地球科学进展 ›› 2017, Vol. 32 ›› Issue (11): 1147 -1156. doi: 10.11867/j.issn.1001-8166.2017.11.1147

所属专题: 深海科学研究

上一篇    下一篇

末次冰期时暴露的巽他大陆架可能被热带稀树草原覆盖吗?
戴璐 1( )   
  1. 1.宁波大学地理与空间信息技术系, 浙江 宁波 315211
    2.School of Biological Sciences, Universiti Sains Malaysia, Malaysia Penang 11960
  • 收稿日期:2017-09-06 修回日期:2017-10-27 出版日期:2017-11-10
  • 基金资助:
    国家自然科学基金面上项目“基于海洋孢粉与植硅体证据的末次冰期以来南海南部的古气候演变研究”(编号:41776063)资助

Was There Savanna Corridor on the Exposed Sunda Shelf During the Last Glacial Period?

Lu Dai 1( ), Swee Yeok Foong 2   

  1. 1.Ningbo University Department of Geography & Spacial Information Techniques,Zhejiang Ningbo 315211,China
    2.School of Biological Sciences, Universiti Sains Malaysia, Penang 11960, Malaysia
  • Received:2017-09-06 Revised:2017-10-27 Online:2017-11-10 Published:2018-01-10
  • About author:

    First author:Dai Lu(1981-), male, Ningbo City, Zhejiang Province, Associate professor. Research areas include palynology and marine geology.E-mail:dailu2288@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Research of paleoclimatic evolution in the southern South China Sea since the last glacial period, based on the marine palynological and phytolith evidences”(No.41776063)

迄今为止,末次冰期低海平面时南海南部暴露的巽他大陆架被稀树草原或是热带雨林覆盖的问题仍然存有争议。来自于东南亚的孢粉证据表明,末次冰期时南海南部没有出现持续而广泛的草本花粉增多现象,主要的孢粉成分仍为低地雨林和山地雨林。草本花粉占主导的证据多出现在澳大利亚北部,这可能指示了草本植物以现代稀树草原分布区为中心进行扩张。据此,可以认为,尽管末次冰期气候有所变干,但南海南部周边陆地以及暴露的巽他大陆架上可能仍然被热带森林所覆盖。这一推断不仅得到了该区域植被—古气候模拟的支持,也与热带南美洲的很多孢粉证据相对应。通过当前孢粉证据的总结,发现东南亚古植被重建工作存有一些不足,例如海洋孢粉记录数量稀少,缺乏对海洋孢粉组合与内陆植被关系的了解。

To date, it is still heatedly debated that whether the exposed Sunda Shelf was covered by savanna or rainforest in the Last Glacial Period (LGP). A lot of palynological evidences revealed that large increase of non-arboreal pollen did not occurred on the southern South China Sea (SCS), and lowland and montane rainforest pollen were still predominant. Most of the herb-predominated pollen records occurred on the northern Australia, possibly indicating dispersions of herbs from current distribution centers. As a result, we advocated that inland and connected exposed Sunda Shelf around the southern SCS were covered by tropical forests rather than savanna during the LGP, although climate was drier then. This conclusion is not only supported by palaeoclimate-vegetation modeling, but also corresponds with most of the palynological evidences from South America. Current palynological records also showed the lack of palaeoenviromental reconstruction in Southeast Asia, including less pollen records and ambiguous correlations between marine pollen assemblage and its catchment vegetation.

中图分类号: 

