[39] Dessert C, Dupré B, Gaillardet J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle[J].Chemical Geology,2003, 202: 257-273.
[40] Gaillardet J, Dupr B, Louvat P, et al. Global silicate weathering and  CO2 consumption rates deduced from the chemistry of the large rivers[J].Chemical Geology,1999,159: 3-30.
[41] McGrail B P, Schaef H T, Ho A M,et al. Potential for carbon dioxide sequestration in flood basalts[J].Journal of Geophysical Research,2006,111: B12201.
[42] Goff F, Lackner K S. Carbon dioxide sequestering using ultramafic rocks[J].Enviromental Geoscience,1998,5(3):89-101.
[43] Sebastian Teir, Sanni Eloneva, Carl-Johan Fogelholm,et al. Fixation of carbon dioxide by producing hydromagnesite from serpentinite[J].Applied Energy,2009, 86: 214-218.
[44] Metz B, Davidson O, de Coninck H,et al, eds. IPCC Special Report on Carbon Dioxide Capture and Storage[C]. New York:Cambridge University Press, 2005:431-442.
[45] Boles J R. Clay diagenisis and effects on sandstone cementation(Case histories from the Gulf Coast Tertiary)[M]//Longstaffe F J. Clays and the Resource Geologist. Mineralogical Association of Canada: Short Course Handbook,1981:1 075-1 078.
[46] Qu Xiyu,Liu Li,Ma Rui,et al. The experiment of debris-arkosic sandstone reformation by the  CO2 fluid[J].Journal of Jilin University (Earth Science Edition), 2008,38(6):959-964.[曲希玉,刘立,马瑞,等.CO2流体对岩屑长石砂岩的改造作用实验研究[J] .吉林大学学报:地球科学版,2008,38(6):959-964.]
[47] Wigand M, Carey J W, Schuett H, et al. Geochemical effects of  CO2 sequestration in sandstones under simulated insitu conditions of deep saline aquifers[J].Applied Geochemistry,2008,23: 2 735-2 745.
[48] Xu Yanbin, Chen Ping, Xu Yongcheng. Dawsonite distribution andits relationship with oil and gas in Halar basin[J].Oil & Gas Geology,1994,15(4):322-327.[徐衍彬,陈平,徐永成. 海拉尔盆地碳钠铝石分布与油气的关系[J]. 石油与天然气地质,1994,15(4):322-327.]
[49] Gao Yuqiao, Liu Li, Qu Xiyu.Genesis of dawsonite and its indication significance of  CO2 migration and accumulation[J]. Advances in Earth Science,2005,20(10):1 083-1 087.[高玉巧,刘立,曲希玉.片钠铝石的成因及其对CO2天然气运聚的指示意义[J].地球科学进展,2005,20(10):1 083-1 087.]
[50] Song Ronghua, Wang Jun, He Yanhui, et al. Determine the formation fluid properties by using fluorescence micro-image technology[J].Oil and Gas Well Testing,2000, 9(4):28-32.[宋荣华,王军,何艳辉,等.荧光显微图像技术判断储层流体性质研究[J] .油气井测试,2000,9(4): 28-32.]
[51] Zhang Jinliang. Reservoir petrology and diagenesis of Jiutang formation, Ludong dep ression[J].Journal of Xi′an Petroleum Institute,1995, 10(2): 4-10.[张金亮.陆东凹陷九佛堂组储层岩石学及成岩作用[J].西安石油学院学报:自然科学版, 1995, 10(2): 4-10.][52] Meng Qingshan.Genetic analysis of Wangying mine gas pool,Fuxin basin[J].Goal Geology of China,2003, 15(6):24-26.[孟庆山.阜新盆地王营矿气藏成因分析[J].中国煤田地质,2003, 15(6):24-26.]
[53] Huang Shanbing.A study of secondary porosity in the sandstone reservoir rocks in Hong-Gang oil field,south Songliao basin[J].Petroleum Exploration and Development,1983,(6):37-43.[黄善炳.对松辽盆地南部红岗油田砂岩次生孔隙的研究[J].石油勘探与开发,1983,(6):37-43.]
[54] Dong Linsen,Liu Li,Qu Xiyu,et al.Crystal characteristics and genesis of dawsonite of the qingshankou formation in the Honggang oilfield in the southern Songliao basin[J].Journal of Jilin University (Earth Science Edition),2009,39(6):1 031-1041.[董林森,刘立,曲希玉,等.松辽盆地南部红岗油田青山口组片钠铝石的结晶特征及成因探讨[J].吉林大学学报:地球科学版,2009,39(6):1 031-1 041.]
[55] Pearce J M, Holloway S, Wacker H, et al. Natural occurrences as analogues for the geological disposal of carbon dioxide[J]. Energy Conversion and Managment,1996,37: 1 123-1 128.
