地球科学进展 ›› 2017, Vol. 32 ›› Issue (11): 1126 -1136. doi: 10.11867/j.issn.1001-8166.2017.11.1126

所属专题: 深海科学研究

上一篇    下一篇

上新世以来巽他陆架海平面变化研究
李丽( ), 徐沁   
  1. 同济大学,海洋地质国家重点实验室,海洋与地球科学学院,上海 200092
  • 收稿日期:2017-09-06 修回日期:2017-10-26 出版日期:2017-11-10
  • 基金资助:
    国家自然科学基金项目“南海沉积物中支链四醚膜脂的组成和碳同位素特征及其对古气候研究的启示”(编号:41673042)和“两种温度指标(U k' 37和TEX 86) 的现代水体调查和沉积记录整合研究”(编号:41376046)资助

Review of Studies in Sea Level Change of Sunda Shelf Since Pliocene

Li Li( ), Qin Xu   

  1. State Key Laboratory of Marine Geology, School of Ocean and Earth Sciences, Tongji University, Shanghai 200092,China
  • Received:2017-09-06 Revised:2017-10-26 Online:2017-11-10 Published:2018-01-10
  • About author:

    First author:Li Li(1974-),femal,Changzhi City, Shanxi Province, Professor. Research areas include marine organic geochemistry and paleoceanography.E-mail:lilitju@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Composition and carbon isotopic characteristics of branched tetraethers in the sediments of the South China Sea and its implications for the study of paleo-climate”(No.41673042);“Integration research of two temperature proxies ({Invalid MML} and TEX 86) by modern ocean investigation and deposition record”(No.41376046)

海平面变化是全球变化的重要组成部分,不仅涉及自然环境和生态的变化,而且对人类社会的经济和发展也有重大影响。只有了解海平面变化历史,发现和掌握海平面变化规律,才能建立可靠的海平面变化模型,提高未来海平面变化的预能力。巽他陆架地处太平洋和印度洋的交界,位居世界陆架面积第二,陆架宽,坡缓水浅,对海平面变化敏感,是研究海平面变化的理想之所。简要介绍了海平面重建的方法,回顾了巽他陆架区域不同地质时期海平面变化的研究成果:总体而言,上新世巽他陆架海平面比现在高50~100 m,之后随两极冰盖发育海平面逐渐下降,在第四纪海平面受冰盖消涨影响而周期性升降,波动幅度达130 m, 记录较多的全新世研究显示了末次冰消期以来海平面的快速上升以及中全新世高海平面时期,近代观测表明最近200多年海平面呈上升趋势并且自20世纪开始上升加速。同时不同的研究方法和区域造成的结论差异说明海平面重建影响因素的复杂性和时空分布的多变性。

The sea level change is an important part of global change. It not only relates to the natural environment and ecological changes, but also has a significant impact on the economy and the development of human society. Understanding the sea level history and dynamic rule is a basic condition to build reliable models and improve the future forecast. Sunda Shelf is located between the Pacific Ocean and India Ocean. Owing to the feature of the second continental shelf area, wide shelf and gentle slope, Sunda Shelf is sensitive to sea-level change and an ideal place for sea level study. In this paper, we introduced the method of sea level reconstruction briefly, and reviewed the researches in the Sunda Shelf of different geological periods: Overall, the sea level in Sunda Shelf during Pliocene was as high as 50~100 m, then fell gradually along with the development of the polar ice sheets, and fluctuated among 130 m with the ice volume shrinking and growing in Quaternary. Holocene researches with the most records exhibited the fast elevating in the last deglaciation and the mid-Holocene highstand. Recent observations showed a rising trend of sea-level of past 200 years and the accelerating rate since twentieth century. Meanwhile, the divergence conclusions because of the various research method and regions indicated the complex of the influencing factors and the variability of the spatial and temporal distribution for the sea level reconstruction.

中图分类号: 