图1 东南亚地区旱季平均日降水量(a)以及现代savanna分布及其典型气候(b) [ 9 ]
(a)曲线为日平均降水量等值线,单位为mm/d;浅灰色表示水深大于200 m的海域;(b)方框内图表代表温度和降水量,黑色阴影表示savanna分布
Fig.1 Average daily precipitation during dry seasons in East Asia (a) and modern savanna distribution and its typical climate (b) [ 9 ]
(a)Contour lines show average daily precipitation (mm/d);Shaded gray indicates the ocean at more than 200 m depth; (b) Diagrams in the box indicate temperature and precipitation, shaded black indicates the distribution of savanna
图2 末次盛冰期时南美和非洲热带地区的古植被重建 [ 16 ]
Fig.2 Palaeovegetation reconstruction in tropical South America and Africa [ 16 ]
图3 东南亚—澳大利亚北部地区的孢粉记录
图中孢粉记录分别是Nong Pa Kho [ 42 ],NTSH [ 43 ],Danau di-Atas [ 44 , 45 ],Nee soon [ 46 ],17964 [ 4 ],18302,18300,18323 [ 5 ],17962 [ 47 ],Niah [ 48 ],Kelabit(Ba钻孔) [ 49 ],MD06-3075 [ 50 ],Danau Sentarum(B钻孔) [ 51 ],Wanda [ 52 ],BAR94-42 [ 53 ],Rawa Danau [ 54 ],Bandung basin [ 55 ],G6-4 [ 56 ],SHI-9014 [ 57 ],MD97-2130 [ 58 ],lake Euramoo [ 59 ],ODP820 [ 60 ]
孢粉图侧面的数字为年代,单位:万年
Fig.3 Pollen records in Southeast Asia-north Australia regions
The numbers in the side of pollen diagram indicate ages, scale is 10 ka
图4 基于数据模拟的方法,在不同气候条件下亚洲savanna群落的分布概率
(a)现代非洲;(b)现代澳大利亚;(c)现代南美洲 [ 15 ];图中数字指示了不同savanna群落的位置,与之对应的景观图片请见参考文献[15]
Fig.4 Predicted distribution of savannahs in Asian based on the climate envelope
(a) Africa; (b) Australia; (c) South America [ 15 ];The numbers shown are known field locations of different Asian savannahs. Images corresponding to these numbers are shown in reference[15]
[1] Bird M I, Taylor D, Hunt C.Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: A savanna corridor in Sundaland?[J]. Quaternary Science Reviews, 2005, 24(20): 2 228-2 242.
[2] Bush M B.The resilience of Amazonian forests[J]. Nature, 2017, 541: 167-168.
[3] Heaney L R.A synopsis of climatic and vegetational change in southeast Asian[J]. Climatic Change,1991, 19(1/2): 53-61.
[4] Sun X, Li X, Luo Y, et al.The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000, 160(3): 301-316.
[5] Wang X M, Sun X J, Wang P X, et al.Vegetation on the Sunda Shelf, South China Sea, during the last glacial maximum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2009, 278(1): 88-97.
[6] Huntley B J, Walker B H.Ecology of Tropical Savannas[M]. Berlin & New York: Springer, 1982.
[7] Wu Jihua, Zhang Shen, Jiang Yuan, et al.Plant Geography[M]. Beijing: High Education Press, 2004.
[武吉华,张绅,江源,等. 植物地理学[M]. 北京:高等教育出版社,2004.]
[8] Lehmann C, Archibald S, Hoffmann W, et al.Deciphering the distribution of the savanna biome[J]. New Phytologist,2011, 191(1): 197-209.
[9] Archibold O W.Ecology of World Vegetation[M]. Dordrecht: Springer Science & Business Media, 1995.
[10] Sankaran M, Hanan N P, Scholes R J, et al.Determinants of woody cover in African savannas[J].Nature, 2005, 438(7 069): 846-849.
[11] Nix H A.Ecosystems of the World[M]. New York: Elsevier, 1983: 37-61.
[12] Sarmiento G, Monasterio M.A critical consideration of the environmenta1 conditions associated with the occurrence of savanna ecosystems in tropical America[M]∥Golley F B,ed. Tropical Ecological Systems.Berlin: Springer,1975: 223-250.
[13] SaarbriJcken M P. Campo cerrado-forest or savanna?[J]. GeoJournal,1979, 3(1): 15-25.
[14] Rodrigues J M, Behling H, Giesecke T.Differentiating vegetation types from eastern South American ecosystems based on modern and subfossil pollen samples: Evaluating modern analogues[J]. Vegetation History and Archaeobotany,2016, 25(4): 387-403.
[15] Ratnam J, Tomlinson K W, Rasquinha D N, et al.Savannahs of Asia: Antiquity, biogeography, and an uncertain future[J]. Philosophical Transactions Royal Society B,2016, 371(1 703): 20150305.
[16] Anhuf D, Ledru M P, Behling H, et al.Paleo-environmental change in Amazonian and African rainforest during the LGM[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2006, 239(3): 510-527.
