地球科学进展 ›› 2011, Vol. 26 ›› Issue (5): 482 -492. doi: 10.11867/j.issn.1001-8166.2011.05.0482

综述与评述 上一篇    下一篇

铁元素对海相沉积物早期成岩作用的影响
刘喜停,颜佳新 *   
  1. 中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北武汉430074
  • 收稿日期:2010-08-06 修回日期:2011-01-12 出版日期:2011-05-10
  • 通讯作者: 颜佳新(1962-),男,湖南衡东人,教授,主要从事碳酸盐岩沉积学研究.  E-mail:jaxy2008@163.com
  • 基金资助:

    国家自然科学基金项目“铁对浅水碳酸盐沉积早期成岩作用影响研究”(编号:41072078)资助.

Advances in the Role of Iron in Marine Sediments during Early Diagenesis

Liu Xiting, Yan Jiaxin   

  1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074,China
  • Received:2010-08-06 Revised:2011-01-12 Online:2011-05-10 Published:2011-05-10

铁元素是地壳中丰度最高的元素之一,在海相沉积物成岩过程中起着非常重要的作用。铁元素作为海洋初级生产力的微营养元素,影响海相沉积物中有机质的输入,其在早期成岩阶段与硫化物和磷元素的耦合关系,可以促进或者降低有机质的保存;铁元素在海相沉积物早期成岩过程中可以改变孔隙水的化学性质,影响亚稳定碳酸盐矿物的保存,导致碳酸盐沉积物的溶解与胶结;铁元素在早期成岩过程中赋存状态的改变对海相沉积物的磁学性质有重要的影响,成岩作用可能削弱或者产生二次磁学信号;铁元素在异化铁还原过程中发生同位素分馏,对古海洋中铁的生物地球化学循环过程及古海洋氧化还原状态有重要的指示意义。上述过程与铁元素的赋存状态和有机质分解过程相关,值得进一步深入研究。相关研究对识别地质历史中的缺氧事件、海相烃源岩的形成过程、碳酸盐沉积的模拟以及全球碳循环等一系列重大问题有重要意义。

Iron as one of the highest abundance elements in the crust, plays a very important role in the marine sediment diagenesis. Iron as a nutritive elements in marine primary productivity, affects the input of organic matter in marine sediments; the coupling of iron sulfide and phosphorus can promote or reduce the organic matter burial; During early diagenesis, iron in marine sediments can alter the chemical properties of the pore water, resulting in aragonite grain dissolution, thereby affecting the cementation of carbonate sediments; Diagenetic alterations of iron minerals driven by anaerobic oxidation of organic matter have an important influence on the magnetic properties of marine sediments, producing secondary magnetic signal or weakening them; Isotope fractionation during dissimilatory microbial iron reduction, can indicate the biogeochemical cycle of iron and the redox conditions of ancient oceans. Processes mentioned above relate to the input of terrigenous detrital and the metabolism of organic matter, requiring further studies. These studies will have important significance to the related research, such as Oceanic Anoxic Events, the formation mechanism of marine source rocks and the model of carbonate precipitation and global carbon cycle.

中图分类号: 


