地球科学进展 ›› 2017, Vol. 32 ›› Issue (11): 1137 -1146. doi: 10.11867/j.issn.1001-8166.2017.11.1137

所属专题: 深海科学研究

上一篇    下一篇

氢氧同位素记录揭示的巽他陆架末次冰期以来古降水量变化
贺娟( )   
  1. 同济大学海洋地质国家重点实验室, 上海 200092
  • 收稿日期:2017-09-06 修回日期:2017-10-25 出版日期:2017-11-10
  • 基金资助:
    国家自然科学基金项目“长江口外藻类生物标志化合物氢同位素与海洋盐度关系的研究”(编号:41776049)和“运用叶蜡脂肪酸C-14研究粤西近岸沉积物的来源与运移过程”(编号:41676030)资助

Changes of Paleo-precipitation on the Sunda Shelf Since the Last Glacial Maximum Revealed by Hydrogen and Oxygen Isotopes

Juan He( )   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2017-09-06 Revised:2017-10-25 Online:2017-11-10 Published:2018-01-10
  • About author:

    First author:He Juan (1980-), female, Yan’an City, Shaanxi Province, Lecturer. Research areas include organic geochemistry, paleoceanography, palaeoenvironment.E-mail:hj08@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Explore the correlation of hydrogen isotope of alga biomarkers with sea surface salinity off the Yangtze Estuary” (No.41776049) and “Apply the C-14 of leaf wax fatty acid to research the source and migration process of western Guangdong coastal sediments” (No.41676030)

巽他陆架因其独特的地理位置,在冰期循环中发生的变化和发挥的作用一直受到科学界的关注。目前对区域内的古温度变化已有一致认识,但对古降水重建的结果却一直存在争议。在巽他陆架区域现有末次冰期以来氢、氧同位素记录的基础上,结合其他资料,将区域内的降水记录大致分为南、北两区。北区冰期时降水量变化不大,气候仍然湿润;而南区降水量下降,气候变干。冰期时巽他陆架南、北区的降水同位素差异可能与区域内的大尺度环流,及南、北降水同位素的主要控制因素不同有关。受目前数据记录的局限,区域内古降水变化的这一划分和降水同位素的差异机制还需要更多工作的补充和完善。

The Sunda Shelf, owing to its unique geographical location and roles, has attracted much attention on its changes during the glacial cycle. At present, there is a consensus about the change of temperature in the region, but the reconstruction of paleo precipitation has been disputed. The hydrogen and oxygen isotope records since the last glacial in the Sunda Shelf were collected, combining with other paleo climate record, we roughly divided the precipitation records in the region into the Northern and Southern areas. During the glacial, the precipitation changed little and climate remained moist in the northern area, while precipitation decreased greatly,and the climate became dry in the southern. Difference in the precipitation isotopes between the northern and southern areas might be related to the different controlling factors of the precipitation isotopes in the two areas and large-scale atmospheric circulation in the region. Limited by the collected hydrogen and oxygen records, the precise mechanism of division in regional hydrological changes of the region still needs more work to confirm.

中图分类号: 