[17] Hooghiemstra H, van der Hammen T. Neogene and Quaternary development of the neotropical rain forest: The forest refugia hypothesis, and a literature overview[J]. Earth-Science Reviews,1998, 44(3): 147-183.
[18] Colinvaux P A.The ice-age Amazon[J].Nature, 1979, 278:399-400.
[19] Bush M B, De Oliveira P E, Colinvaux P A,et al. Amazonian paleoecological histories: One hill, three watersheds[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2004, 214(4): 359-393.
[20] Haffer J.Speciation in Amazonian forest birds[J]. Science,1969, 165(3 889): 131-137.
[21] Van der Hammen T, Absy M L. Amazonia during the last glacial[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1994, 109(2): 247-261.
[22] Behling H, Hooghiemstra H.Environmental history of the Colombian savannas of the Llanos Orientales since the Last Glacial Maximum from lake records El Pinal and Carimagua[J]. Journal of Paleolimnology,1999, 21(4): 461-476.
[23] Haberle S G, Maslin M A.Late Quaternary vegetation and climate change in the Amazon Basin based on a 50,000 year pollen record from the Amazon Fan, ODP Site 932[J]. Quaternary Research,1999, 51(1): 27-38.
[24] Colinvaux P A, De Oliveira P E, Moreno J E,et al. A long pollen record from lowland Amazonia: Forest and cooling in glacial times[J]. Science,1996, 274(5 284): 85.
[25] Van Der Hammen T, Hooghiemstra H. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia[J]. Quaternary Science Reviews,2000, 19(8): 725-742.
[26] Cohen M C L, Rossetti D F, Pessenda L C R, et al. Late Pleistocene glacial forest of Humaitá—Western Amazonia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 415: 37-47.
[27] Sifeddine A, Albuquerque A L S, Ledru M P,et al. A 21 000 cal years paleoclimatic record from Caçó Lake, northern Brazil: Evidence from sedimentary and pollen analyses[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2003, 189(1): 25-34.
[28] Dupont L M, Jahns S, Marret F, et al.Vegetation change in equatorial West Africa: Time-slices for the last 150 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000, 155(1): 95-122.
[29] Rommerskirchen F, Eglinton G, Dupont L, et al.Glacial/interglacial changes in southern Africa: Compound-specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments[J]. Geochemistry, Geophysics, Geosystems,2006, 7(8):1-21.
[30] Dupont L M, Behling H, Jahns S, et al.Variability in glacial and Holocene marine pollen records offshore from west southern Africa[J]. Vegetation History and Archaeobotany,2007, 16(2/3): 87-100.
[31] Lezine A M, Cazet J P.High-resolution pollen record from core KW31, Gulf of Guinea, documents the history of the lowland forests of West Equatorial Africa since 40,000 yr ago[J]. Quaternary Research,2005, 64(3): 432-443.
[32] Shi N, Dupont L M, Beug H J, et al.Vegetation and climate changes during the last 21 000 years in SW Africa based on a marine pollen record[J]. Vegetation History and Archaeobotany,1998, 7(3): 127-140.
[33] Faye A, Deblauwe V, Mariac C, et al.Phylogeography of the genus Podococcus (Palmae/Arecaceae) in Central African rain forests: Climate stability predicts unique genetic diversity[J]. Molecular Phylogenetics and Evolution,2016, 105: 126-138.
[34] Maley J, Brenac P.Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years BP[J]. Review of Palaeobotany and Palynology,1998, 99(2): 157-187.
[35] Dauby G, Duminil J, Heuertz M, et al.Chloroplast DNA polymorphism and phylogeography of a Central African tree species widespread in mature rainforests: Greenwayodendron suaveolens (Annonaceae)[J]. Tropical Plant Biology,2010, 3(1): 4-13.
[36] Elenga H, Schwartz D, Vincens A.Pollen evidence of late Quaternary vegetation and inferred climate changes in Congo[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1994, 109(2/3/4): 345-356.
