地球科学进展 ›› 2012, Vol. 27 ›› Issue (1): 14 -25. doi: 10.11867/j.issn.1001-8166.2012.01.0014

综述与评述 上一篇    下一篇

砂岩储层中原生孔隙的破坏与保存机制研究进展
胡作维,李云,黄思静,吕杰,朱炳光   
  1. 成都理工大学油气藏地质及开发工程国家重点实验室,沉积地质研究院,四川 成都610059
  • 收稿日期:2011-06-29 修回日期:2011-11-01 出版日期:2012-01-10
  • 通讯作者: 胡作维(1981-),男,广东佛山人,讲师,主要从事沉积地质学的教学与科研工作. E-mail:huzuowei@yahoo.com.cn
  • 基金资助:

    国家科技重大专项项目“鄂尔多斯盆地上古生界沉积体系与储层特征研究”(编号:2008ZX05002-001-01)和“鄂尔多斯盆地中生界延长组储层特征研究”(编号:2008ZX05001-004-03)资助.

Reviews of  the Destruction and Preservation of Primary Porosity in the Sandstone Reservoirs

Hu Zuowei, Li Yun, Huang Sijing, Lü Jie, Zhu Bingguang   

  1. State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
  • Received:2011-06-29 Revised:2011-11-01 Online:2012-01-10 Published:2012-01-10

埋藏条件下原生孔隙的破坏与保存机制是含油气盆地砂岩储层质量研究的一个核心领域,其在油气地质学研究中的意义不言而喻。与次生孔隙的形成与保存机制相比,影响原生孔隙破坏与保存的因素有着其特殊的复杂性和多样性。在总结国内外研究进展的基础上,试图深入理解不同成岩机制在砂岩储层原生孔隙破坏与保存中的意义和作用,包括破坏机制(如机械压实、胶结作用等)和保存机制(如地层超压、颗粒包膜、盐体侵位和烃类占位等)。目前难以实现砂岩储层质量钻前准确预测的一个困难在于无法明确原生孔隙演化的动力和过程,将来成岩作用、流体作用、沉积过程和盆地演化的更紧密结合可能是解决砂岩储层原生孔隙破坏与保存机制研究中最有希望的发展方向之一。

The destruction and preservation of primary porosity during burial diagenesis is an important part of the sandstone reservoir quality research, and their significance to the research of oil and gas geology is self-evident. Compared with the formation and preservation of secondary porosity, the factors affecting the destruction and preservation of primary porosity are with unique complexity and diversity. Based on the recent progresses from extensive documents, the paper tries to further understand the significance and effect of different diagenetic mechanisms on  the destruction and preservation of primary porosity in the sandstone reservoirs, such as the mechanical compaction, cementation, formation overpressure, grain coats, allochthonous salt and hydrocarbon emplacement. Currently, the new generation of reservoir quality models has  successfully predicted porosity and permeability in diverse sandstone reservoirs under many different burial conditions, which largely benefited from some important update of the destruction and preservation of primary porosity in modern diagenetic models of sandstone. However, this is just a milestone building accurate pre-drill reservoir quality prediction models, and there are still many problems in those models. The indefinite kinetics and processes of primary porosity evolution are  difficult problems to achieve more accurate  pre-drill predictions. The closer integration of the diagenesis, fluids, depositional processes and basin evolution may be one of most promising development directions of solving the destruction and preservation of primary porosity in the sandstone reservoirs in  future.

中图分类号: 


[1]Bloch S, Lander R H, Bonnell L M. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability
[J]. AAPG Bulletin,2002, 86(2): 301-328.

[2]Bloch S. Secondary porosity in sandstones: Significance, origin, relationship to subaerial unconformities, and effect on predrill reservoir quality prediction
[M]Wilson M D ed. Reservoir Quality Assessment and Prediction in Clastic Rocks. Tulsa: SEPM Short Course 30, 1994: 137-160.

