Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (11): 1294-1297    DOI: 10.11867/j.issn.1001-8166.2014.11.1294
地球系统科学论坛     
古今结合论碳汇、见微知著识海洋*
焦念志1, 张传伦2, 谢树成3, 刘纪化1, 张飞1
1.近海海洋环境科学国家重点实验室, 厦门大学, 福建 厦门 361102; 2.海洋地质国家重点实验室, 同济大学, 上海 200092; 3.生物地质与环境地质国家重点实验室, 中国地质大学, 湖北武汉 430074
To Decipher the Ocean Carbon Sink Through Interdisciplinarity and the Integration of the Past and Present
Jiao Nianzhi1, Zhang Chuanlun2, Xie Shucheng3, Liu Jihua1, Zhang Fei1
1. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; 2. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; .State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074, China; 3. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074, China
 全文: PDF(1467 KB)   RICH HTML
摘要:

海洋是地球上最大的活跃碳库, 发挥着全球气候变化“缓冲器”的作用, 研究海洋碳循环过程与储碳机制是当前的国际热点。然而, 地球系统的复杂性注定了这个重大命题必须通过学科交叉、古今结合才能取得较全面的认识和新的突破。

关键词: 海洋碳汇碳循环古菌古环境海洋微型生物碳泵    
Abstract:

The ocean is the world’s largest active carbon pool and buffers global climate change. Current scientific research focuses on ocean carbon cycling and carbon sequestration mechanisms. The new cognition can be successfully reached only through interdisciplinary and integrative studies of the past and present oceans.

Key words: Ocean carbon sink    Carbon cycling    Archaea    Paleoenvironments.    Microbial Carbon Pump
收稿日期: 2014-10-29 出版日期: 2014-11-20
ZTFLH:  P734.2  
基金资助:

国家重大科学研究计划项目“海洋微型生物碳泵储碳过程与机制研究”(编号:2013CB955700); “南海深海过程演变”重大研究计划集成项目“南海碳循环与生物学储碳机制集成研究”资助

作者简介: 焦念志(1962-), 男, 山东人, 中国科学院院士, 主要从事海洋微型生物碳泵、海洋微型生物生理生态、分子生态学以及相关的资源环境效应研究. E-mail: jiao@xmu.eu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
焦念志
张传伦
谢树成
刘纪化
张飞

引用本文:

焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋*[J]. 地球科学进展, 2014, 29(11): 1294-1297.

Jiao Nianzhi, Zhang Chuanlun, Xie Shucheng, Liu Jihua, Zhang Fei. To Decipher the Ocean Carbon Sink Through Interdisciplinarity and the Integration of the Past and Present. Advances in Earth Science, 2014, 29(11): 1294-1297.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.11.1294        http://www.adearth.ac.cn/CN/Y2014/V29/I11/1294

[1] S W. Oceanography: Stirring times in the southern ocean[J]. Nature, 2000, 407: 685-687.
[2] N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8: 593-599.
[3] P, Li Q, Tian J, et al. Long-term cycles in the carbon reservoir of the quaternary ocean: A perspective from the South China Sea[J]. National Science Review, 2014, 1: 119-143.
[4] N, Robinson C, Azam F, et al. Mechanisms of microbial carbon sequestration in the ocean—Future research directions[J]. Biogeosciences, 2014, 11(6): 5 285-5 306.
[5] M M, Blokker P, Erbacher J, et al. Massive expansion of marine archaea during a mid-cretaceous oceanic anoxic event[J]. Science, 2001, 293: 92-95.
[6] V, Morris R M, Frazar C D, et al. Untangling genomes from metagenomes: Revealing an uncultured class of marine euryarchaeota[J]. Science, 2012, 335: 587-590.
[7] W, Zhang C, Zhou X, et al. Salinity-dominated change in community structure and ecological function of archaea from the lower pearl river to coastal South China Sea[J]. Applied Microbiology and Biotechnology, 2014, 98(18): 7 971-7 982.
[8] J, Zhang C, Hong Y. Tendency of TEX 86 deficiency in the transitional zone between lower Pearl River estuary and coastal South China Sea: Impact of changing archaeal community structure[J].Chemical Geology, in revision.
[9] G, Junium C K, Kump L R, et al.Shallow stratification prevailed for ~1700 to ~1300 Ma ocean: Evidence from organic carbon isotopes in the north China Craton[J]. Earth and Planetary Science Letters, 2014, 400: 219-232.
[10] C, Huang J, Kershaw S, et al. Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction[J]. Geobiology, 2012, 10(1): 60-71.
[11] S, Pancost R D, Wang Y, et al.Cyanobacterial blooms tied to volcanism during the 5 My Permo-Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450.
[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[3] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[4] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[5] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[6] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[7] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[8] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[9] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[10] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[11] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[12] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[13] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[14] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[15] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.