[37] Beuning K R M, Talbot M R, Kelts K. A revised 30,000-year paleoclimatic and paleohydrologic history of Lake Albert, East Africa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1997, 136(1/2/3/4): 259-279.
[38] Ivory S J, Russell J.Climate, herbivory, and fire controls on tropical African forest for the last 60ka[J]. Quaternary Science Reviews,2016, 148: 101-114.
[39] Vincens A, Garcin Y, Buchet G.Influence of rainfall seasonality on African lowland vegetation during the Late Quaternary: Pollen evidence from Lake Masoko, Tanzania[J]. Journal of Biogeography, 2007, 34(7): 1 274-1 288.
[40] Hooghiemstra H, Lézine A M, Leroy S A G,et al. Late Quaternary palynology in marine sediments: A synthesis of the understanding of pollen distribution patterns in the NW African setting[J]. Quaternary International, 2006, 148(1): 29-44.
[41] Wurster C M, Bird M I, Bull I D, et al.Forest contraction in north equatorial Southeast Asia during the Last Glacial Period[J]. Proceedings of the National Academy of Sciences,2010, 107(35): 15 508-15 511.
[42] Penny D.A 40,000 year palynological record from north-east Thailand: Implications for biogeography and palaeo-environmental reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001, 171(3): 97-128.
[43] White J C, Penny D, Kealhofer L, et al.Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand[J]. Quaternary International,2004, 113(1): 111-132.
[44] Stuijts I, Newsome J C, Flenley J R.Evidence for late Quaternary vegetational change in the Sumatran and Javan highlands[J]. Review of Palaeobotany and Palynology,1988, 55(1/2/3): 207-216.
[45] Maloney B K, McCormac F G. A 30,000-year pollen and radiocarbon record from Highland Sumatra as evidence for climatic change[J]. Radiocarbon,1995, 37(2): 181-190.
[46] Taylor D, Yen O H, Sanderson P G, et al.Late Quaternary peat formation and vegetation dynamics in a lowland tropical swamp: Nee Soon, Singapore[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001, 171(3): 269-287.
[47] Sun X, Li X, Luo Y.Vegetation and climate on the sunda shelf of the South China Sea during the last Glactiation—Pollen results from station 17962[J].Acta Botanica Sinica,2001, 44(6): 746-752.
[48] Hunt C O, Gilbertson D D, Rushworth G.A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo[J]. Quaternary Science Reviews,2012, 37: 61-80.
[49] Jones S E, Hunt C O, Reimer P J.A Late Pleistocene record of climate and environmental change from the northern and southern Kelabit Highlands of Sarawak, Malaysian Borneo[J]. Journal of Quaternary Science,2014, 29(2): 105-122.
[50] Bian Yeping, Jian Zhimin, Weng Chengyu, et al.A palynological and palaeoclimatological record from the southern Philippines since the Last Glacial Maximum[J]. Chinese Science Bulletin,2011, 56(22): 2 359-2 365.
[边叶萍, 翦知湣, 翁成郁. 末次盛冰期以来菲律宾南部气候变化的孢粉记录[J]. 科学通报, 2011, 56(19): 1 554-1 561.]
[51] Anshari G, Peter Kershaw A, Van Der Kaars S,et al. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia[J]. Journal of Quaternary Science,2004, 19(7): 637-655.
[52] Hope G.Environmental change in the late Pleistocene and later Holocene at Wanda site, Soroako, South Sulawesi, Indonesia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001, 171(3): 129-145.
[53] van der Kaars S, Bassinot F, De Deckker P, et al. Changes in monsoon and ocean circulation and the vegetation cover of southwest Sumatra through the last 83,000 years: The record from marine core BAR94-42[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2010, 296(1): 52-78.
[54] van der Kaars S, Penny D, Tibby J, et al. Late Quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West-Java, Indonesia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001, 171(3): 185-212.
[55] van der Kaars S, Dam R. Vegetation and climate change in West-Java, Indonesia during the last 135,000 years[J]. Quaternary International,1997, 37: 67-71.
