地球科学进展 ›› 2017, Vol. 32 ›› Issue (11): 1183 -1192. doi: 10.11867/j.issn.1001-8166.2017.11.1183

上一篇    下一篇

阿姆河右岸区块气藏酸气的成因与分布影响因素
李琦( ), 徐亮, 匡冬琴   
  1. 中国科学院武汉岩土力学研究所,岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2017-08-31 修回日期:2017-10-23 出版日期:2017-11-10
  • 基金资助:
    国家自然科学基金面上项目“酸气—咸水作用下岩石特异性破坏机理研究”(编号: 41274111);中国科学院百人计划择优支持项目“酸气回注”(编号: O931061C01)资助

Origin and Distribution Factors of Sour Gases in Natural Gas Reservoirs in the Amu Darya Right Bank Block, Turkmenistan

Qi Li( ), Liang Xu, Dongqin Kuang   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2017-08-31 Revised:2017-10-23 Online:2017-11-10 Published:2018-01-10
  • About author:

    First author:Li Qi (1972-), male, Qingzhou City, Shandong Province, Professor. Research areas include carbon dioxide geological utilization and storage, acid gas injection.E-mail:qli@whrsm.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Failure mechanism of rock under acid gas and saline water interaction” (No.41274111);The Hundred Talent Program of Chinese Academy of Sciences “Acid gas injection” (No.O931061C01)

土库曼斯坦阿姆河右岸区块气藏属于酸性气藏,气体碳同位素组成特征显示,该研究区块的二氧化碳(CO2)属于无机成因;而烃源岩、储层、有机质镜质体反射率、酸性气体含量等资料显示,研究区的硫化氢(H2S)为硫酸盐热化学还原反应的产物。通过对常规酸性气体分布影响因素的分析,包括构造、断裂、盖层质量、沉积相、储层类型、埋深、岩相、硫源等进行归纳可以得出,影响研究区酸性气体分布的因素主要有:土库曼斯坦阿姆河右岸区块的基底断裂有利于CO2分布;盖层质量越好,越有利于CO2富集;生物堤礁带、点礁和逆掩断裂带的气藏具有中等CO2含量;上侏罗统基末利—提塘阶膏盐岩是形成H2S的重要硫源,但不是充分条件,中—下侏罗统海滨相碎屑岩作为研究区主力烃源岩是H2S气藏的主要硫源,中—上侏罗统卡洛夫—牛津阶碳酸盐岩和上侏罗统基末利—提塘阶巨厚膏岩层有利于H2S保存;溶解态SO2-4源影响H2S分布;构造、断裂导致H2S分布更为复杂;研究区孔隙(洞)型储层与H2S分布具有良好的相关关系;研究区H2S多分布在地温高于100 ℃的地层中;开阔台地深水沉积相不利于H2S形成,点礁和逆掩断裂带属于低H2S含量带,生物堤礁带属于中—高H2S含量带。通过研究区的同位素、沉积相、岩性、温度、断裂分布等因素的全面分析,初步提出了其CO2和H2S的成因,且较为全面地讨论了酸气分布的影响因素,并指出为确定更细致的酸性气体成因和分布因素仍需进行必要的后续研究工作。

Through the analysis of original carbon isotopes in the blocks on the right bank of the Amu Darya River, Turkmenistan, it can be firstly concluded that the carbon dioxide (CO2) in the sour gas reservoirs belongs to the inorganic-origin gas. The origin of hydrogen sulfide (H2S) in the Amu Darya Right Bank Block is thermochemical sulfate reduction from the detailed analysis of hydrocarbon source rocks data, reservoir characteristics, vitrinite reflectance of organic matter, and sour gas content. Then, the factors affecting the distribution of sour gases in the Amu Darya Right Bank Block were investigated by the analysis of conventional sour gas distribution factors including geological structure, fracture and fault, caprock integrity, sedimentary facies, reservoir types, lithofacies, the source of sulfur and so on. The following basic findings were achieved: ① The basement rift in the study area is conductive to the distribution of CO2. The caprock integrity contributes to the concentration of CO2. The gas reservoirs in the biological dike reefs, patch reefs and overthrust zones usually have medium CO2 content. ② The geological structure and fracture caused the complexity of the distribution of H2S. The gypsum-salt rock in upper Jurassic-Tithonian is an important sulphur source, and the main hydrocarbon source rocks are also the major sulfur source of H2S gas reservoirs. Furthermore, the giant gypsum layers in the middle-upper Jurassic Callovian-Oxfordian and the upper Jurassic-Tithonian are conductive to preservation of H2S, and the small openings and holes in the reservoir is also correlative to the distribution of H2S. ③ The H2S in the study area is mostly distributed in the formations with the geothermal temperature of higher than 100 ℃. The open platform deep-water sedimentary facies are harmful to the formation of H2S. The patch reef and overthrust zones belong to the belts of low H2S content, however, the biological dike reef zones belong to the belts of medium-high H2S content. However, the origin and distribution factors of sour gases in natural gas reservoirs were obtained. At the same time, it was pointed out that more necessary and accurately quantitative research is still needed to determine the origin and distribution of acid gases in the Amu Darya Right Bank Block, Turkmenistan.

