地球科学进展 ›› 1995, Vol. 10 ›› Issue (4): 367 -372. doi: 10.11867/j.issn.1001-8166.1995.04.0367

干旱气候变化与可持续发展 上一篇    下一篇

二氧化碳生物地球化学循环研究的进展
徐永福   
  1. 中国科学院大气物理研究所  北京  100029
  • 收稿日期:1994-03-10 修回日期:1994-09-12 出版日期:1995-08-01
  • 通讯作者: 徐永福

ON THE STUDY OF THEBIOGEOCHEMICAL CYCLE OF CARBON DIOXIDE

Xu Yongfu   

  1. LAPC, Institute of Atmosphere Physics, Chinese Academy of Science, Beijing  100029
  • Received:1994-03-10 Revised:1994-09-12 Online:1995-08-01 Published:1998-08-01

综述了对二氧化碳生物地球化学循环的研究现状,着重介绍了大气二氧化碳的源和汇的研究资料,并简要介绍了有关碳循环模式。

A large amount of carbon dioxide is released into the atmosphere by human activities, one part of which remains in the atmosphere and the other is taken up by the other carbon reservoirs on the Earth. The oceans are a significant sink of atmospheric carbon dioxide. Because of lack of temporal and spatial variations of observed data, there is some controversy over the exact figure. Research on oceanic carbon cycle often uses models, either one-dimensional box models or three-dimensional circulation models. As some parameters for some physical and biochemical processes of carbon dioxide in the oceans are not clearly known, for example, exchange coefficient of CO2 vertical eddy diffusivity,  the role of biological web, etc., the obtained results still have large uncertainties. The interaction of CO2 between the atmosphere and terrestrial ecosystems is not sufficiently known. According to the current data and oceanic carbon cycle model, a missing sink is often attributed to the terrestrial biosphere. The so called CO2 fertilization effect is currenly a major hypothesis. Another possible fate of missing sink is soil.