图1 巽他陆架地区在不同海平面高度的地形图(据参考文献[5,6]修改 )
(a) 中全新世高海平面时期;(b)末次冰期低海平面时期(蓝色虚线为巽他陆架暴露后发育的河流体系)
Fig.1 Topographic map of Sunda Shelf at different sea level (modified after references[5,6])
(a) Highstand sea level during the mid-Holocene; (b) Lowstand sea level during last glaciation (blue dashed line indicating the glacial drainage systems on the exposed Sunda Shelf)
图2 巽他陆架地区不同时期的海平面变化
(a)来自马来半岛东部沿岸的有孔虫的近代记录 [ 29 ] ;(b)来自新加坡红树林沼泽和遗址的早—中全新世记录 [ 33 ];(c)来自印度尼西亚Belitung岛微环礁的中全新世记录 [ 47 ];(d)巽他陆架地区末次冰期以来的综合记录(橙色:马六甲海峡; 紫色:新加坡;蓝色:巽他陆架;绿色:新加坡;黑色:巽他陆架) [ 5 ] ;(e)过去120 ka以来巽他陆架海平面变化模拟重建 [ 5 ];(f)有孔虫δ 18O重建450 ka以来的复合海平面变化曲线(黑线:复合曲线;灰线:置信区间;绿色星号:珊瑚记录) [ 59 ];(g) 巽他陆架北部地震层序方法重建晚新生代5 Ma海平面曲线 [ 22 , 71 ]
Fig.2 Sea level changes in Sunda Shelf during different periods
(a)Recent record from foraminiferal data in east coast of Peninsular Malaysia [ 29 ] ; (b)Early to mid-Holocene record from mangrove swamps and excava-tions documents in Singapore [ 33 ]; (c)Mid-Holocene record from microatoll data in Belitung island of Indonesia [ 47 ]; (d)Record since Last glacial period from intergrated data in Sunda Shelf cores (orange: Strait of Malacca, purple: Singapore, blue: Sunda Shelf, green: Singapore, black: Sunda Shelf) [ 5 ]; (e)Simulation model of the sea level in Sunda Shelf since 120 ka BP [ 5 ]; (f)Composite sea level curve (bold black line) derived from foraminifer δ 18O spanning past 450 ka (thin gray lines: Confidence interval, green crosses: Coral reef records) [ 59 ]; (g)Estimated sea level curve spanning past 5 Ma of late Cenozoic according seismic profiles in northern Sunda Shelf [ 22 , 71 ]
[1] Stocker T F, Qin D, Plattner G K,et al.IPCC, 2013:Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press,2013.
[2] Nicholls R J, Cazenave A.Sea-level rise and its impact on coastal zones[J].Science, 2010, 328(5 985): 1 517-1 520.
[3] Church J A, White N J, Hunter J R.Sea-level rise at tropical Pacific and Indian Ocean islands[J].Global & Planetary Change, 2006, 53(3): 155-168.
[4] Hanebuth T J J, Stattegger K, Grootes P M. Rapid flooding of the Sunda Shelf: A late-glacial sea-level record[J].Science, 2000, 288(5 468): 1 033-1 035.
[5] Hanebuth T J J, Voris H K, Yokoyama Y,et al. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications[J]. Earth Science Reviews, 2011, 104(1/3):92-110.
[6] Voris H K.Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations[J]. Journal of Biogeography, 2000, 27:1 153-1 167.
[7] Simons W J F, Socquet A, Vigny C,et al. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries[J]. Journal of Geophysical Research Solid Earth, 2007, 112(B6): 623-626.
[8] Metcalfe I.Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 2011, 19: 3-21.
[9] Zahirovic S, Matthews K J, Flament N, et al.Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic[J]. Earth-Science Reviews, 2016, 162: 293-337.
[10] Iwakuni M, Kato T, Takiguchi H, et al.Crustal deformation in Thailand and tectonics of Indochinapeninsula as seen from GPS observations[J]. Geophysical Research Letters, 2004, 31: L11612, doi:10.1029/2004GL020347.
[11] Tjia H D.Sea-level changes in the tectonically stable Malay-Thai Peninsula[J].Quaternary International, 1996, 31(1): 95-101.
[12] Hanebuth T, Stattegger K.Depositional sequences on a late Pleistocene-Holocene tropical siliciclastic shelf (Sunda Shelf, southeast Asia)[J].Journal of Asian Earth Sciences, 2004, 23(1) :113-126.
[13] Tjia H D. The Sunda Shelf, Southeast Asia[J].Zeitschrift Fur Geomorphologie, 1980, 24 : 405-27.
[14] Molengraaff G.Modern deep-sea research in the East Indian Archipelago[J].The Geographical Journal, 1921, 57(2): 95-118.
[15] Di Nezio P N, Timmermann A, Tierney J E, et al. The climate response of the Indo-Pacific warm pool to glacial sea level[J]. Paleoceanography, 2016, 31: 866-894, doi:10.1002/2015PA002890.
[16] Robles E, Piper P, Ochoa J,et al.Late Quaternary sea-level changes and the Palaeohistory of Palawan Island, Philippines[J]. The Journal of Island and Coastal Archaeology, 2015, 10: 76-96, doi:10.1080/15564894.2014.880758.