图1 巽他陆架示意图(据参考文献[1]修改)
LGM时,海平面下降约120 m,巽他和萨胡尔陆架出露,中间是Sulawesi, Maluku Islands和Lesser Sunda Islands 组成Wallacea的群岛
Fig.1 Map of the Sunda Shelf (modified after reference[1])
During the LGM, the exposed Sundaland was separated from Sahul, along with a group of islands termed Wallacea,comprised of Sulawesi, Maluku Islands, and Lesser Sunda Islands
表1 巽他陆架区域海水氧同位素记录站位资料
Table 1 Location of sea water oxygen isotope records in the Sunda Shelf
图2 巽他陆架区域氢、氧同位素资料来源的站位图
其中δ 18O sw18O cave和生物标志物同位素站位分别用圆圈、星形符号和正方形表示;并依照原作者的结论用实心符号代表LGM比全新世时干旱或降水差异大,空心符号代表LGM和全新时记录接近
Fig.2 Core locations of paleoclimate records discussed in the text are marked
The δ 18O sw, δ 18O cave and biomarker isotope records are represented by circles, stars, and squares respectively. According to the original author’s opinion, the solid symbol represents LGM was drought than the Holocene, while the hollow symbol represents similar conditions during the LGM and Holocene
图3 巽他陆架区域石笋氧同位素记录(据参考文献[6]修改)
深色线是经过冰盖矫正的δ 18O cave
Fig.3 Speleothem δ 18O records in the Sunda Shelf(modified after reference[6])
Darker lines are δ 18O cave data corrected for the ice volume-related changes in seawater δ 18O
表2 巽他陆架区域石笋氧同位素站位信息
Table 2 Location of Speleothem δ 18O records in the Sunda Shelf
图4 巽他陆架区域内生物标志物碳、氢同位素记录(据参考文献[1]修改)
Fig.4 Comparison of biomarker δ 13C wax and δ 2H wax records in the Sunda Shelf (modified after reference[1])
表3 巽他陆架区域内生物标志物同位素站位信息
Table 3 Location of biomarker δ 13C wax, δ 2H wax records in the Sunda Shelf
[1] Wicaksono S A, Russell J M, Holbourn A, et al.Hydrological and vegetation shifts in the Wallacean region of central Indonesia since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2017, 157: 152-163.
[2] DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate[J]. Nature Geoscience, 2013, 6(6): 485-491.
[3] Wang X M, Sun X J, Wang P X, et al.Vegetation on the Sunda Shelf, South China Sea, during the Last Glacial Maximum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 278(1): 88-97.
[4] Carolin S, Cobb K M, Adkins J F, et al.Varied response of western tropical Pacific hydrology to abrupt climate changes[J]. Science, 2013, 340: 1 564-1 566.
[5] Gibbons F T, Oppo D W, Mohtadi M, et al.Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans[J]. Earth and Planetary Science Letters, 2014, 387: 240-251.
[6] Dubois N, Oppo D W, Galy V, et al.Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years[J]. Nature Geoscience, 2014, 7(7):513-517.
[7] Niedermeyer E M, Sessions A L, Feakins S J, et al.Hydroclimate of the western Indo-Pacific Warm Pool during the past 24,000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9 402-9 406.
[8] Russell J M, Vogel H, Konecky B L, et al.Glacial forcing of central Indonesian hydroclimate since 60,000 yr B.P[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5 100-5 105.
[9] Wicaksono S A, Russell J M, Bijaksana S.Compound-specific carbon isotope records of vegetation and hydrologic change in central Sulawesi, Indonesia, since 53,000 yr BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 47-56.
[10] Konecky B L, Russell J M, Bijaksana S.Glacial aridity in Indonesia coeval with intensified monsoon circulation[J]. Earth and Planetary Science Letters, 2016, 437: 15-24.
[11] van der Kaars S, Penny D, Tibby J. Late Quaternary palaeoecology, palynology and palaeoclimnology of a tropical lowland swamp: Rawa Danau, West Java, Indonesia[J]. Palaeogeography, Palaerclimatology, Palaeoecology, 2001, 171(3):185-212.
[12] van der Kaars S, Bassinot F, De Deckker P, et al. Changes in monsoon and ocean circulation and the vegetation cover of southwest Sumatra through the last 83,000 years: The record from marine core BAR94-42[J]. Palaeogeography, Palaerclimatology, Palaeoecology, 2010, 296(1/2): 52-78.
[13] Hope G, Kershaw A P, van der Kaars, et al. History of vegetation and habitat change in the Austral-Asian region[J]. Quaternary International, 2004, 118/119: 103-126.
[14] Sun X, Li X, Luo Y, et al.The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(3): 301-316.
[15] Wurster C M, Bird M I, Bull I D, et al.Forest contraction in north equatorial Southeast Asia during the Last Glacial Period[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35): 15 508-15 511.
[16] Stimpson C M. Local scale, proxy evidence for the presence of closed canopy forest in North-western Borneo in the late Pleistocene: Bones of Strategy I bats from the archaeological record of the Great Cave of Niah, Sarawak[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 331/332: 136-149.
[17] Cannon C H, Morley R J, Bush A B G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 11 188-11 193.
[18] Raes N, Cannonb C H, Hijmans R J, et al.Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16 790-16 795.
[19] De Deckker P, Tapper N J, van der Kaars S. The status of the Indo-Pacific Warm Pool and adjacent land at the Last Glacial Maximum[J]. Global Planet Change, 2002, 35(1):25-35.
[20] LeGrande A N, Schmidt G A. Sources of Holocene variability of oxygen isotopes in paleoclimate archives[J]. Climate of the Past, 2009, 5(3): 441-455.
