地球科学进展 ›› 2011, Vol. 26 ›› Issue (5): 493 -498. doi: 10.11867/j.issn.1001-8166.2011.05.0493

综述与评述 上一篇    下一篇

超光速电磁波的传播特性及与高能粒子相互作用研究的新进展
肖伏良, 何兆国, 陈良旭, 贺艺华, 杨昶   
  1. 长沙理工大学物理与电子科学学院, 湖南长沙410004
  • 收稿日期:2010-05-05 修回日期:2011-03-03 出版日期:2011-05-10
  • 通讯作者: 肖伏良 E-mail:flxiao@126.com
  • 基金资助:

    国家自然科学基金项目“超光速电磁波对高能电子随机加速和投掷扩散的研究”(编号:40774078)资助.

Latest Progress on Propagation Characteristics of Superluminous Waves and their Gyroresonance with Energetic Particles

Xiao Fuliang, He Zhaoguo, Chen Liangxu, He Yihua, Yang Chang   

  1. School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha410004, China
  • Received:2010-05-05 Revised:2011-03-03 Online:2011-05-10 Published:2011-05-10

超光速(相速度大于光速)电磁波是广泛存在于空间等离子中的高频电磁波,总结了超光速电磁波的产生机制——回旋微波激射不稳定性,介绍了超光速波在地球磁层中的传播特性,分析了其从高纬极光源区传播到低纬区域的基本原因:磁暴时由于等离子层顶压缩,超光速波传播时不会遇上反射,从而能向下传播。重点介绍了超光速波产生的地球辐射带区域高能电子的随机加速与投掷角扩散过程。发现超光速波能量扩散过程一般大于投掷角扩散过程,在合适的条件下超光速波对高投掷角的高能电子主要起随机加速作用,而对低投掷角的高能电子主要起投掷角扩散作用。这些最新进展有助于进一步了解超光速电磁波的激发与传播特性, 以及地球辐射带高能电子的动力学行为。

Superluminous (the phase speed higher than the speed of light) electromagnetic waves are widely present in the space plasma with high frequencies. Here, we briefly introduce their generation mechanism—Cyclotron Maser Instability (CMI). We present discussion on the propagating characteristics of superluminous waves in the Earth′s magnetosphere. During high geomagnetic activity, since the plasmapause position moves inward closer to the Earth, the superluminous waves can propagate from their source cavity downward and even through the equatorial plane due to no reflection. We focus on pitch angle scattering and stochastic acceleration of energetic electrons induced by superluminous waves in the radiation belts. Current works show that energy diffusion resulting from such waves is generally higher than pitch angle scattering. Under appropriate conditions, superluminous waves may contribute to both the stochastic acceleration of electrons with larger pitch angle and the loss process of electrons with smaller pitch angles. These recent progresses provide further understanding of the instability and propagation of superluminous waves, as well as the dynamics of highly energetic electrons in the Earth′s radiation belts.

中图分类号: 

