[1] |
Lieth H. Historical survey of primary productivity research[M]∥Lieth H,Whittaker R H, eds. Primary Productivity of the Biosphere. New York: Springer Berlin Heidelberg, 1975: 7-16.
|
[2] |
Fang Jingyun,Ke Jinhu,Tang Zhiyao,et al. Implications and estimations of four terrestrial productivity parameters[J]. Chinese Journal of Plant Ecology, 2001, 25(4): 414-419.
|
|
[方精云,柯金虎,唐志尧,等. 生物生产力的“4P”概念、估算及其相互关系[J]. 植物生态学报,2001, 25(4): 414-419.]
|
[3] |
Vitousek P M,Mooney H A,Lubchenco J,et al. Human domination of Earth’s ecosystems[J]. Science,1997,277(5 325):494-499.
|
[4] |
Cramer W,Kicklighter D W,Bondeau A,et al. Comparing global models of terrestrial Net Primary Productivity (NPP): Overview and key results[J]. Global Change Biology,1999,5(S1):1-15.
|
[5] |
Keenan T,Ian B,Alan B,et al. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange[J]. Global Change Biology,2012,18(6):1 971-1 987.
|
[6] |
Chen Jiquan,Yang Shuying. Ecological Methods of Terrestrial Ecosystems[M]. Beijing: Higher Education Press, 2014.
|
|
[陈吉泉,阳树英. 陆地生态学研究方法[M]. 北京:高等教育出版社,2014.]
|
[7] |
Baldocchi D D, Falge E, Gu L, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities[J]. Bulletin of the American Meteorological Society, 2001, 82: 2 415-2 435.
|
[8] |
Baldocchi D D. Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems[J]. Australian Journal of Botany,2008,56(1):1-26.
|
[9] |
Goward S A,Tucker C J,Dye D G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer[J]. Vegetatio,1985,64(1):3-14.
|
[10] |
Paruelo J M,Epstein H E,Lauenroth W K, et al. ANPP estimates from NDVI for the central grassland region of the United States[J]. Ecology,1997,78(3):953-958.
|
[11] |
Paruelo J M,Oesterheld M,Di Bella C M,et al. Estimation of primary production of sub-humid rangelands from remote sensing data[J]. Applied Vegetation Science,2000,3(2):189-195.
|
[12] |
Box E O,Holben B, Kalb V. Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux[J]. Vegetation,1989,80(2):71-89.
|
[13] |
Huete A R,Jackson R D. Soil and atmosphere influences on the spectra of partial canopies[J]. Remote Sensing of Environment,1988,25(1):89-105.
|
[14] |
Gamon J A,Field C B,Goulden M L,et al. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types[J]. Ecological Applications,1995,5(1):28-41.
|
[15] |
Beer C,Reichstein M,Tomelleri E,et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate[J]. Science,2010,329(5 993):834-838.
|
[16] |
Zhang L,Wylie B,Loveland T,et al. Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands[J]. Remote Sensing of Environment,2007,106(2):173-189.
|
[17] |
Potter C S,Randerson J T,Field C B,et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7(4):811-841.
|
[18] |
Prince S D,Goward S N. Global primary production: A remote sensing approach[J]. Journal of Biogeography,1995,22(4/5):815-835.
|
[19] |
Veroustraete F,Sabbe H,Eerens H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data[J]. Remote Sensing of Environment,2002,83(3):376-399.
|
[20] |
Turner D P,Ritts W D,Styles J M,et al. A diagnostic carbon flux model to monitor the effects of disturbance and interannual variation in climate on regional NEP[J]. Tellus,2006,58(5):476-490.
|
[21] |
King D A,Turner D P, Ritts W D. Parameterization of a diagnostic carbon cycle model for continental scale application[J]. Remote Sensing of Environment,2011,115(7):1 653-1 664.
|
[22] |
Xiao X,Hollinger D,Aber J,et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest[J]. Remote Sensing of Environment,2004,89(4):519-534.
|
[23] |
Mahadevan P,Wofsy S C,Matross D M,et al. A satellite-based biosphere parameterization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model(VPRM)[J]. Global Biogeochemical Cycles,2008,22(2):1-17.
|
[24] |
He M Z,Ju W M,Zhou Y L,et al. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity[J]. Agricultural and Forest Meteorology,2013,173:28-39.
|
[25] |
Yuan Wenping,Liu Shuguang,Zhou Guangsheng, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology,2007,143(3/4):189-207.
|
[26] |
Field C B,Randerson J T,Malmstrm C M. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment,1995,51(1):74-88.
|
[27] |
Running S W,Nemani R R,Heinsch F A,et al. A continuous satellite-derived measure of global terrestrial primary production[J]. Bioscience,2004,54(6):547-560.
|
[28] |
Wang Lijuan,Niu Zheng,Kuang Da. An analysis of the terrestrial NPP from 2002 to 2006 in China based on MODIS data[J]. Remote Sensing for Land & Recourses,2010,22(4):113-116.
|
|
[王李娟,牛铮,旷达. 基于MODIS数据的2002—2006年中国陆地NPP分析[J]. 国土资源遥感,2010,22(4):113-116.]
|
[29] |
Guo Xiaoyin,He Yong,Shen Yongping,et al. Analysis of the terrestrial NPP based on the MODIS in the source regions of Yangtze and Yellow Rivers from 2000 to 2004[J]. Journal of Glaciology and Geocryology,2006,28(4):512-518.