[1]Fortin D, Langley S. Formation and occurrence of biogenic ironrich minerals[J].EarthScience Reviews,2005,72(1/2): 1-19.
[2]Huang Yongjian, Wang Chengshan. Progress of the study of reactive iron cycling in the Paleo Ocean and its applications to the genesis of Cretaceous anoxicoxic sedimentary transition[J].Earth Science Frontiers,2009, 16(5): 172-180.[黄永建, 王成善. 古海洋活性铁循环研究进展及对白垩纪缺氧—富氧沉积转变的启示[J]. 地学前缘, 2009, 16(5): 172-180.]
[3]Marchetti A, Varela D E, Lance V P, et al. Iron and silicic acid effects on phytoplankton productivity, diversity, and chemical composition in the central equatorial Pacific Ocean[J].Limnology and Oceanogr,2010, 55(1): 11-29.
[4]Martin J H. Glacialinterglacial CO2 change: The iron hypothesis[J].Paleoceanography,1990, 5(1): 1-13.
[5]Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic[J]. Nature,1988, 331(6 154): 341-343.
[6]Lyons T W, Severmann S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins[J].Geochimica et Cosmochimica Acta,2006,70(23): 5 698-5 722.
[7]Staubwasser M, von Blanckenburg F, Schoenberg R. Iron isotopes in the early marine diagenetic iron cycle[J].Geology,2006, 34(8): 629-632.
[8]Duan Y, Severmann S, Anbar A D, et al. Isotopic evidence for Fe cycling and repartitioning in ancient oxygendeficient settings: Examples from black shales of the midtolate Devonian Appalachian Basin[J].Earth and Planetary Science Letters,2010, 290(3/4): 244-253.
[9]Johnson C M, Beard B L, Roden E E. The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth[J].Annual Review of Earth and Planetary Sciences,2008, 36: 457-493.
[10]Johnson C M, Beard B L. Fe isotopes: An emerging technique for understanding modern and ancient biogeochemical cycles[J]. GSA Today,2006, 16(11): 4-10.
[11]Tangalos G E, Beard B L, Johnson C M, et al. Microbial production of isotopically light iron (II) in a modern chemicallyprecipitated sediment and implications for isotopic variations in ancient rocks[J]. Geobiology,2010, 8(3): 197-208.
[12]Meyers S R. Production and preservation of organic matter: The significance of iron[J]. Paleoceanography,2007, 22: PA4211, doi:10.1029/2006PA001332.
[13]Best M M R, Ku T C W, Kidwell S M, et al. Carbonate preservation in shallow marine environments: Unexpected role of tropical siliciclastics[J].Journal of Geology,2007,115(4): 437-456.
[14]Taylor K G, Perry C T, Greenaway A M, et al. Bacterial iron oxide reduction in a terrigenous sedimentimpacted tropical shallow marine carbonate system, North Jamaica[J].Marine Chemistry,2007, 107(4): 449-463.
[15]Walter L M, Burton E A. Dissolution of recent platform carbonate sediments in marine pore fluids[J]. American Journal of Science,1990, 290(6): 601-643.
[16]Riedinger N, Pfeifer K, Kasten S, et al. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate[J]. Geochimica et Cosmochimica Acta,2005, 69(16): 4 117-4 126.
[17]Rowan C J, Roberts A P, Broadbent T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 223-235.
[18]Da Silva A C, Potma K, Weissenberger J A W, et al. Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls, comparison of the Frasnian from Belgium and Alberta, Canada[J]. Sedimentary Geology, 2009, 214(1/4): 3-18.
[19]Raiswell R, Fisher Q J. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments: Implications for the formation of concretions[J]. Chemical Geology, 2004, 211(1/2): 71-85.
[20]Ingalls A E, Aller R C, Lee C, et al. Organic matter diagenesis in shallow water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4 363-4 379.
[21]Canfield D E. Sulfate reduction in deepsea sediments[J]. American Journal of Science, 1991, 291(2): 177-188.
[22]Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J].Geochimica et Cosmochimica Acta, 1979, 43(7): 1 075-1 090.
[23]Machel H G. Bacterial and thermochemical sulfate reduction in diagenetic settings old and new insights[J]. Sedimentary Geology, 2001, 140(1/2): 143-175.