中图分类号: 

图1 阿姆河右岸酸性气藏研究区
Fig.1 The study area of sour gas reservoirs in the right bank of Amu Darya River
表1 各种含碳物质的δ 13C值
Table 1 The δ 13C values of various carbon-bearing matters
表2 萨曼杰佩气田卡洛夫—牛津阶碳酸盐岩碳同位素数据统计表
Table 2 Distribution of carbon isotope of different Callovian-Oxfordian carbonate rocks in the Samandepe gas field
图2 阿姆河右岸上侏罗统烃源岩有机质镜质体成熟度( R O)频率的分布图
Fig.2 Distribution chart of hydrocarbon rocks vitrinite maturity in the upper Jurassic in the right bank of Amu Darya River
图3 各气田H 2S和CO 2含量的关系图
Fig.3 Relation ship chart of H 2S and CO 2 content of gas reservoirs
表3 阿姆河右岸A区气田天然气组成组分含量表(单位:%)
Table 3 Nature gas components content (%) in the A zone of the right bank of Amu Darya River
表4 研究区断裂特征
Table 4 Fracture characteristics of the study area
图4 萨满杰佩气藏Sam53-1井沉积演化及碳氧同位素曲线
Fig.4 Sedimentary evolution and the C and O isotopic stratigraphic curve of well Sam53-1 in Samandepe gas field
表5 不同类型储层物性表
Table 5 Physical properties of different types of reservoirs
[1] Dai Jinxing, Song Yan, Dai Chunsen,et al.Inorganic Origin Gas and Its Formation Conditions of Gas Reservoirs in Eastern China[M]. Beijing: Science Press, 1995.
[戴金星, 宋岩, 戴春森, 等. 中国东部无机成因气及其气藏形成条件[M]. 北京: 科学出版社, 1995.]
[2] Tao Mingxin, Xu Yongchang, Han Wengong, et al.Active characteristics and accumulative effects of mantle-derived fluids in eastern China[J]. Geotectonic et Metallogenia, 2001, 25(3): 265-270.
[陶明信, 徐永昌, 韩文功, 等.中国东部幔源流体的活动特征与成藏效应[J]. 大地构造与成矿学, 2001, 25(3): 265-270.]
[3] Tao Mingxin, Xu Yongchang, Shi Baoguang, et al.The mantle degassing and deep geological structure characteristics of different types of fault zone in China[J]. Science in China(Series D), 2005, 35(5): 441-451.
[陶明信, 徐永昌, 史宝光, 等. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学:D辑, 2005, 35(5): 441-451.]
[4] Du Jianguo.The cause of high concentration CO2 in Chinese natural gas[J]. Natural Gas Geoscience, 1991, 2(5): 203-208.
[杜建国. 中国天然气中高浓度二氧化碳的成因[J]. 天然气地球科学, 1991, 2(5): 203-208.]
[5] Fan Guangfeng, Dai Jinxing, Qi Houfa.Sulfur hydrogen natural gas research in China[J].Natural Gas Geoscience, 1992, 3(3): 1-10.
[樊广锋, 戴金星, 戚厚发. 中国硫化氢天然气研究[J]. 天然气地球科学, 1992, 3(3): 1-10.]
[6] Li Qi, Liu Guizhen, Liu Xuehao.Development of management information system of global acid gas injection projects[C]∥Wu Ying, Carroll J J, Li Qi, eds. Gas Injection for Disposal and Enhanced Recovery. New York: Wiley,2014: 243-254.