[3]Yang Hua, Yang Yihua, Shi Xiaohu, et al. Influence of the Late Paleozoic volcanic activity on the sandstone reservoir in the interior of Ordos Basin
[J]. Acta Sedimentologica Sinica, 2007, 25(4): 526-534.
[杨华, 杨奕华, 石小虎, 等. 鄂尔多斯盆地周缘晚古生代火山活动对盆内砂岩储层的影响
[J]. 沉积学报, 2007, 25(4): 526-534.]

[4]Huang Sijing,Huang Keke,Feng Wenli, et al. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis—A case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression
[J]. Geochimica, 2009, 38(5): 498-506.
[黄思静, 黄可可, 冯文立, 等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究
[J]. 地球化学, 2009, 38(5): 498-506.]

[5]Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality
[J]. AAPG Bulletin, 2010, 94(8): 1 093-1 132.]

[6]Yu Xinghe, Jiang Hui, Shi Hesheng, et al. Study on depositional characteristic and diagenetic evolvement in Panyu Gas Field of Peal River Mouth Basin
[J]. Acta Sedimentologica Sinica, 2007, 25(6): 876-884.
[于兴河, 姜辉, 施和生, 等. 珠江口盆地番禺气田沉积特征与成岩演化研究
[J]. 沉积学报, 2007, 25(6): 876-884.]

[7]Wu Wenhui, Huang Sijing. Characters of petrology and mineralogy of reservoirs in overpressure basins
[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2003, 30(3): 258-262.
[武文慧, 黄思静. 超压盆地中碎屑岩储集层的矿物岩石学特征
[J]. 成都理工大学学报:自然科学版, 2003, 30(3): 258-262.]

[8]Pettijohn F J. Sedimentary Rocks (3rd)
[M]. New York: Springer Verlag, 1975.

[9]Zheng Junmao, Pang Ming. The Research of Diagenesis of Clastic Reservoirs
[M]. Wuhan: China University of Geosciences Press, 1989.
[郑浚茂, 庞明. 碎屑储集岩的成岩作用研究
[M]. 武汉: 中国地质大学出版社, 1989.]

[10]Ajdukiewicz J M, Lander R H. Sandstone reservoir quality prediction: The state of the art
[J]. AAPG Bulletin, 2010, 94(8): 1 083-1 091.

[11]Lundegard P D. Sandstone porosity loss—A “big picture” view of the importance of compaction
[J]. Journal of Sedimentary Petrology, 1992, 62(2): 250-260.

[12]Houseknecht D W. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones
[J]. AAPG Bulletin, 1987, 71(6): 633-642.

[13]Paxton S T, Szabo J O, Ajdukiewicz J M, et al. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs
[J]. AAPG Bulletin, 2002, 86(12): 2 047-2 067.

[14]Weller J M. Compaction of sediments
[J]. AAPG Bulletin, 1959, 43(2): 273-310.

[15]Lander R H, Walderhaug O. Predicting porosity through simulating sandstone compaction and quartz cementation
[J]. AAPG Bulletin, 1999, 83(3): 433-449.

[16]Rittenhouse G. Mechanical compaction of sands containing different percentages of ductile grains: A theoretical approach
[J]. AAPG Bulletin, 1971, 55(1): 92-96.

[17]Pittman E D, Larese R E. Compaction of lithic sands: Experimental results and applications
[J]. AAPG Bulletin, 1991, 75(8): 1 279-1 299.

[18]Al-Ramadan K A, Hussain M, Imamc B, et al. Lithologic characteristics and diagenesis of the Devonian Jauf sandstone at Ghawar Field, Eastern Saudi Arabia
[J]. Marine and Petroleum Geology, 2004, 21(10): 1 221-1 234.

[19]Ketzer J M, Morad S, Evans R, et al. Distribution of diagenetic alterations in fluvial, deltaic, and shallow marine sandstones within a sequence stratigraphic framework: Evidence from the Mullaghmore Formation (Carboniferous), NW Ireland
[J]. Journal of Sedimentary Research, 2002, 72(6): 760-774.