[24]Machel H G, Krouse H R, Sassen R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Applied Geochemistry,1995, 10(4): 373-389.
[25]Lovley D R. Microbial Fe(III) reduction in subsurface environments[J].FEMS Microbiology Reviews, 1997, 20(3/4): 305-313.
[26]Lovley D R, Holmes D E, Nevin K P.Dissimilatory Fe(III) and Mn(IV) reduction[J].Advances in Microbial Physiology,2004,49:219-286.
[27]Lovley D R. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Microbiological Reviews, 1991, 55(2): 259-287.
[28]Bruland K W, Rue E L, Smith G J, et al. Iron, macronutrients and diatom blooms in the Peru upwelling regime: Brown and blue waters of Peru[J]. Marine Chemistry, 2005, 93(2/4): 81-103.
[29]Blain S, Quéguiner B, Armand L, et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean[J]. Nature, 2007, 446(7 139): 1 070-1 074.
[30]Moore J K, Doney S C, Glover D M, et al. Iron cycling and nutrientlimitation patterns in surface waters of the world ocean[J]. DeepSea Research Part II, 2001, 49(1/3): 463-507.
[31]Snow L J, Duncan R A, Bralower T J. Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado, marine sedimentary section and their relationship to Caribbean Plateau construction and oxygen anoxic event 2[J]. Paleoceanography, 2005, 20(3): PA3005, doi:10.1029/2004PA001093.
[32]Orth C J, Attrep Jr M, Quintana L R, et al. Elemental abundance anomalies in the late Cenomanian extinction interval: A search for the source (s)
[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 189-204.
[33]Meyers S R, Sageman B B, Lyons T W. Organic carbon burial rate and the molybdenum proxy: Theoretical framework and application to Cenomanian Turonian oceanic anoxic event 2[J]. Paleoceanography, 2005, 20(2): PA2002, doi:10.1029/2004PA001068.
[34]Canfield D E, Raiswell R, Bottrell S. The reactivity of sedimentary iron minerals toward sulfide[J]. American Journal of Science, 1992, 292: 659-683.
[35]Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3 867-3 883.
[36]Raiswell R, Buckley F, Berner R A, et al. Degree of pyritization of iron as a paleoenvironmental indicator of bottomwater oxygenation[J]. Journal of Sedimentary Petrology, 1988, 58(5): 812-819.
[37]Raiswell R. Towards a global highly reactive iron cycle[J]. Journal of Geochemical Exploration, 2006, 88(1/3): 436-439.
[38]Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219245.
[39]Van Cappellen P, Ingall E D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus[J]. Paleoceanography, 1994, 9(5): 677-692.
[40]Hu X, Burdige D J. Shallow marine carbonate dissolution and early diagenesisImplications from an incubation study[J]. Journal of Marine Research, 2008, 66(4): 489-527.
[41]Ku T C W, Walter L M, Coleman M L, et al. Coupling between sulfur recycling and syndepositional carbonate dissolution: Evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA[J]. Geochimica et Cosmochimica Acta, 1999, 63(17): 2 529-2 546.
[42]Best M M R. Contrast in preservation of bivalve death assemblages in siliciclastic and carbonate tropical shelf settings[J].Palaios,2008, 23(12): 796-809.
[43]Perry C T, Taylor K G. Inhibition of dissolution within shallow water carbonate sediments: Impacts of terrigenous sediment input on syndepositional carbonate diagenesis[J]. Sedimentology, 2006, 53(3): 495-513.
[44]Yan J, Carlson E H. Nodular celestite in the Chihsia Formation (Middle Permian) of south China[J]. Sedimentology, 2003, 50(2): 265-278.
[45]Yan Jiaxin. Origin of permian chihsian carbonates from south China and its geological implications[J]. Acta Sedimentologica Sinica, 2004, 22(4): 579-587.[颜佳新. 华南地区二叠纪栖霞组碳酸盐岩成因研究及其地质意义[J]. 沉积学报, 2004, 22(4): 579-587.]
[46]Meng Qingyong, Li Anchun. Brief reviews on environmental magnetism in marine sediment[J]. Marine Environmental Science, 2008, 27(1): 86-90.[孟庆勇, 李安春. 海洋沉积物的环境磁学研究简述[J]. 海洋环境科学, 2008, 27(1): 86-90.]