[56] Kaszuba J P, Janecky D R, Snow M G. Carbon dioxide reaction processes in a model brine aquifer at 200℃ and 200 bars: Implications for geologic sequestration of carbon[J]. Applied Geochemistry,2003, 18:1 065-1 080.
[57] Pascale Be′ne′zeth, Donald A Palmer, Lawrence M Anovitz, et al. Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of  CO2[J].Geochimica et Cosmochimica Acta,2007,71:   4 438-4 455.
[58] Hitchon B,Gunter W D, Gentzis T,et al.Sedimentary basins and greenhouse gases: A serendipitous association[J].Energy Conversion & Management,1999,40:825-843.
[59] Zwingmann N,Mito S, Sorai M,et al. Pre-injection characterization and evaluation of  CO2 sequestration potential in the Haizume formation, Niigata basin, Japan[J].Oil and Gas Science and Technology,2005, 60(2):249-258.
[60] Bruant R G, Celia M A, Guswa A J,et al. Safe storage of CO2 in deep saline aquifers[J].Environmental Science & Technology,2002, 36(11):240-245.
[61] Davis T L,Terrell M J,Benson R D,et al.Multicomponent seismic characterization and monitoring of the  CO2 flood at Weyburn field ,Saskatchewan[J].The Leading Edge,2003,22(7):696-697.
[62] Pawar R, Warpinski B, Byrer C, et al. Geologic sequestration of  CO2 in West Pearl Queen Field: Results of a field demonstration project[C]//Proceedings of the 3rd Annual Conference on Carbon Capture and Sequestration, Alexandria, VA, 2004.[63] Wilson T H,Wells A W, Diehl J R, et al. Ground penetrating radar survey and lineament analysis of the west Pearl Queen carbon sequestration pilot site, New Mexico[J]. The Leading Edge,2005, 24:718-722.
[64] Lohuis J A O. Carbon dioxide disposal and sustainable development in the Netherlands[J].Energy Conversion & Management,1993,34 (9/11): 815-821.
[65] Gunter W D, Wiwchar B, Perkins E H. Aquifer disposal of  CO2-rich greenhouse gases: Extension of the time scale of experiment for  CO2-sequestering reactions by geochemical modeling[J].Mineral Petrology,1997, 59:121-140.
[66] Pettijohn F J, Francis John. Sedimentary Rocks[M]. New York:Harper & Row, 1975.
[67] Wang Jianwei,Bao Zhidong,Chen Mengjin,et al. Differentiation of sandstones′ tuff fillings andits effect on porosity—An example from the Paleozoic sandstones in northwestern Ordos[J].Chinese Journal of Geology,2005, 40(3):429-438.[王建伟, 鲍志东, 陈孟晋,等. 砂岩中的凝灰质填隙物分异特征及其对油气储集空间影响——以鄂尔多斯盆地西北部二叠系为例[J].地质科学, 2005, 40(3):429-438.]
[68] Feng Baohua.Corboniferous-Permian tonsteins formed by hydrolytic reformation of volcanic ash sediments in northern China[J].Acta Sedimentologica Sinica,1989,7(1):101-108.[冯宝华.我国北方石炭—二叠纪火山灰沉积水解改造而成的高岭石[J].沉积学报,1989,7(1):101-108.]
[69] Zhang Fanqin,Wang Weifeng,Wang Jianwei,et al. Dissolution of tuff filling and its effects on the porosity of the coal-formed gas reservoir in the Suligemiao area of the Ordos basin[J].Journal of Jilin University (Earth Science Edition),2006,36(3):365-369.[张凡芹,王伟锋,王建伟,等. 苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J]. 吉林大学学报:地球科学版,2006,36(3):365-369.]
[70] Hay R L. Zeolite weathering in Olduvai gorge,Tanganyik[J]. Bulletin of Geological Society of America,1963,74:1 281-1286.[71] Yu Dongliang.Geochemcal characteristics and prospect direction of the gold in Manzhanggang area of Qinghai province[J].Gold Science and Technology,2008,16(1):52-55.[郁东良.青海省满丈岗地区金地球化学特征及找矿方向探索[J].黄金科学技术, 2008,16(1):52-55.]
[72] Wang Haiyan,Liu Li,Gao Yuqiao,et al.Discussion of diageneses of volcaniclastic rocks of Nantun formation in Beier sags,Hailar basin[J]. Global Geology, 2005,24(3):219-224.[王海燕,刘立,高玉巧,等.海拉尔盆地贝尔凹陷南屯组火山碎屑岩成岩作用的讨论[J]. 世界地质,2005,24(3):219-224.]