[7] Liu Xuehao, Li Qi, Du Lei, et al.Economical comparison of acid gas reinjection and sulfur recovery in high-sulfur gas reservoirs[J]. Natural Gas Technology and Economy, 2012, 6(4): 55-59.
[刘学浩, 李琦, 杜磊, 等. 高含硫气田酸气回注与硫回收经济性对比[J]. 天然气技术与经济, 2012, 6(4): 55-59.]
[8] Yang Zhanhong, Lü Lianhong, Cao Bao, et al.A comparative analysis of international energy consumption characteristics and China’s countermeasures[J]. Advances in Earth Science, 2016, 31(1): 94-102.
[杨占红, 吕连宏, 曹宝, 等. 国际能源消费特征比较分析及中国发展建议[J]. 地球科学进展, 2016, 31(1): 94-102.]
[9] Wang Pinxian.Chinese Earth Science at its turning point[J]. Advances in Earth Science, 2016, 31(7): 665-667.
[汪品先. 迎接我国地球科学的转型[J]. 地球科学进展, 2016, 31(7): 665-667.]
[10] Li Qi, Song Ranran, Kuang Dongqin, et al.Status and advances of abandoned process of wells for CO2 geological storage[J]. Advances in Earth Science, 2016, 31(3): 225-235.
[李琦, 宋然然, 匡冬琴, 等. 二氧化碳地质封存与利用工程废弃井技术的现状与进展[J]. 地球科学进展, 2016, 31(3): 225-235.]
[11] Li Qi, Kuang Dongqin, Liu Guizhen, et al.Acid gas injection: A suitability evaluation for sequestration site in Amu Darya Basin, Turkmenistan[J]. Geological Review, 2014, 60(5): 1 133-1 146.
[李琦, 匡冬琴, 刘桂臻, 等. 酸气回注——以土库曼斯坦阿姆河右岸封存场地适应性评价为例[J]. 地质论评, 2014, 60(5): 1 133-1 146.]
[12] Yang Bo, Wen Tao, Yang Yu.The indoor screening evaluation inhibitor of the Amu Darya Right Bank gas field[J]. Science Technology and Engineering, 2013, 12(4): 1 064-1 067.
[杨波, 文涛, 杨宇.阿姆河右岸气田缓蚀剂的室内筛选评价[J]. 科学技术与工程, 2013, 12(4): 1 064-1 067.]
[13] Liu Bingshan, Wang Xi, Li Wanjun, et al.The problems and solutions in the drilling at the Right Bank of Amu Darya in Turkmenistan[C]∥The IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, 2012: 1-5.
[14] Nie Minglong, Tong Xiaoguang, Liu Qunming, et al.Types of pre-salt carbonate gas reservoirs and hydrocarbon enrichment factors of Amu Darya Right Bank area in Turkmenistan[J]. Petroleum Geology & Experiment,2016, 38(1):70-75.
[聂明龙, 童晓光, 刘群明, 等. 土库曼斯坦阿姆河右岸地区盐下碳酸盐岩气藏类型及油气富集因素[J]. 石油实验地质,2016, 38(1):70-75.]
[15] Yin Yan.Carbon Dioxide Gas Reservoir Characteristics and Its Special Relation with Gas Resource in the West of Dongying Sag[D]. Xi’an: Northwestern University, 2003.
[银燕. 东营凹陷西部CO2气藏地质特征及其与气源空间关系分析[D]. 西安: 西北大学, 2003.]
[16] Zheng Rongcai, Liu Henian, Wu Lei, et al.Geochemical characteristics and diagenetic fluid of the Callovian-Oxfordian carbonate reservoirs in Amu Darya Basin[J]. Acta Petrologica Sinica, 2012, 28(3): 961-970.
[郑荣才, 刘合年, 吴蕾, 等. 阿姆河盆地卡洛夫—牛津阶碳酸盐储层地球化学特征和成岩流体分析[J]. 岩石学报, 2012, 28(3): 961-970.]
[17] Zheng Rongcai, Pan Yanghui, Zhao Can, et al.Carbon and oxygen isotope stratigraphy of the oxfordian carbonate rocks in Amu Darya Basin[J]. Journal of Earth Science, 2013, 24(1): 42-56.
[18] Wen Huaguo, Gong Boshi, Zheng Rongcai, et al.Deposition and diagenetic system of carbonate in Callovian-Oxfordian of Samandepe gasfield, Turkmenistan[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(4): 991-1 002.