[1]Baker D N, Blake J B, Klebesadel R W, et al. Highly relativisticelectrons in the Earth′s outer magnetosphere: Lifetimes andtemporal history 1979-1984
[J].Journal of Geophys Research, 1986, 91: 4 265.
[2]Li X. Variations of 0.7-0.6 MeV electrons at geosynchronous orbit as a function of solar wind[J].Space Weather, 2004, 2: S03006.
[3]Sarris T, Li X, Temerin M. Simulating radial diffusion of energetic (MeV) electrons through a model of fluctuating electric and magnetic fields[J].Annales Geophysicae, 2006, 24: 1.
[4]Zong Q G, Zhou X Z, Li X, et al. Ultralow frequency modulation ofparticles particles in the dayside magnetosphere[J].Geophysical Research Letters, 2007, 34: L12105.
[5]Zong Q G, Wang Y F, Yang B, et al. Recent progress on ULF wave and its interactions with energetic particles in the inner magnetosphere[J].Science China Technology Science, 2008, 51: 1- 620.
[6]Yang B, Fu S, Zong Q G, et al. Numerical study on ULF waves in a dipole field excited by sudden impulse[J].Science China Technology Science, 2008, 51: 1 665.
[7]Wang Y, Fu S, Zong Q G, et al. Multispacecraft observations of ULF waves during the recovery phase of magnetic storm on October 30, 2003[J].Science China Technology Science, 2008, 51: 1 772.
[8]Zong Q G, Zhou X Z, Wang Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt[J].Journal of Geophysical Research, 2009,114: A10204.
[9]Zong Q G, Hao Y Q, Wang Y F. Ultra low frequency waves impact on radiation belt energetic particles[J].Science China Technology Science,2009, 52: 3 698.
[10]Brautigam D H, Albert J M. Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm[J].Journal of Geophysical Research,2000,105: 291.
[11]Horne R B, Thorne R M, Shprits Y Y, et al. Wave acceleration of electrons in the Van Allen radiation belts[J].Nature, 2005, 437:227-230.
[12]Li L, Cao J, Zhou G. Combined acceleration of electrons by whistlermode and compressional ULF turbulences near the geosynchronous orbit[J]. Journal of Geophysical Research, 2005, 110: A03203.
[13]Chen Y, Reeves G D, Friedel R H W. The energization of relativistic electrons in the outer Van Allen radiation belt[J].Nature Physical, 2007, 3: 614-617. [14]Calvert W. The auroral plasma cavity[J].Geophysical Research Letters,1981, 8:919.
[15]Gurnett D A, Shawhan S D, Shaw R R. Auroral hiss, Zmode radiation and auroral kilometric radiation in the polar magnetosphere: DE1 observations[J].Journal of Geophysical Research, 1983, 88: 329.
[16]Hashimoto K, Kudo S, Matsumoto H. Source of auroral myriametric radiation observed with Geotail[J].Journal of Geophysical Research, 1988, 103: 23 475.
[17]Wu C S, Lee L C. A theory of the terrestrial kilometric radiation[J].Astrophysical Journal,1979, 230: 621.
[18]Lee L C, Wu C S. Amplification of radiation near cyclotron frequency due to electron population inversion[J].Physics of Fluids,1980, 23:1 348.
[19]Wong H K, Wu C S, Ke F J, et al.Electromagnetic cyclotronlosscone instability associated with weakly relativistic electrons[J].Journal of Plasma Physics, 1982, 28:503-525.
[20]Omidi N, Gurnett D A. Growth rate calculations of auroral kilometric radiation using the relativistic resonance condition[J].Journal of Geophysical Research, 1982, 87(A4):2 377.
[21]Omidi N, Wu C S, Gurnett D A. Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism[J].Journal of Geophysical Research, 1984, 89(A2):883-895.
[22]Omidi N, Gurnett D A. Pathintegrated growth of auroral kilometric radiation[J].Journal of Geophysical Research, 1984, 89: 10 801-10 812.
[23]Mutel R L, Peterson W W, Jaeger T R, et al. Dependence of cyclotron maser instability growth rates on electron velocity distributions and perturbation by solitary waves[J].Journal of Geophysical Research, 2007, 112: A07211.
[24]Pritchett P L, Strangeway R S. A simulation study of kilometric radiation generation along an auroral field line[J].Journal of Geophysical Research, 1985,90: 9 650.