[20]Huang Sijing, Huang Peipei, Wang Qingdong, et al. The significance of cementation in porosity preservation in deep-buried sandstones
[J]. Lithologic Reservoirs, 2007, 19(3): 7-13.
[黄思静, 黄培培, 王庆东, 等. 胶结作用在深埋藏砂岩孔隙保存中的意义
[J]. 岩性油气藏, 2007, 19(3): 7-13.]

[21]Orhan H. Importance of dust storms in the diagenesis of sandstones: A case study, Entrada sandstone in the Ghost Ranch area, New Mexico, USA
[J]. Sedimentary Geology, 1992, 77(1/2): 111-122.

[22]Johnson R H. The cementation process in sandstones
[J]. AAPG Bulletin, 1920, 4(1): 33-35.

[23]Morad S. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution (IAS Special Publication 26)
[M]. Oxford: Blackwell Science, 1998.

[24]Worden R H, Morad S. Quartz Cementation in Sandstones (IAS Special Publication 29)
[M]. Oxford: Blackwell Science, 2000.

[25]Worden R H, Morad S. Clay Mineral Cements in Sandstones (IAS Special Publication 34)
[M]. Oxford: Blackwell Science, 2003.

[26]Oelkers E H, Bjorkum A, Murphy W M. A petrographic and computational investigation of quartz cementation and porosity reduction in North Sea sandstones
[J]. American Journal of Science, 1996, 296(4): 420-452.

[27]Walderhaug O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs
[J]. AAPG Bulletin, 1996, 80(5): 732-745.

[28]Lander R H, Larese R E, Bonnell L M. Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates
[J]. AAPG Bulletin, 2008, 92(11): 1 537-1 563.

[29]Walderhaug O. Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjm Field, Northern North Sea
[J]. AAPG Bulletin, 2000, 84(9): 1 325-1 339.

[30]Van de Kamp P C. Smectite-illite-muscovite transformations, quartz dissolution, and silica release in shales
[J]. Clays and Clay Minerals, 2008, 56(1): 66-81.

[31]Land L S. Mass transfer during burial diagenesis in the Gulf of Mexico sedimentary basin: An overview
[M]Montaøez I P, Gregg J M, Shelton K L, eds. Basin-wide Diagenetic Patterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations. Tulsa: SEPM Special Publication 57, 1997: 29-39.

[32]Ma Qifu, Chen Sizhong, Zhang Qiming, et al.Overpressured Basin and Oil-gas Distribution
[M]. Beijing: Geological Publishing House, 2000.
[马启富, 陈斯忠, 张启明, 等. 超压盆地与油气分布
[M]. 北京: 地质出版社, 2000.]

[33]Giles M R. Diagenesis: A Quantitative Perspective
[M]. Dordrecht: Kluwer Academic Publishers, 1997.

[34]Ramm M, Bjrlykke K. Porosity/depth trends in reservoir sandstones: Assessing the quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian Shelf data
[J]. Clay Minerals, 1994, 29(4): 475-490.

[35]Osborne M J, Swarbrick R E. Diagenesis in North Sea HPHT clastic reservoirs—Consequences for porosity and overpressure prediction
[J].Marine and Petroleum Geology, 1999, 16(4): 337-353.

[36]Land L S, Milliken K L, McBride E F. Diagenetic evolution of Cenozoic sandstones, Gulf of Mexico sedimentary basin
[J]. Sedimentary Geology, 1987, 50(1/3): 195-225.

[37]Teige G M G, Hermanrud C, Wensaas L, et al. The lack of relationship between overpressure and porosity in North Sea and Haltenbanken shales
[J]. Marine and Petroleum Geology, 1999, 16(4): 321-335.