|
|
[郭晓寅,何勇,沈永平,等. 基于MODIS资料的2000—2004年江河源区陆地植被净初级生产力分析[J]. 冰川冻土,2006,28(4):512-518.]
|
[30] |
Zhu Wenquan,Pan Yaozhong,He Hao,et al. Simulation of maximum light use efficiency for some typical vegetation types in China[J]. Chinese Science Bulletin,2006,51(4):457-463.
|
|
[朱文泉,潘耀忠,何浩,等.中国典型植被类型最大光能利用率模拟[J]. 科学通报,2006,51(4):457-463.]
|
[31] |
Wang X F,Ma M G,Li X,et al. Validation of MODIS GPP product at 10 flux sites in northern China[J]. International Journal of Remote Sensing,2013,34(2):587-599.
|
[32] |
Yuan W P,Liu S G,Zhou G S,et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology,2007,143(3/4):189-207.
|
[33] |
Yuan W P,Liu S G,Yu G R,et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment,2010,114(7):1 416-1 431.
|
[34] |
Li X L,Liang S,Yu G R,et al. Estimation of gross primary production over the terrestrial ecosystems in China[J]. Ecological Modeling,2013,261/262:80-92.
|
[35] |
Piao S L,Luyssaert S,Ciais P,et al. Forest annual carbon cost: A global-scale analysis of autotrophic respiration[J]. Ecology,2010,91(3):652-657.
|
[36] |
Running S W,Nemani R,Glassy J M,et al. MODIS Daily Photosynthesis (PSN) and Annual Net Primary Production (NPP) Product (MOD17) Algorithm Theoretical Basis Document[Z].1999.
|
[37] |
Xiao X,Zhang Q,Hollinger D,et al. Modeling seasonal dynamics of gross primary production of evergreen needleleaf forest using MODIS images and climate data[J]. Ecological Applications,2005,15(3):954-969.
|
[38] |
Landsberg J J, Waring R H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency,carbon balance and partitioning[J]. Forest Ecology and Management,1997,95(3):209-228.
|
[39] |
Yuan W P,Cai W,Xia J Z,et al. Global Comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database[J]. Agricultural and Forest Meteorology,2014,192/193:108-120.
|
[40] |
Gu L H,Baldocchi D D,Verma S B,et al. Advantages of diffuse radiation for terrestrial ecosystem productivity[J]. Journal of Geophysical Research: Atmospheres,2002,107(D6):ACL 2-1-ACL 2-23.
|
[41] |
Gu L H,Baldocchi D D,Wofsy S C,et al. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis[J]. Science,2003,299(5 615):2 035-2 038.
|
[42] |
Alton P B,North P R, Los S O. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes[J]. Global Change Biology,2007,13(4):776-787.
|
[43] |
Urban O,Janou D,Acosta M,et al. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparsion of the response in direct vs. diffuse solar radiation[J]. Global Change Biology,2007,13(1):157-168.
|
[44] |
Hollinger D Y,Kelliher F M,Byers J N,et al. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere[J]. Ecology,1994,75(1):134-150.
|
[45] |
Sakai R K,Fitzjarrald D R,Moore K E,et al. How do forest surface fluxes depend on fuctuating light level?[C]∥Conference on Agricultural and Forest Meteorology with Symposium on Fire and Forest Meteorology,1996,22: 90-93.
|
[46] |
Matsuda R,Ohashi-Kaneko K,Fujiwara K,et al. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light[J]. Plant and Cell Physiology,2004,45(12):1 870-1 874.
|
[47] |
Bonan G B,Levis S,Sitch S,et al. A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics[J]. Global Change Biology,2003,9(11):1 543-1 566.
|
[48] |
Zhuang Q,McGuire A D,Melillo J M,et al. Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: A modeling analysis of the influences of soil thermal dynamics[J]. Tellus, 2003, 55B: 751-776.
|
[49] |
Jia Kun,Yao Yunjun,Wei Xiangqin, et al. A review on fractional vegetation cover estimation using remote sensing[J]. Advances in Earth Science,2013,28(7):774-782.
|
|
[贾坤,姚云军,魏香琴,等. 植被覆盖度遥感估算研究进展[J]. 地球科学进展,2013,28(7):774-782.]
|
[50] |
Wang Zhihui,Liu Liangyun. Monitoring on land cover pattern and crops structure of oasis irrigation area of middlereaches in Heihe River Basin using remote sensing data[J]. Advances in Earth Science,2013,28(8):948-956.
|
|
[王志慧,刘良云. 黑河中游绿洲灌溉区土地覆盖与种植结构空间格局遥感监测[J]. 地球科学进展,2013,28(8):948-956.]
|
[51] |
Foley J A,Prentice C,Ramankutty N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles,1996,10(4):603-628.
|
[52] |
Ryu Y,Baldocchi D D,Kobayashi H, et al. Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1km to global scales[J]. Global Biogeochemical Cycles,2011,25,doi:10.1029/2011GB004053.
|
[53] |
Michaelides S C,Tymvios F S,Michaelidou T. Spatial and temporal characteristics of the yearly rainfall frequency distribution in Cyprus[J]. Atmospheric Research,2009,94(4):606-615.
|
[54] |
Cai W,Yuan W P,Liang S,et al. Improved estimations of gross primary production using satellite-derived photosynthetically active radiation[J]. Journal of Geophysical Research: Biogeosciences,2014,119,doi:10.1002/2013JG002456.
|