地球科学进展 ›› 2017, Vol. 32 ›› Issue (11): 1157 -1162. doi: 10.11867/j.issn.1001-8166.2017.11.1157

所属专题: 深海科学研究

研究论文 上一篇    下一篇

冰期出露的巽他陆架:重要的陆地碳储库?
贾国东( )   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2017-09-06 修回日期:2017-10-23 出版日期:2017-11-10

Exposed Sunda Shelf During the Glacial Times: An Important Component of the Terrestrial Carbon Reservoir?

Guodong Jia( )   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2017-09-06 Revised:2017-10-23 Online:2017-11-10 Published:2018-01-10

冰期旋回中的碳循环是一个复杂的地球系统科学问题。尽管取得了很大进展,但是定量精细的循环过程仍未解决。其中一个重要的限制因素就是对于陆地生物圈碳储库及其变化的估算尚存在很大的不确定性。位于热带东南亚的巽他群岛是当今陆地生物量最丰富的三大热带森林区之一,对全球陆地生物圈碳储库有重要贡献。在冰期海平面下降时临近的巽他陆架出露成陆地,使得该区域陆地面积增大1倍。出露陆架上的植被状况有可能对冰期旋回中的碳循环产生重要影响。对冰期旋回时的碳循环进行了介绍和讨论,认为应加强对冰期巽他陆架地区古气候和古生态的研究,为定量分析和模拟冰期旋回中的碳循环提供关键数据。

The glacial-interglacial carbon cycle is a complex scientific issue of the earth system. Although many progresses have been made, it is still far from being solved. Among others, an important limiting factor is the great uncertainty in the carbon stock in the terrestrial carbon reservoir. The present Sunda Islands are one of the three tropical forest areas with most abundant terrestrial carbon biomass and contribute greatly to the global terrestrial carbon reservoir. During the glacial low stands, the adjacent Sunda Shelf was exposed and led to a doubled land area. The scenario of terrestrial vegetation, which is not well understood, on the exposed land is probably a key factor to the global carbon cycle. Thus, a comprehensive paleoclimate and paleoecology study for the area is appealed, which may provide key data to quantitative analysis and modelling of the global glacial-interglacial carbon cycles.