[38]Gluyas J G, Cade C A. Prediction of porosity in compacted sands
[M]Kupecz J A, Gluyas J, Bloch S, eds. Reservoir Quality Prediction in Sandstones and Carbonates. Tulsa: AAPG Memoir 69, 1998: 19-28.

[39]Schneider F, Hay S. Compaction model for quartzose sandstones application to the Garn Formation, Haltenbanken, mid-Norwegian continental Shelf
[J]. Marine and Petroleum Geology, 2001, 18(7): 833-848.

[40]Harrison W J, Summa L I. Paleohydrology of the Gulf of Mexico
[J]. American Journal of Science, 1991, 291(2): 109-176.

[41]Pittman E D, Larese R E, Heald M T. Clay coats: Occurrence and relevance to preservation of porosity in sandstones
[M]Houseknecht D W, Pittman E D, eds. Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones. Tulsa: SEPM Special Publication 47, 1992: 241-264.

[42]Huang Sijing, Xie Lianwen, Zhang Meng, et al. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China
[J].Journal of Chengdu University of Technology (Science & Technology Edition),2004, 31(3): 273-281.
[黄思静, 谢连文, 张萌, 等. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系
[J]. 成都理工大学学报:自然科学版, 2004, 31(3): 273-281.]

[43]Ehrenberg S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: Examples from the Norwegian Continental Shelf
[J]. AAPG Bulletin, 1993, 77(7): 1 260-1 286.

[44]Anjos S M C, De Ros L F, Silva C M A. Chlorite authigenesis and porosity preservation in the Upper Cretaceous marine sandstones of the Santos Basin, offshore eastern Brazil
[M]Worden R H, Morad S, eds. Clay Mineral Cements in Sandstones. Oxford: Blackwell Science, 2003: 291-316.

[45]Grigsby J D. Origin and growth mechanism of authigenic chlorite in sandstones of the lower Vicksburg Formation, south Texas
[J].Journal of Sedimentary Research,2001, 71(1): 27-36.

[46]Hillier S, Fallick A E, Matter A. Origin of pore-lining chlorite in the eolian Rotliegend of Northern Germany
[J].Clay Minerals,1996, 31(2): 153-173.

[47]Needham S J, Worden R H, McIlroy D. Experimental production of clay rims by macrobiotic sediment ingestion and excretion processes
[J].Journal of Sedimentary Research,2005, 75(6): 1 028-1 037.

[48]Aase N E, Bjorkum A, Nadeau P H. The effect of grain-coating microquartz on preservation of reservoir porosity
[J]. AAPG Bulletin,1996, 80(10): 1 654-1 673.

[49]Heald M T, Larese R E. Influence of coatings on quartz cementation
[J]. Journal of Sedimentary Petrology, 1974, 44(4): 1 269-1 274.

[50]Lander R H, Bonnell L M, Larese R E. Why do microquartz coatings preserve sandstone reservoir quality?
[C]Annual AAPG Convention Abstracts, 2006, 15: 60.

[51]Aase N E, Walderhaug O. The effect of hydrocarbons on quartz cementation: Diagenesis in the Upper Jurassic sandstones of the Miller field, North Sea, revisited
[J]. Petroleum Geoscience, 2005, 11(3): 215-223.

[52]Lima R D, De Ros L R. The role of depositional setting and diagenesis on the reservoir quality of Devonian sandstones from the Solimøes Basin, Brazil Amazonia
[J]. Marine and Petroleum Geology, 2002, 19(9): 1 047-1 071.

[53]Haddad S C, Worden R H, Prior D J, et al. Quartz cement in the Fontainebleau sandstone, Paris Basin, France: Crystallography and implication for mechanisms of cement growth
[J].Journal of Sedimentary Research,2006, 76(2): 244-256.

[54]Mello U T, Karner G D, Anderson R N. Role of salt in restraining the maturation of subsalt source rocks
[J].Marine and Petroleum Geology,1995, 12(7): 697-716.