[73] Sun Yanda,Zhang Minzhi. Characteristics of dawsonite and it′s petroleum geologic significance in the Hailaer basin[J]. Petroleum geology & Expermient, 2006,28(5):504-506.[孙彦达,张民志.海拉尔盆地碳钠铝石特征及其地质意义[J]. 石油实验地质,2006,28(5):504-506.]
[74] Qu Xiyu, Liu Li,Gao Yuqiao, et al. Geology record of mantle-derived magmatogenetic  CO2 gas in the northeastern China[J]. Acta Petroleisinica,2010,31(1):61-67.[曲希玉,刘立,高玉巧,等.中国东北地区幔源—岩浆 CO2赋存的地质记录[J].石油学报,2010,31(1):61-67.]
[75] Feng Zhiqiang,Ren Yanguang,Zhang Xiaodong,et al. Law of oil and gas distribution in Hailaer basin and orientation for exploration at next stage[J].China Petroleum Exploration, 2004,9(4):19-22.[冯志强,任延广,张晓东,等.海拉尔盆地油气分布规律及下步勘探方向[J].中国石油勘探,2004,9(4):19-22.]
[76] Li Jun,Wang Defa,Fan Hongjun. A description of fracture features and its formation mechanisms in Qingxi oilfield, Jiuquan basin, Gansu[J].Geoscience,2007,21(4):691-696.[李军,王德发,范洪军.甘肃酒泉盆地青西油田裂缝特征及成因分析[J].现代地质,2007,21(4):691-696.]
[77] Wu Yunqiang,Chang Qiusheng,Jiang Yiqin,et al.Genetic character istics of vesicular volcanic clastic reservoir of Fengcheng formation in wellblock Xia-72 and its significance for hydrocarbon exploration[J].Xinjiang Petroleum Geology,2006,27(4):166-168.[吴运强,常秋生,蒋宜勤,等.气孔状火山碎屑岩储集层成因特征及油气勘探意义[J].新疆石油地质,2006,27(4):166-168.]
[78] Shen Pingping,Yang Yongzhi. Problems on enhanced oil recovery by using greenhouse gas[J]. China Basic Science,2006,3:23-31.[沈平平,杨永智.温室气体在石油开采中资源化利用的科学问题[J].中国基础科学,2006,3:23-31.]

[1] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
[2] 张亦弛, 马新仿, 张士诚, 韩珊, 秦思捷, 张弛. 利用工业CT对致密砂岩裂缝三维定量评价——以塔里木盆地库车凹陷巴什基奇克组砂岩为例[J]. 地球科学进展, 2018, 33(2): 213-224.
[3] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展, 2017, 32(9): 937-948.
[4] 冯建伟, 任启强, 徐珂. 基于地质力学方法的低渗透砂岩储层构造裂缝预测研究[J]. 地球科学进展, 2016, 31(9): 946-967.
[5] 陈万峰, 郭 刚, 苗秀全, 王金荣, 胡万龙, 赵斌斌, 樊立飞. 新疆卡拉麦里地区早石炭世火山岩地球化学特征及构造意义[J]. 地球科学进展, 2016, 31(2): 180-191.
[6] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[7] 丁文龙, 王兴华, 胡秋嘉, 尹帅, 曹翔宇, 刘建军. 致密砂岩储层裂缝研究进展[J]. 地球科学进展, 2015, 30(7): 737-750.
[8] 李孝泽,屈建军,傅天阳,王学芳,董光荣. 六盘山北部寺口子砂岩研究现状、问题及意义[J]. 地球科学进展, 2012, 27(6): 644-650.
[9] 胡作维,李云,黄思静,吕杰,朱炳光. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展, 2012, 27(1): 14-25.
[10] 张志强,郑军卫. 国际低渗透油气资源勘探开发技术进展[J]. 地球科学进展, 2009, 24(8): 854-864.
[11] 吴时国,孙运宝,孙启良,董冬冬,袁圣强,马玉波. 深水盆地中大型侵入砂岩的地震识别及其成因机制探讨[J]. 地球科学进展, 2008, 23(6): 562-569.
[12] 黄思静,佟宏鹏,黄可可,刘丽红,张雪花. 阴极发光分析在恢复砂岩碎屑长石含量中的应用 ——鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球科学进展, 2008, 23(10): 1013-1019.
[13] 何世平,王洪亮,徐学义,张宏飞,任光明. 北祁连东段红土堡基性火山岩锆石LA -IC P-MS U-Pb年代学及其地质意义[J]. 地球科学进展, 2007, 22(2): 143-151.
[14] 刘玉琳. 一种新的 K-Ar定年方法:峰值比较法[J]. 地球科学进展, 2004, 19(2): 312-315.
[15] 孙晓猛,张旗,钱青. 甘肃肃南白泉门地区蛇绿混杂岩地质特征[J]. 地球科学进展, 1997, 12(4): 340-350.
阅读次数
全文


摘要