[17] Wu Tao, Kang Jiancheng, Wang Fang, et al.The new progresses on global sea level change[J]. Advances in Earth Science, 2006, 21(7): 730-737.
[吴涛, 康建成, 王芳, 等. 全球海平面变化研究新进展[J]. 地球科学进展, 2006, 21(7) : 730-737.]
[18] Zhang Lefan, Che Yongfa, Hu Haiying.Advance of the researches on the variation of Mean-Sea-Level(MSL)[J]. Water Sciences and Engineering Technology, 2012, 12(4): 22-27.
[张乐凡,车永发,胡海英.海平面变化研究进展[J]. 水科学与工程技术, 2012, 12(4): 22-27.]
[19] Shi Xiaojun, Yu Kefu, Chen Tegu.Progress in researches on sea-level changes in South China Sea since mid-Holocene[J]. Marine Geology and Quaternary Geology, 2007, 27(5): 121-132.
[时小军, 余克服, 陈特固. 南海周边中全新世以来的海平面变化研究进展[J]. 海洋地质与第四纪地质, 2007, 27(5): 121-132.]
[20] Smithers S G,Woodroffe C D.Microatolls as sea-level indicators on a mid-ocean atoll[J]. Marine Geology, 2000,168:61-78.
[21] Li Yue, Wang Rujian, Li Wenbao.Review on research on paleo-sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments[J].Advances in Earth Science, 2016,31(3): 310-319,doi:10.11867/j.issn.1001-8166. 2016. 03. 0310.
[李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展,2016,31(3):310-319, doi:10.11867/j.issn.1001-8166. 2016. 03. 0310.]
[22] Zhong Guangfa.Late Cenozoic Seismic Onlap-Offlap Sequences and Sea Level Changes on the Northern Sunda Shelf, South China Sea[D].Shanghai:Tongji University, 2002.
[钟广法. 陆架晚新生代地震超覆层序与海平面变化研究[D].上海:同济大学, 2002.]
[23] Tian Tingting, Wu Zhonghai, Zhang Keqi, et al.Overview of quaternary dating methods and their application in neotectonics and active tectonics research[J]. Journal of Geomechanics, 2013, 19:242-266.
[田婷婷,吴中海,张克旗,等. 第四纪主要定年方法及其在新构造与活动构造研究中的应用综述[J]. 地质力学学报, 2013, 19: 242-266.]
[24] Houghton J T, Ding Y, Griggs D J,et al.Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2001.
[25] Rong Z, Liu Y, Zong H,et al.Interannual sea level variability in the South China Sea and its response to ENSO[J]. Global and Planetary Change, 2007, 55(4): 257-272.
[26] Li Dawei, Li Jiancheng, Tuan Wenzheng.Sea level variability over the Vietnam Seas derived from satellite altimetry and tide gauge data[J].Bulletin of Surveying and Mapping, 2017, (6): 1-4.
[李大炜, 李建成, 团文征. 利用卫星测高与验潮站数据监测越南近海海平面变化[J]. 测绘通报, 2017, (6):1-4.]
[27] Cazenave A, Llovel W.Contemporary sea level rise[J]. Annual Review of Marine Science, 2010,(2): 145-173.
[28] Trisirisatayawong I, Naeije M, Simons W, et al.Sea level change in the Gulf of Thailand from GPS-corrected tide gauge data and multi-satellite altimetry[J]. Global and Planetary Change, 2011, 76(3): 137-151.
[29] Culver S J, Leorri E, Mallinson D J, et al.Recent coastal evolution and sea-level rise, Setiu Wetland, Peninsular Malaysia[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2015, 417: 406-421.
[30] Gehrels W R, Woodworth P L.When did modern rates of sea-level rise start[J]?Global and Planetary Change, 2013, 100(1): 263-277.
[31] Yokoyama Y, Lambeck K, De Deckker P, et al.Timing of the Last Glacial Maximum from observed sea-level minima[J]. Nature, 2000, 406(6 797): 713-716.
[32] Horton B P, Gibbard P L, Milne G M, et al.Holocene sea levels and palaeoenvironments, Malay-Thai Peninsula, southeast Asia[J]. The Holocene, 2005, 15(15): 1 199-1 213.
[33] Bird M I, Fifield L K, Teh T S, et al.An inflection in the rate of early mid-Holocene eustatic sea-level rise: A new sea-level curve from Singapore[J]. Estuarine Coastal & Shelf Science, 2007, 71(3): 523-536.
[34] Bird M I, Austin W E N, Wurster C M,et al. Punctuated eustatic sea-level rise in the early mid-Holocene[J]. Geology, 2010, 38: 803-806.
[35] Tjia H D.Sea-level changes in the tectonically stable Malay-Thai Peninsula[J]. Quaternary International, 1996, 31: 95-101.
[36] Stattegger K, Tjallingii R, Saito Y, et al.Mid to late Holocene sea-level reconstruction of Southeast Vietnam using beachrock and beach-ridge deposits[J]. Global and Planetary Change, 2013, 110: 214-222.
[37] Haile N S.Quaternary shorelines in West Malaysia and adjacent parts of the Sunda Shelf[J].Quaternaria, 1971, 15: 333-343.