[47]Liu Jian. Reductive diagenesis of magnetic minerals: A review[J]. Marine Geology & Quaternary Geology, 2000, 20(4): 103-107.[刘健. 磁性矿物还原成岩作用述评[J]. 海洋地质与第四纪地质, 2000, 20(4): 103-107.]
[48]Marz C, Hoffmann J, Bleil U, et al. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deepsea fan (SW Indian Ocean)[J]. Marine Geology, 2008, 255(3/4): 118-130.
[49]Rey D, Mohamed K J, Bernabeu A, et al. Early diagenesis of magnetic minerals in marine transitional environments: Geochemical signatures of hydrodynamic forcing[J]. Marine Geology, 2005, 215(3/4): 215-236.
[50]Li H Y, Zhang S H, Fang N Q, et al. Magnetic records of core MD77-181 in the Bay of Bengal and their paleoenvironmental implications[J]. Chinese Science Bulletin, 2006, 51(15):1 884-1 893.
[51]Larrasoana J C, Roberts A P, Musgrave R J, et al. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems[J]. Earth and Planetary Science Letters, 2007, 261(3/4): 350-366.
[52]Maloof A C, Kopp R E, Grotzinger J P, et al. Sedimentary iron cycling and the origin and preservation of magnetization in platform carbonate muds, Andros Island, Bahamas[J]. Earth and Planetary Science Letters, 2007, 259(3/4): 581-598.
[53]Zhang S H, Wang X L, Zhu H. Magnetic susceptibility variations of carbonates controlled by sealevel changesExamples in Devonian to Carboniferous strata in southern Guizhou province, China[J]. Science in China (Series D), 2000, 43(3): 266-276.
[54]Rouxel O J, Bekker A, Edwards K J. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state[J]. Science, 2005, 307(5 712):1 088-1 091.
[55]Yamaguchi K E, Ohmoto H. Comment on “Iron isotope constraints on the Archean and Paleoproterozoic Ocean redox state&rdquo[J]. Science,2006, 311(5 758):177.
[56]Severmann S, Lyons T W, Anbar A, et al. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans[J].Geology, 2008,36(6): 487-490.
[57]Heimann A, Johnson C M, Beard B L, et al. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in~2.5 Ga marine environments[J]. Earth and Planetary Science Letters,2010,294:8-18.
[58]Beard B L, Johnson C M, Skulan J L, et al. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe[J]. Chemical Geology,2003, 195(1/4): 87-117.
[59]Archer C, Vance D. Coupled Fe and S isotope evidence for Archean microbial Fe (III) and sulfate reduction[J].Geology,2006, 34(3): 153-156.
[60]Severmann S, Johnson C M, Beard B L, et al. The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments[J].Geochimica et Cosmochimica Acta, 2006, 70(8): 2 006-2 022.
[61]Teutsch N, Schmid M, Müller B, et al. Large iron isotope fractionation at the oxicanoxic boundary in Lake Nyos[J].Earth and Planetary Science Letters,2009,285(1/2): 52-60.
[62]Jenkyns H C, Matthews A, Tsikos H, et al. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the CenomanianTuronian oceanic anoxic event[J]. Paleoceanography,2007, 22(3): PA3208, doi:10.1029/2006PA001355.
[63]Crosby H A, Roden E E, Johnson C M, et al. The mechanisms of iron isotope fractionation produced during dissimilatory Fe (III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens[J]. Geobiology, 2007, 5(2): 169-189.
[64]Wu L, Beard B L, Roden E E, et al. Influence of pH and dissolved Si on Fe isotope fractionation during dissimilatory microbial reduction of hematite
[J]. Geochimica et Cosmochimica Acta, 2009, 73(19): 5 584-5 599.
[65]Matthews A, MorgansBell H S, Emmanuel S, et al. Controls on ironisotope fractionation in organicrich sediments (Kimmeridge Clay, Upper Jurassic, southern England)[J]. Geochimica et Cosmochimica Acta,2004,68(14):3 107-3 123.
[66]Frost C D, Von Blanckenburg F, Schoenberg R, et al. Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation[J]. Contributions to Mineralogy and Petrology,2007, 153(2): 211-235.
[67]Von Blanckenburg F, Mamberti M, Schoenberg R, et al. The iron isotope composition of microbial carbonate[J].Chemical Geology,2008, 249(1/2): 113-128.