[1] Sundquist E T. Geological perspectives of carbon dioxide and the carbon cycle. In: The Carbon Cycle and Atmospheric CO2: Natural Variation Archaean to Present (Sundquist E T and Broecker W S eds.).Washington D C:Am Geophys Union,1985.5-59.
[2] Bolin B. How much CO2 remain in the atmosphere? In: The Green house Effect,Climatic Change and Ecosystem,SCOPE 29 (Bolin B et al.eds.). Chichester: John Wiley & Sons,1986.93-155.
[3] Houghton J T et al. Climate Change. The IPCC Scientific Assessment. New York: Cambridge Univ Press,1990.365pp.
[4] Houghton J T et al. Climate Change. The Supplementary Report to the IPCC Scientific Assessment. New York: Cambridge Univ Press.1992.2oopp.
[5] Callendar G S. On the amount of carbon dioxide in the atmosphere.Tellus,1958,10:243-248.
[6] Keeling C D. Industrial production of carbon dioxide from fossil fuels and limestone.Tellus,1973,25:174-198.
[7] Keepin W et al. Emission of CO2 into the atmosphere. In: The Greenhouse Effeet,Climatic Change,and Ecosystem,SCOPE 29 (Bolin B et al.eds.).Chichester: John Wiley & Sons,1987.
[8] Oeschger H et al. A box diffusion model to study the carbon dioxide exchange in nature.Tellus,1975,27:168-192.
[9] Siegenthaler U. Uptake of excess CO2 by an outcrop diffusion model of the ocean. J Geophys Res,1983,88:3599-3608.
[10] Siegenthaler U,Oeschger H. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data.Tellus,1987,39B:140-154.
[11] Xu Yongfu. The buffer capability of the ocean to increasing CO2.Adv Atmos Sci,1992,9:501-510.
[12] Brewer P G.Direct observation of the oceanic CO2 increase. Geophys Res Lett,1978,5:997-1000.
[13] Shiller A M. Calculating the oceanic CO2 increases: A need for caution. J Geophys Res,1981,86:11083-11088.
[14] Smith S D,Jones E P. Isotopic and micrometeorological ocean CO2 fluxes: different time and space scales.1986,91: 10529-10532.
[15] Broecker W S et al. Isotopic versus micrometeorological ocean CO2 fluxes: A serious conflict. J Geophys Res,1986,91:10517-10527.
[16] Sarmiento J L et al. A perturbation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res,1992,97:3621-3645.
[17] Base Jr C F,Killough G G.Chemical and biological processes in CO2 ocean models. In: The Changing Carbon Cycle: A Global Analysis (Trabalka J R and Reichle D E eds.).New York:Springer-Verlag,1986.329-347.
[18] 徐永福.大气二氧化碳的海洋生物泵的初步研究.南京大学学报(庆祝朱炳梅教授从事气象学教育科研工作六十年专刊),1994,381-387.
[19] PengT-H,Broecker W S. Factors limiting the reduction of atmospheric CO2 by iron fertilization. Limnlo Oceanogr,1991,36(8):1919-1927.
[20] Sarmiento J L,Orr J C. Three-dimensional simulations of the input of Southern ocean nutrient depletion of atmospheric CO2 and ocean chemistry.Limnol Oceanogr,1991,36(8):1928-1950.
[21] Wells M L. Pumping iron in the Pacific.Nature,1994,368:295-296.
[22] Peng T-H et al. Adeconvolution of the tree ring based δ13C record. J Geophys Res,1983,88:3609-3620.
[23] Peng T-H,Freyer H D. Revise destimates of atmospheric CO2 variations based on the tree ring record. In: The Changing Carbon Cycle—A Global Analysis (Trabalka J R and Reichle D E eds.). New York: Springer-Verlag,1986.151-159.
[24] Esser G. Sensitivity of global carbon pools and fluxes to human and potential climatic impatcts.Tellus,1987,39B:245-260.
[25] Idso S B,Kimball B A. Tree growth in carbon dioxide enriched air and its implication for global carbon cycling and maximum of atmospheric CO2. Global Biogeochem Cycle,1993,7:537-555.
[26]Tans P P et al. Observational constraints on the global atmospheric CO2 budget. Science,1990,247:1431-1438.
[27] Brewer P G et al. Carbon dioxide transport by ocean currents at 25°N latitude in the Atlantic Ocean. Science,1989,246:477-479.
[28] Schindler D W,Bayley S E. The biosphere as an increasing nitrogen deposition. Global Biogeochem Cycle,1993,7:717-733.
[29] Kauppi P E et al. Biomass and carbon budget of European forests,1971-1990. Science,1992,256:70-74.
[30] Sedjor R A. Temperate forest ecosystems in the global carbon cycle.Ambio,1992,21:274-277.
[31] Houghton R A. Is carbon accumulating in the northern temperate zones. Global Biogeochem Cycle,1993,7:611-617
[32] Garrett C. Mixing in the ocean interior. Dyn Atmos Oceans,1979,3:239-265.
[33] Austin J,Green J S A.The role of baroclinic eddies in mixing tritium into th oceanic gyres.Tellus,1985, 37B:182-185.
[34] Siegenthaler U,Joors F. Use of a simple model for studying oceanic tracer distribution and the global carbon cycle. Tellus,1992,44B:186-207.
[35] Crane A J. The use of tracers in modeling the oceanic uptake of carbon dioxide. Phil Trans R Soc Lond,1988,A325:23-42.
[36] Maier-Reimer E. Hasselmann K. Transport and storage of CO2 in the ocean-an inorganic ocean circulation carbon cycle model Cli Dyn,1987.2:63-90.
[37] Bacastow R,Maier-Reimer E.Ocean circulation model of the carbon cycle. Cli Dyn,1990,4:95-125.

[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[5] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[6] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[7] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[8] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[9] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[10] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[11] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[12] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[13] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[14] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[15] 贾丙瑞,周广胜. 北方针叶林对气候变化响应的研究进展[J]. 地球科学进展, 2009, 24(6): 668-674.
阅读次数
全文


摘要