[55]Stover S C, Ge S, Weimer P, et al. The effects of salt evolution, structural development, and fault propagation on Late Mesozoic-Cenozoic oil migration: A two-dimensional fluid-flow study along a megaregional profile in the Northern Gulf of Mexico Basin
[J].AAPG Bulletin,2001, 85(11): 1 945-1 966.

[56]Giles M R, Stevenson S V, Martin S, et al. The reservoir properties and diagenesis of the Brent Group: A regional perspective
[M]Morton A C, Haszeldine R S, Giles M R, et al, eds. Geology of the Brent Group. London: Geological Society of London Special Publication 61, 1992: 289-327.

[57]Neilson J E, Oxtoby N H, Simmons M D, et al. The relationship between petroleum emplacement and carbonate reservoir quality: Examples from Abu Dhabi and the Amu Darya Basin
[J].Marine and Petroleum Geology, 1998, 15(1): 57-72.

[58]Marchand A M E, Haszeldine R S, Smalley P C, et al. Evidence for reduced quartz cementation rates in oil-filled sandstones
[J].Geology,2001, 29(10): 915-918.

[59]Molenaar N, Cyziene J, Sliaupa S, et al. Lack of inhibiting effect of oil emplacement on quartz cementation: Evidence from Cambrian reservoir sandstones, Paleozoic Baltic Basin
[J].GSA Bulletin,2008, 120(9/10): 1 280-1 295.

[60]Ehrenberg S N,Nadeau P H.Formation of diagenetic illite in sandstones of the Garn Formation,Haltenbanken area,mid-Norwegian continental shelf
[J].Clay Minerals,1989,24(2):233-253.

[1] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
[2] 冯佳睿, 高志勇, 崔京钢, 周川闽. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3): 305-320.
[3] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展, 2017, 32(9): 937-948.
[4] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[5] 冯建伟, 任启强, 徐珂. 基于地质力学方法的低渗透砂岩储层构造裂缝预测研究[J]. 地球科学进展, 2016, 31(9): 946-967.
[6] 郑庆华, 柳益群. 鄂尔多斯盆地华庆地区延长组长4+5致密油层成岩作用及成岩相[J]. 地球科学进展, 2015, 30(1): 78-90.
[7] 张金亮,张鹏辉,谢俊,董紫睿,张明,丁芳,袁勇,李景哲. 碎屑岩储集层成岩作用研究进展与展望[J]. 地球科学进展, 2013, 28(9): 957-967.
[8] 崔景伟,邹才能,朱如凯,白斌,吴松涛,王拓. 页岩孔隙研究新进展[J]. 地球科学进展, 2012, 27(12): 1319-1325.
[9] 刘喜停,颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展, 2011, 26(5): 482-492.
[10] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[11] 林春明, 张霞, 周健, 徐深谋, 俞昊, 陈召佑. 鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征[J]. 地球科学进展, 2011, 26(2): 212-223.
[12] 黄思静,龚业超,黄可可,佟宏鹏. 埋藏历史对碳酸盐溶解—沉淀的影响——以四川盆地东北部三叠系飞仙关组和塔里木盆地北部奥陶系为例[J]. 地球科学进展, 2010, 25(4): 381-390.
[13] 黄思静,佟宏鹏,黄可可,刘丽红,张雪花. 阴极发光分析在恢复砂岩碎屑长石含量中的应用 ——鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球科学进展, 2008, 23(10): 1013-1019.
[14] 黄思静,Hairuo QING,胡作维,王春梅,郜晓勇,邹明亮,王庆东. 四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J]. 地球科学进展, 2007, 22(5): 495-503.
[15] 高辉,宋广寿,孙卫,任国富,张创,韩宗元. 储层特低渗透成因分析与评价--以安塞油田沿25区块为例[J]. 地球科学进展, 2007, 22(11): 1129-1133.
阅读次数
全文


摘要