[68]Kershaw S, Li Y, CrasquinSoleau S, et al. Earliest Triassic microbialites in the South China block and other areas: Controls on their growth and distribution[J]. Facies,2007, 53(3): 409-425.
[69]Wang Y B, Tong J N, Wang J S, et al. Calcimicrobialite after endPermian mass extinction in south China and its palaeoenvironmental significance
[J]. Chinese Science Bulletin, 2005, 50(7): 665-671.
[70]Mei Mingxiang, Gao Jinhan, Meng Qingfen, et al. Microdigital stromatolites and their response to stromatolite decline at 1 250 Ma± for the Mesoproterozoic Wumishan Formation at Jixian section in Tianjin[J]. Journal of Palaeogeography, 2008, 10(5): 495-509.[梅冥相, 高金汉, 孟庆芬, 等. 天津蓟县中元古界雾迷山组微指状叠层石及其对1 250 Ma±叠层石衰减事件的响应[J]. 古地理学报, 2008, 10(5): 495-509.]
[71]Cao Ruiji, Yuan Xunlai. Advances of stromatolites study in China[J]. Acta Palaeontologica Sinica,2009,48(3): 314-321.[曹瑞骥, 袁训来. 中国叠层石研究进展[J]. 古生物学报, 2009,48(3): 314-321.]
[72]Hansel C M, Benner S G, Neiss J, et al. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow
[J].Geochimica et Cosmochimica Acta,2003, 67: 2 977-2 992.
[73]Chen Jianfa, Zhang Shuichang, Sun Shengli, et al. Main factors influencing marine carbonate source rock formation[J].Acta Geological Sinica,2006, 80(3): 467-472.[陈践发, 张水昌, 孙省利, 等. 海相碳酸盐岩优质烃源岩发育的主要影响因素[J]. 地质学报, 2006, 80(3): 467-472.]
[74]Liang Digang, Guo Tonglou, Bian Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 3): Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J].Marine Origin Petroleum Geology, 2009, 14(2): 1-19.[梁狄刚, 郭彤楼, 边立曾, 等. 中国南方海相生烃成藏研究的若干新进展 (三) 南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009, 14(2): 1-19.]
[75]Zhang Shuichang, Zhang Baomin, Bian Lizeng, et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48.[张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J]. 地学前缘, 2005, 12(3): 39-48.]
[76]Xie X N, Li H J, Xiong X, et al. Main controlling factors of organic matter richness in a Permian section of Guangyuan, northeast Sichuan[J]. Journal of China University of Geosciences, 2008, 19(5): 507-517.
[77]Yan Jiaxin, Liu Xinyu. Geobiological interpretation of the oxygendeficient deposits of the middle Permian marine source rocks in south China: A working hypothesis[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(6): 789-796.[颜佳新,刘新宇.从地球生物学角度讨论华南中二叠世海相烃源岩缺氧沉积环境成因模式[J]. 地球科学——中国地质大学学报,2007,32(6):789-796.]
[78]Yin H F, Xie S C, Qing J Z, et al. Discussion on geobiology, biogeology and geobiofacies[J]. Science in China (Series D), 2008, 51(11): 1 516-1 524.
[79]Xie Shucheng, Yin Hongfu, Xie Xinong, et al. On the geobiological evaluation of hydrocarbon source rocks[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(6): 727-740.[谢树成, 殷鸿福, 解习农, 等. 地球生物学方法与海相优质烃源岩形成过程的正演和评价[J]. 地球科学——中国地质大学学报, 2007, 32(6): 727-740.]
[80]Crick R E, Ellwood B B, El Hassani A, et al. Magnetosusceptibility event and cyclostratigraphy (MSEC) of the EifelianGivetian GSSP and associated boundary sequences in north Africa and Europe[J]. Episodes,1997, 20: 167-175.
[81]Hladil J, Gersl M, Strnad L, et al. Stratigraphic variation of complex impurities in platform limestones and possible significance of atmospheric dust: A study with emphasis on gammaray spectrometry and magnetic susceptibility outcrop logging (EifelianFrasnian, Moravia, Czech Republic)[J].International Journal of Earth Sciences,2006, 95(4): 703-723.
[82]Wu L L, Beard B L, Roden E E, et al. Stable Fe isotope fractionations produced by aqueous Fe(II)hematite surface interactions[J]. Geochimica et Cosmochimica Acta,2010, 74(15): 4 249-4 265.
[83]Yang Yaomin, Shi Xuefa, Liu Jihua, et al. Advances on Fe isotope geochemistry in marine environments[J].Advances in Earth Science,2006, 21(11): 1 171-1 179.[杨耀民,石学法,刘季花,等.海洋环境 Fe同位素地球化学研究进展[J]. 地球科学进展, 2006, 21(11):1 171-1 179.]

[1] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[2] 黄思静,石和,刘洁,沈立成. 锶同位素地层学研究进展[J]. 地球科学进展, 2001, 16(2): 194-200.
阅读次数
全文


摘要