[25]Winglee R M, Pritchett P L. The generation of lowfrequency electrostatic waves in association with auroral kilometric radiation[J].Journal of Geophysical Research, 1986, 91: 13 531-13 541.
[26]Roux A. Auroral kilometric radiation sources: In situ and remote observations from Viking[J].Journal of Geophysical Research, 1993, 98(A7):11 657-11 670.
[27]Delory G T. FAST observations of electron distributions within AKR source regions[J].Geophysical Research Letters, 1988, 25(12):2 069-2 072.
[28]Ergun R E. FAST satellite wave observations in the AKR source region[J].Geophysical Research Letters, 1998, 25: 2 041-2 044.
[29]Strangeway R J,Ergun R E, Carlson C W,et al. Accelerated electrons as the source of AKR[J].Physics and Chemisty of the Earth C, 2001, 26: 145-149.
[30]Bingham R, Cairns R. Generation of auroral kilometric radiation by electron horseshoe distributions[J].Physics of Plasmas, 2000, 7: 3 089-3 092.
[31]Pritchett P L, Strangeway R, Ergun R, et al. Generation and propagation of cyclotron maser emissions in the finite auroral kilometric radiation source cavity[J].Journal of Geophysical Research,2002, 107(A12): 1 437.
[32]Mutel R L, Menietti J D, Christopher I W, et al. Striated auroral kilometric radiation emission: A remote tracer of ion solitary structures[J].Journal of Geophysical Research, 2006, 111: A10203.
[33]Pritchett P L. Relativistic dispersion and the generation of auroral kilometric radiation[J].Geophysical Research Letters, 1984, 11: 143.
[34]Pritchett P L. Relativistic dispersion, the cyclotron maser instability, and auroral kilometric radiation[J]. Journal of Geophysical Research, 1984, 89: 8 957-8 970.
[35]Kaiser M L, Alexander J K. Relationship between auroral substorms and the occurrence of terrestrial kilometric radiation[J].Journal of Geophysical Research,1977, 82: 5 238.
[36]Morioka A, Oya H, Miyatake S. Terrestrial kilometric radiation observed by satellite Jikiken (Exos-B)[J].Journal of Geomagnetism and Geoelectricity, 1981, 33:37.
[37]Hanasz J, de Feraudy H, Schreiber R, et al. Wideband bursts of auroral kilometric radiation and their association with UV auroral bulges[J].Journal of Geophysical Research, 2001, 106: 3 859.
[38]Hanasz J, Panchenko M, de Feraudy H, et al. Occurrence distributions of the auroral kilometric radiation ordinary and extraordinary wave modes[J].Journal of Geophysical Research, 2003, 108: 1 408.
[39]Hashimoto K. A reconciliation of propagation modes of auroral kilometric radiation[J].Journal of Geophysical Research, 1984, 89: 7 459.
[40]Calvert W, Hashimoto K. The magnetoionic modes and propagation properties of auroral radio emissions[J].Journal of Geophysical Research, 1990, 95:3 943.
[41]Xiao F L, Chen L J, Zheng H N, et al. A parametric ray tracing study of superluminous auroral kilometric radiation wave modes[J].Journal of Geophysical Research, 2007, 112: A10214.
[42]Summers D, Thorne R M, Xiao F L. Gyroresonant acceleration of electrons in the magnetosphere by superluminous electromagnetic waves[J].Journal of Geophysical Research, 2001,106: 10 853.
[43]Xiao F L, Thorne R M, Summers D. Higherorder gyroresonant acceleration of electrons by superluminous (AKR) wave moldes[J].Planetary and Space Science, 2007,55:1 257.
[44]Xiao F L, Zhou Q H, Zheng H N, et al. Relativistic diffusion coefficients for superluminous (auroral kilometric radiation) wave mold in space plasmas
[J].Journal of Geophysical Research, 2006, 111: A08208.
[45]Xiao F L, Chen L X, He Y H. Bounceaveraged diffusion coefficients for superluminous wave modes in the magnetosphere[J].Journal of Atmospheric and SolarTerrestrial Physics, 2011, 72: 88-94.
[46]Xiao F L, Chen L X, He Y H, et al. Dynamic evolution of outer radiation belt electrons driven by superluminous R-X mode waves[J].Science China Technology Science,2010,53:2 734-2 738.

[1] 熊盛青,于长春,王卫平,范正国,王乃东,万建华,张洪瑞. 直升机大比例尺航空物探在深部找矿中的应用前景[J]. 地球科学进展, 2008, 23(3): 270-275.
[2] 张平松,吴健生. 中国隧道及井巷地震波法超前探测技术研究分析[J]. 地球科学进展, 2006, 21(10): 1033-1038.
[3] 雍学善,马海珍,高建虎. 双相介质AVO方程及参数简化研究[J]. 地球科学进展, 2006, 21(03): 242-249.
阅读次数
全文


摘要