[文华国, 宫博识, 郑荣才, 等. 土库曼斯坦萨曼杰佩气田卡洛夫—牛津阶碳酸盐岩沉积—成岩系统[J]. 吉林大学学报:地球科学版, 2012, 42(4): 991-1 002.]
[19] Deng Yan, Wang Qiang, Cheng Xubin, et al.Origin and distribution laws of H2S in carbonate gas reservoirs in the Right Bank Block of the Amu Darya River[J]. Natural Gas Industry, 2011, 31(4): 21-24.
[邓燕, 王强, 程绪彬, 等. 阿姆河右岸区块碳酸盐岩气藏H2S成因与分布规律[J]. 天然气工业, 2011, 31(4): 21-24.]
[20] Ding Kangle, Li Shuyuan, Yue Changtao, et al.Chemistry experimental research of H2S in natural gas[J]. Chemical Engineering of Oil & GAS, 2008, 37(2): 141-146.
[丁康乐, 李术元, 岳长涛, 等. 天然气中H2S的化学成因实验研究[J]. 石油与天然气化工. 2008, 37(2): 141-146.]
[21] Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al.Distribution of high H2S-bearing natural gas and evidence of TSR origin in the Sichuan Basin[J]. Acta Geologica Sinica, 2006, 80(8): 1 208-1 218.
[朱光有, 张水昌, 梁英波, 等. 四川盆地高含H2S天然气的分布与TSR成因证据[J]. 地质学报, 2006, 80(8): 1 208-1 218.]
[22] Dai Jinxing.Distribution, classification and origin of natural gas with hydrogen sulphide in China[J]. Acta Sedimentologica Sinica, 1985, 3(4): 109-120.
[戴金星. 中国含硫化氢的天然气分布特征、分类及其成因探讨[J]. 沉积学报, 1985, 3(4): 109-120.]
[23] Fang Jie, Xu Shubao, Wu Lei, et al.Hydrocarbon generation potential of Jurassic source rocks in Right Bank of Amu Darya[J]. Marine Origin Petroleum Geology, 2014, 19(1): 8-18.
[方杰, 徐树宝, 吴蕾, 等. 阿姆河右岸地区侏罗系海相烃源岩生烃潜力[J]. 海相油气地质, 2014, 19(1): 8-18.]
[24] Li Wanjun, Zhang Wei, Zhou Haiqiu, et al.Optimization of casing program in the block of Amu Darya River Right Bank[J]. Drilling & Production Technology, 2013, 36(6): 42-44.
[李万军, 张玮, 周海秋, 等. 阿姆河右岸A区井身结构优化研究与应用[J]. 钻采工艺, 2013, 36(6): 42-44.]
[25] Li Wanjun, Zhang Wei, Wang Wei, et al.Research in and application of optimization of wellbore configuration in the block B at the right bank of Amu Darya[J]. Oil Drilling & Production Technology, 2014, 36(2): 42-44.
[李万军, 张玮, 王伟, 等. 阿姆河右岸B区井身结构优化研究与应用[J]. 石油钻采工艺, 2014, 36(2): 42-44.]
[26] Wang Qiang, Cheng Xubin, Fei Huaiyi, et al.Reservoir-forming process of a block in the right bank of the Amu Darya River[J]. Natural Gas Exploration & Development, 2012, 35(2): 1-5.
[王强, 程绪彬, 费怀义, 等. 阿姆河右岸A区气藏成藏过程分析[J]. 天然气勘探与开发, 2012, 35(2): 1-5.]
[27] Liu Xiaobo.Research on Relation Between Fault System and CO2 Gas Reservoir Formation in Songliao Basin[D]. Daqing: Daqing Petroleum Institute, 2009.
[刘小波. 松辽盆地断裂系统及与CO2气藏成藏关系研究[D]. 大庆: 大庆石油学院, 2009.]
[28] Liu Chuansheng, Zhou Shi, Yan Ling, et al.Drilling engineering difficulties in high-sulfur gas fields in Turkmenistan and countermeasures[J]. Natural Gas Industry, 2013, 33(1): 79-84.
[刘川生, 周仕, 晏凌, 等. 高含硫气田钻井工程技术难点及应对措施——以土库曼斯坦阿姆河气田为例[J]. 天然气工业, 2013, 33(1): 79-84.]
[29] Nie Minglong, Wu Lei, Sun Lin, et al.Salt-related fault characteristics and their petroleum geological significance in Zarzhu terrace and its adjacent areas, the Amu Darya Basin[J]. Oil & Gas Geology, 2013, 34(6): 803-808.