[21] Rosteck F, Ruhland G, Bassinot F C, et al.Reconstructing sea surface temperature and salinity using δ18O and alkenone records[J]. Nature, 1993, 364(6 435): 319-321.
[22] Colin C, Siani G, Sicre M A, et al.Impact of the East Asian monsoon rainfall changes on the erosion of the Mekong River Basin over the past 25,000 yr[J]. Marine Geology, 2010, 271(1): 84-92.
[23] Hao P, Li T G, Chang F M, et al.Response of the southwestern South China Sea to the rapid climate changes since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2014, 34(4): 83-91.
[24] Steinke S, Chiu H I, Yu P S, et al.On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22,000 years[J]. Quaternary Science Reviews, 2006, 25(13): 1 475-1 488.
[25] Rosenthal Y, Oppo D W, Linsley B K.The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific[J]. Geophysical Research Letters, 2003, 30(8),doi:10.1029/2002GL016612.
[26] Mohtadi M, Prange M, Oppo D W, et al.North Atlantic forcing of tropical Indian Ocean climate[J]. Nature, 2014, 509(7 498): 76-80.
[27] Mohtadi M, Steinke S, Lückge A, et al.Glacial to Holocene surface hydrography of the tropical eastern Indian Ocean[J]. Earth and Planetary Science Letters, 2010, 292(1): 89-97.
[28] Levi C, Labeyrie L, Bassinot F, et al. Low-latitude hydrological cycle and rapid climate changes during the last deglaciation[J]. Geochemistry, Geophysics, Geosystems, 2007, 8 (5): Q05N12.
[29] Pelejero C, Kienast M, Wang L, et al.The flooding of Sunda land during the last deglaciation: Imprints in hemipelagic sediments from the southern South China Sea[J]. Earth and Planetary Science Letters, 1999, 171(4): 661-671.
[30] Li Z, Shi X, Chen M T, et al.Late Quaternary fingerprints of precession and sea level variation over the past 35 kyr as revealed by sea surface temperature and upwelling records from the Indian Ocean near southernmost Sumatra[J]. Quaternary International, 2016, 425: 282-291.
[31] Visser K, Thunell R, Stott L.Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421(6 919): 152-155.
[32] Stott L, Poulsen C, Lund S, et al.Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297(5 579): 222-226.
[33] Xu J, Holbourn A, Kuhnt W G, et al.Changes in the thermocline structure of the Indonesian outflow during Terminations I and II[J]. Earth and Planetary Science Letters, 2008, 273(1/2): 152-162.
[34] de Garidel-Thoron T, Rosenthal Y, Beaufort L, et al. A multiproxy assessment of the western equatorial Pacific hydrography during the last 30 kyr[J]. Paleoceanography, 2007, 22(3), doi:10.1029/2006PA001269.
[35] de Garidel-Thoron T, Rosenthal Y, Bassinot F, et al. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years[J]. Nature, 2005, 433(7 023): 294-298
[36] Ayliffe L, Gagan M, Zhao J X, et al.Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J]. Nature Communications, 2013, 4: 1-6.
[37] Cheng H, Spötl C, Breitenbach S F M,et al. Climate variations of Central Asia on orbital to millennial timescales[J]. Scientific Reports, 2016, 6: 36 975.
[38] Partin J W, Cobb K M, Adkins J F, et al.Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum[J]. Nature, 2007, 449(7 161): 452-455.
[39] Griffiths M L, Drysdale R N, Gagan M K, et al.Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise[J]. Nature Geoscience,2009, 2(9): 636-639.
[40] Partin J W, Quinn T M, Shen C C, et al.Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics[J]. Nature Communications, 2015, 6:8 061.
[41] Denniston R F, Wyrwoll K H, Asmerom Y, et al.North Atlantic forcing of millennial-scale Indo-Australian monsoon dynamics during the Last Glacial period[J]. Quaternary Science Reviews, 2013, 72: 159-168.
[42] Dansgaard W.Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[43] Rozanski K, Araguas-Araguas L, Gonfiantini R.Relation between long-term trends of 18O isotope composition of precipitation and climate[J]. Science, 1992, 258(5 763): 981-985.
[44] Eglinton T I, Eglinton G.Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008, 275(1): 1-16.
[45] Sachse D, Billault I, Bowen G J, et al.Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 221-249.
[46] Reeves J M, Bostock H C, Ayliffe L K, et al.Palaeoenvironmental change in tropical Australasia over the last 30,000 years—A synthesis by the OZ-INTIMATE group[J]. Quaternary Science Reviews, 2013, 74: 97-114.
[47] Moerman J W, Cobb K M, Adkins J F, et al. Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology[J]. Earth and Planetary Science Letters, 2013, 369/370:108-119.
[48] Lewis S C, LeGrande A N, Kelley M,et al. Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events[J]. Climate of the Past, 2010, 6(3): 325-343.
[49] He J, Jia G, Li L, et al.Differential timing of C4 plant decline and grassland retreat during the penultimate deglaciation[J]. Global and Planetary Change, 2017, 156: 26-33.
[1] 李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11): 1126-1136.
[2] . 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[3] 王晓梅;孙湘君. 南海巽他陆架末次冰期以来的孢粉记录初步研究[J]. 地球科学进展, 2005, 20(8): 833-839.
[4] 贾玉连,施雅风,曹建廷,范云崎. 40~30 ka BP期间高湖面稳定存在时青藏高原西南部封闭流域的古降水量研究[J]. 地球科学进展, 2001, 16(3): 346-351.
阅读次数
全文


摘要