[56] Wang X, van der Kaars S, Kershaw P, et al. A record of fire, vegetation and climate through the last three glacial cycles from Lombok Ridge core G6-4, eastern Indian Ocean, Indonesia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1999, 147(3): 241-256.
[57] van der Kaars S, Wang X, Kershaw P, et al. A Late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000, 155(1): 135-153.
[58] Chivas A R, García A, van der Kaars S,et al. Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: An overview[J]. Quaternary International, 2001, 83: 19-46.
[59] Haberle S G.A 23,000-yr pollen record from Lake Euramoo, wet tropics of NE Queensland, Australia[J].Quaternary Research,2005, 64(3): 343-356.
[60] Moss P T, Kershaw A P.A late Quaternary marine palynological record (oxygen isotope stages 1 to 7) for the humid tropics of northeastern Australia based on ODP Site 820[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 251(1): 4-22.
[61] van der Kaars S. Pollen distribution in marine sediments from the south-eastern Indonesian waters[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001, 171(3): 341-361.
[62] Raes N,Cannon C H, Saw L G, et al.Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima[J].Proceedings of the National Academy of Sciences,2014,111(47):16 790-16 795.
[63] Ivan P.Plants and Flowers of Malaysia[M].Singapore: Times Editions,1991.
[64] Mackinnon K, Hatta G, Halim H.The Ecology of Indonesia Series Volume Ⅲ: The Ecology of Kalimantan[M]. Hong Kong: Periplus Editions, 1996.
[65] Kershaw A P, van der Kaars P, Flenley J. The Quaternary history of far eastern rainforests[M]∥Bush M, Flenley J, Gosling W,eds. Tropical Rainforest Responses to Climatic Change. New York: Springer-Verlag, 2007: 77-114.
[66] Sun X J, Li X, Beug H J.Pollen distribution in hemipelagic surface sediments of the South China Sea and its relation to modern vegetation distribution[J]. Marine Geology,1999, 156(1): 211-226.
[67] Luo C, Lin G, Chen M, et al.Characteristics of pollen in surface sediments from the southern South China Sea and its paleoclimatic significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461: 12-28.
[68] Moss P T, Kershaw A P, Grindrod J.Pollen transport and deposition in riverine and marine environments within the humid tropics of northeastern Australia[J]. Review of Palaeobotany and Palynology, 2005, 134(1): 55-69.
[69] Xu Q H, Yang X, Wu C, et al.Alluvial pollen on the North China plain[J]. Quaternary Research, 1996, 46(3): 270-280.
[70] Xu Q H, Zhang S, Gaillard M, et al.Studies of modern pollen assemblages for pollen dispersal deposition- preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: A review based on case studies in China[J]. Quaternary Science Reviews,1996, 149:151-166.
[71] Alqahtani F A, Johnson H D, Jackson C A L,et al. Nature, origin and evolution of a Late Pleistocene incised valley-fill, Sunda Shelf, Southeast Asia[J]. Sedimentology,2015, 62(4): 1 198-1 232.
[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[4] 雒聪文,马玉贞,王凯,李丹丹. 东亚地区 MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5): 540-551.
[5] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[6] 沈巍, 许清海, 李建勇, 李曼玥, 张攀攀, 卢静瑶. 山区小流域花粉植被土地利用的关系:定量检测人类活动对环境的影响[J]. 地球科学进展, 2017, 32(9): 972-982.
[7] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[8] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[9] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[10] 王军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[11] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[12] 陈京华, 贾文雄 , 赵珍, 张禹舜, 刘亚荣. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7): 834-845.
[13] 袁文平, 蔡文文, 刘丹, 董文杰. 陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展, 2014, 29(5): 541-550.
[14] 阳勇, 陈仁升, 宋耀选. 高寒山区地表温度测算方法研究综述[J]. 地球科学进展, 2014, 29(12): 1383-1393.
[15] 贾坤, 姚云军, 魏香琴, 高 帅,江 波, 赵 祥. 植被覆盖度遥感估算研究进展[J]. 地球科学进展, 2013, 28(7): 774-782.
阅读次数
全文


摘要