[聂明龙, 吴蕾, 孙林, 等. 阿姆河盆地查尔朱阶地及邻区盐相关断裂特征与油气地质意义[J]. 石油与天然气地质, 2013, 34(6): 803-808.]
[30] Xu Liangjun, Wu Yulin, Jiang Wei, et al.Right bank of Amu Darya fracture characteristics and hydrocarbon accumulation model[J]. Coal Technology, 2013, 32(11): 171-172.
[胥良君, 吴育林, 江巍, 等. 阿姆河右岸断裂特征及油气成藏模式[J]. 煤炭技术, 2013, 32(11): 171-172.]
[31] Yang Yingtao, Chen Gongyang, Wang Lianqiao, et al.Study of mine control factors of deep CO2 gas accumulation in Songliao Basin[J]. Journal of Oil and Gas Technology, 2009, 31(4): 54-58.
[杨映涛, 陈恭洋, 王连桥,等. 松辽盆地深层CO2气成藏主控因素分析[J]. 石油天然气学报, 2009, 31(4): 54-58.]
[32] Prokoph A, Shields G A, Veizer J.Compilation and time-series analysis of a marine carbonate delta(18)O, delta(13)C, (87)Sr/(86)Sr and delta(34)S database through Earth history[J]. Earth-Science Reviews, 2008, 87(3/4): 113-133.
[33] Bartolini A, Baumgartner P O, Guex J.Middle and Late Jurassic radiolarian palaeoecology versus carbon-isotope stratigraphy[J].Palaeogeography Palaeoclimatology Palaeoecology, 1999, 145(1/2/3): 43-60.
[34] Amursky G I, Ermakov V I, Zhabrev I P, et al.Valuable Components in Natural Gases in the USSR[C]∥Proceedings of the 11th World Petroleum Congress,1983: 303-309.
[35] Shi Yonghui.The distribution prediction of H2S in natural gas[J]. Natural Gas Geoscience, 1994, 5(1): 39-42.
[施永辉. 天然气中H2S的分布预测[J]. 天然气地球科学, 1994, 5(1): 39-42.]
[36] Zhu Guangyou, Zhang Shuichang, Liang Yingbo.Relationship between palaeo environment and the distribution of H2S in Feixianguan formation, NE Sichuan Province[J]. Petroleum Exploration and Development, 2005, 32(4): 65-69.
[朱光有, 张水昌, 梁英波. 川东北飞仙关组H2S的分布与古环境的关系[J]. 石油勘探与开发, 2005, 32(4): 65-69.]
[37] Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al.Genesis and prediction of high H2S in natural gas[J]. Chinese Journal of Geology, 2006, 41(1): 152-157.
[朱光有, 张水昌, 梁英波, 等. 天然气中高含H2S的成因及其预测[J]. 地质科学, 2006, 41(1): 152-157.]
[38] Liu Wenhui, Teng Ge’er, Gao Bo, et al.H2S formation and enrichment mechanism in medium to large scale natural gas fields (reservoirs) in Sichuan Basin[J]. Petroleum Exploration and Development, 2010, 37(5): 513-522.
[刘文汇, 腾格尔, 高波, 等. 四川盆地大中型天然气田(藏)中H2S形成及富集机制[J]. 石油勘探与开发, 2010, 37(5): 513-522.]
[39] Taskyn Abitkazy, Li Jianghai, Li Honglin, et al.Tectonic evolution and hydrocarbon potential of basins in central Asia and its adjacent regions[J]. Geoscience, 2014, 28(3): 573-584.
[塔斯肯, 李江海, 李洪林,等. 中亚与邻区盆地群构造演化及含油气性[J]. 现代地质, 2014, 28(3): 573-584.]
[40] Fei Huaiyi, Xu Gang, Wang Qiang, et al.Characteristics of gas reservoirs in the Amu Darya Right Bank Block, Turkmenistan[J]. Natural Gas Industry, 2010, 30(5): 13-19.
[费怀义, 徐刚, 王强, 等. 阿姆河右岸区块气藏特征[J]. 天然气工业, 2010, 30(5): 13-19.]
[41] Liu Henian, Wu Lei, Cao Laiyong, et al.Study of characteristics of sub-salt gypsum carbonate reservoir on the Right Bank of Amu Darya Basin[J]. Journal of Oil and Gas Technology, 2014, 36(3): 46-55.