图1 巽他群岛与巽他陆架
Fig 1 The Sunda Islands and Sunda Shelf
表1 全新世(工业革命前)与末次盛冰期地球表层系统碳储量的比较 (据参考文献[6]修改)
Table 1 Comparison of carbon stocks in the Earth surface system between the pre-industral Holocene and the Last Glacial Maximum (modified after reference[ 6 ])
图2 由Biome4模型重建的末次冰期旋回中的陆地净初级生产力变化(据参考文献[15]修改)
Fig 2 Net primary production throughout the last glacial cycle derived from the Biome4 model-based reconstructions (modified after reference[ 15 ])
图3 马来群岛地区泥炭地(图中深灰色区域)的分布(来源: http://blogs.helsinki.fi/jyjauhia/ )
Fig 3 Peat land (dark gray) distribution on the Malay Islands (Source: http://blogs.helsinki.fi/jyjauhia/ )
[1] Saatchi S S, Harris N L, Brown S, et al.Benchmark map of forest carbon stocks in tropical regions across three continents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(24): 9 899-9 904.
doi: 10.1073/pnas.1019576108     URL    
[2] Hanebuth T, Stattegger K.Depositional sequences on a late Pleistocene-Holocene tropical siliciclastic shelf (Sunda Shelf, southeast Asia)[J]. Journal of Asian Earth Sciences, 2004, 23(1): 113-126.
doi: 10.1016/S1367-9120(03)00100-7     URL    
[3] Hanebuth T J J, Stattegger K, Bojanowski A. Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited[J]. Global & Planetary Change, 2009, 66(1): 76-84.
doi: 10.1016/j.gloplacha.2008.03.011     URL    
[4] Petit J R, Jouzel J, Raynaud D, et al.Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6 735): 429-436.
doi: 10.1038/20859     URL    
[5] Lüthi D, Le Floch M, Bereiter B, et al.High-resolution carbon dioxide concentration record 650,000-800,000 years before present[J]. Nature,2008, 453(7 193): 379-382.
doi: 10.1038/nature06949     URL     pmid: 18480821
[6] Ciais P, Tagliabue A, Cuntz M, et al.Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum[J]. Nature Geosciences, 2012, 5(1): 74-79.
doi: 10.1038/ngeo1324     URL    
[7] Köhler P, Fischer H.Simulating changes in the terrestrial biosphere during the last glacial/interglacial transition[J]. Global Planetary Change, 2004, 43(1): 33-55.
doi: 10.1016/j.gloplacha.2004.02.005     URL    
[8] Shackleton N J.Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles[C]∥Anderson N,Malahof A,eds. The Fate of Fossil Fuel CO2 in the Oceans. New York: Plenum, 1977: 401-427.
[9] Bird M, Lloyd J, Farquhar G D.Terrestrial carbon storage at the LGM[J]. Nature, 1994, 371(6 498): 566.
doi: 10.1038/371566a0     URL    
[10] Tinker P B, Ineson P.Soil organic matter and biology in relation to climate change[C]∥Scharpenseel H W, ed. Soils on A Warmer Earth. Amsterdam: Elsevier, 1990: 71-87.
[11] Nemani R R, Keeling C D, Hashimoto H, et al.Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300(5 625): 1 560-1 563.
doi: 10.1126/science.1082750     URL     pmid: 12791990
[12] Beer C, Reichstein M, Tomelleri E, et al.Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate[J]. Science, 2010, 329(5 993): 834-838.
doi: 10.1126/science.1184984     URL     pmid: 20603496
[13] François L M, Goddérisa Y, Warnanta P, et al.Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times[J]. Chemical Geology, 1999, 159(1): 163-189.
doi: 10.1016/S0009-2541(99)00039-X     URL    
[14] François L, Faure H, Probst J L.The global carbon cycle and its changes over glacial-interglacial cycles[J]. Global and Planetary Change, 2002, 3(1/2),doi:10.1016/S0921-8181(102)00056-5.
doi: 10.1016/S0921-8181(02)00056-5     URL    
[15] Hoogakker B A A, Smith R S, Singarayer J S, et al. Terrestrial biosphere changes over the last 120 kyr[J]. Climate of the Past, 2016, 12(1): 51-73.
doi: 10.5194/cp-12-51-2016     URL    
[16] Prentice I C, Harrison S P.Ecosystem effects of CO2 concentration: Evidence from past climates[J]. Climate of the Past, 2009, 5(3): 297-307.
doi: 10.5194/cp-5-297-2009     URL    
[17] Prentice I C, Harrison S P, Bartlein P J.Global vegetation and terrestrial carbon cycle changes after the last ice age[J]. New Phytologist, 2011, 189(4): 988-998.
doi: 10.1111/j.1469-8137.2010.03620.x     URL     pmid: 21288244
[18] Anhuf D, Ledru M P, Behling H, et al.Paleo-environmental change in Amazonian and African rainforest during the LGM[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(3): 510-527.
doi: 10.1016/j.palaeo.2006.01.017     URL    
[19] Dommain R, Couwenberg J, Glaser P H, et al.Carbon storage and release in Indonesian peatlands since the last deglaciation[J]. Quaternary Science Reviews, 2014, 97: 1-32.
doi: 10.1016/j.quascirev.2014.05.002     URL    
[20] Page S E, Rieley J O, Banks C J.Global and regional importance of the tropical peatland carbon pool[J]. Global Change Biology, 2011, 17(2): 798-818.
doi: 10.1111/j.1365-2486.2010.02279.x     URL    
[21] Sun X, Li X, Luo Y, et al.The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecolology, 2000, 160(3): 301-316.
doi: 10.1016/S0031-0182(00)00078-X     URL    
[22] Bird M I, Taylor D, Hunt C.Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: A savanna corridor in Sundaland?[J]. Quaternary Science Reviews, 2005, 24(20): 2 228-2 242.
doi: 10.1016/j.quascirev.2005.04.004     URL    
[23] Kaplan J O.Wetlands at the Last Glacial Maximum: Distribution and methane emissions[J]. Geophysica Researc Letters, 2002, 29(6),doi: 10.1029/2001GL013366.
doi: 10.1029/2001GL013366     URL    
[24] Slika J W F, Aiba S I, Bastian M, et al. Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12343-12347.
doi: 10.1073/pnas.1103353108     URL    
[25] Hanebuth T J J, Stattegger K. The stratigraphic evolution of the Sunda Shelf during the past fifty thousand years[C]//Sidi F H,ed. Tropical Deltas of Southeast Asia—Sedimentology, Stratigraphy, and Petroleum Geology. McLean: SEPM Society for Sedimentary Geology, 2003: 189-200.
[26] Tjia H D. The Sunda Shelf, SE Asia[J]. Zeitschrift für Geomorphologie, 1980, 24: 405-427.
[27] Wang X, Sun X, Wang P, et al.Vegetation on the Sunda Shelf, South China Sea, during the Last Glacial Maximum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 278(1): 88-97.
doi: 10.1016/j.palaeo.2009.04.008     URL    
[28] Morley R J.Cenozoic ecological history of South East Asian peat mires based on the comparison of coals with present day and Late Quaternary peats[J]. Journal of Limnology, 2013, 72(Suppl.2): 36-59.
doi: 10.4081/jlimnol.2013.e36     URL    
[29] DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate[J]. Nature Geoscience, 2013, 6(6): 485-491.
doi: 10.1038/ngeo1823     URL    
[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[6] 李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11): 1126-1136.
[7] 贺娟. 氢氧同位素记录揭示的巽他陆架末次冰期以来古降水量变化[J]. 地球科学进展, 2017, 32(11): 1137-1146.
[8] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[9] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[12] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
[13] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[14] 刘丽贞, 秦伯强, 黄琪. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展[J]. 地球科学进展, 2014, 29(10): 1149-1157.
[15] 陈中笑,赵琦. 全球碳循环研究中的δ 13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
阅读次数
全文


摘要