[刘合年, 吴蕾, 曹来勇, 等. 阿姆河右岸膏盐岩下碳酸盐岩缝洞储层研究[J]. 石油天然气学报, 2014, 36(3): 46-55.]
[42] Yuan Yubao.The difficulties and countermeasures of drilling on the right bank of Amu Darya Basin, Turkmenistan[J]. Inner Mongolia Petrochemical Industry, 2014,40(9): 56-57.
[袁玉宝. 土库曼斯坦阿姆河右岸区块钻井难点及对策[J]. 内蒙古石油化工, 2014, 2014, 40(9): 56-57.]
[43] Nie Minglong, Wu Lei, Xu Shubao, et al.Genetic mechanism and exploration significance of tectonic action in the Bieshikent Depression and its adjacent area in the Amu-Darya Basin[J]. Natural Gas Industry, 2013, 33(11): 45-50.
[聂明龙, 吴蕾, 徐树宝, 等. 阿姆河盆地别什肯特坳陷及其邻区构造成因与勘探意义[J]. 天然气工业, 2013, 33(11): 45-50.]
[44] Zhang Li, Zhang Peijun, Leng Youheng.Study on well-test characteristic of different storage-permeable types of B region central gasfield, Right Bank of the Amu Darya[J]. Natural Gas Technology and Economy, 2014, 8(2): 37-43.
[张李, 张培军, 冷有恒. 阿姆河右岸B区多种储渗类型试井特征研究[J]. 天然气技术与经济, 2014, 8(2): 37-43.]
[45] Li Haowu, Dong Xiaoguang, Wang Suhua, et al.An analysis of geological characteristics and exploration potential of the Jurassic play, Amu Darya Basin[J]. Natural Gas Industry, 2010, 30(5): 6-12.
[李浩武, 董晓光, 王素华, 等. 阿姆河盆地侏罗系成藏组合地质特征及勘探潜力[J]. 天然气工业, 2010, 30(5): 6-12.]
[1] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[2] 唐文魁,高全洲. 河口二氧化碳水—气交换研究进展[J]. 地球科学进展, 2013, 28(9): 1007-1014.
[3] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[4] 耿建华,董良国,马在田. 海底节点长期地震观测:油气田开发与CO 2地质封存过程监测[J]. 地球科学进展, 2011, 26(6): 669-677.
[5] 张鸿翔,李小春,魏宁. 二氧化碳捕获与封存的主要技术环节与问题分析[J]. 地球科学进展, 2010, 25(3): 335-340.
[6] 石广玉,戴铁,徐娜. 卫星遥感探测大气CO 2浓度研究最新进展[J]. 地球科学进展, 2010, 25(1): 7-13.
[7] 曾静静,曲建升,张志强. 国际温室气体减排情景方案比较分析[J]. 地球科学进展, 2009, 24(4): 436-443.
[8] 江怀友,沈平平,卢颖,闫文华,冯立,姜龙燕. 世界油气储层二氧化碳埋存量计算研究[J]. 地球科学进展, 2009, 24(10): 1122-1129.
[9] 张建勇,刘文汇,腾格尔,王晓锋,卿颖,马凤良. 硫化氢形成与C 2+气态烷烃形成的同步性研究——几个模拟实验的启示[J]. 地球科学进展, 2008, 23(4): 390-400.
[10] 张炜,李义连,郑艳,姜玲,邱耿彪. 二氧化碳地质封存中的储存容量评估:问题和研究进展[J]. 地球科学进展, 2008, 23(10): 1061-1069.
[11] 曲建升,曾静静,张志强. 国际主要温室气体排放数据集比较分析研究[J]. 地球科学进展, 2008, 23(1): 47-54.
[12] 鲁中明,戴民汉. 海气CO 2通量与涡动相关法应用研究进展[J]. 地球科学进展, 2006, 21(10): 1046-1057.
[13] 程有义. 含油气盆地二氧化碳成因研究[J]. 地球科学进展, 2000, 15(6): 684-687.
[14] 朱岳年. 二氧化碳地质研究的意义及全球高含二氧化碳天然气的分布特点[J]. 地球科学进展, 1997, 12(1): 26-31.
[15] 徐永福. 二氧化碳生物地球化学循环研究的进展[J]. 地球科学进展, 1995, 10(4): 367-372.
阅读次数
全文


摘要