[38] Haile N S.Postulated late cainozoic high sea levels in the Malay Peninsula[J]. Journal of the Malaysian Branch of the Royal Asiatic Society, 1975, 48: 78-88.
[39] Geyh M A, Streif H, Kudrass H R.Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca[J]. Nature, 1979, 278(5 703): 441-443.
[40] Rimbaman I.The role of sea-level changes on the coastal environment of northern West Java (case study of Eretan, Losarang and Indramayu)[J]. Journal of Southeast Asian Earth Sciences, 1992, 7(1): 71-77.
[41] Korotky A M, Razjigaeva N G, Ganzey L A, et al.Late Pleistocene-Holocene coastal development of islands off Vietnam[J]. Journal of Asian Earth Sciences, 1995, 11(4): 301-308.
[42] Nguyen V L, Ta T K O, Tateishi M,et al. Late Holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam[J].Journal of Asian Earth Sciences, 2000, 18(4): 427-439.
[43] Berdin R D, Siringan F P, Maeda Y. Holocene sea-level highstand and its implications for the vertical stability of Panglao Island, southwest Bohol, Philippines[J]. Quaternary International, 2004, 115/116(3): 27-37.
[44] Maeda Y, Siringan F, Omura A, et al. Higher-than-present Holocene mean sea levels in Ilocos, Palawan and Samar, Philippines[J]. Quaternary International, 2004, 115/116:15-26.
[45] Azmy K, Edinger E, Lundberg J, et al.Sea level and paleotemperature records from a mid-Holocene reef on the North coast of Java, Indonesia[J]. International Journal of Earth Sciences, 2008, 99(1): 231-244.
[46] Mallinson D J, Culver S J, Corbett D R, et al.Holocene coastal response to monsoons and relative sea-level changes in northeast Peninsular Malaysia[J]. Journal of Asian Earth Sciences, 2014, 91(3): 194-205.
[47] Meltzner A J, Switzer A D, Horton B P, et al.Half-metre sea-level fluctuations on centennial timescales from mid-Holocene corals of Southeast Asia[J]. Nature Communications, 2017, 8,doi:10.1038/ncomms14387.
[48] Clark J A, Farrell W E, Peltier W R.Global changes in postglacial sea level: A numerical calculation[J]. Quaternary Research, 1978, 9(3):265-287.
[49] Milne G A, Gehrels W R, Hughes C W, et al.Identifying the causes of sea-level change[J]. Nature Geoscience,2009, 2: 471-478.
[50] Lambeck K, Esat T M, Pmter E K.Links between climate and Sea levels for the past three million years[J]. Nature, 2002, 419:199-206.
[51] Hanebuth T J J, Stattegger K, Bojanowski A. Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited[J].Global and Planetary Change, 2009, 66(1): 76-84.
[52] Zhao M, Huang C Y, Wang C C,et al.A millennial-scale {Invalid MML} sea-surface temperature record from the South China Sea (8°N) over the last 150 kyr: Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1): 39-55.
[53] Huang E, Tian J. Sea-level rises at Heinrich stadials of early Marine Isotope Stage 3: Evidence of terrigenous n-alkane input in the southern South China Sea[J]. Global and Planetary Change, 2012, 94/95: 1-12.
[54] Lambeck K, Yokoyama Y, Purcel A.Into and out of the Last Glacial Maximum: Sea-level change during oxygen isotope stages 3 and 2[J]. Quaternary Science Reviews, 2002, 21: 343-360.
[55] Peltier W R, Fairbanks R G.Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record[J].Quaternary Science Reviews, 2006, 25(23): 3 322-3 337.
[56] Hanebuth T J J, Saito Y, Tanabe S, et al. Sea levels during late marine isotope stage 3 (or older?) reported from the Red River delta (northern Vietnam) andadjacent regions[J]. Quaternary International,2006, 145/146: 119-134.
[57] Chappell J, Omura A, Esat T, et al.Reconciliation of Late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records[J]. Earth and Planetary Science Letters, 1996,141: 227-236.
[58] Chappell J.Sea level changes forced ice breakouts in the Last Glacial cycle: New results from coral terraces[J]. Quaternary Science Reviews, 2002, 21:1 229-1 240.
[59] Waelbroeck C, Labeyrie L, Michel E, et al.Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Review, 2002, 21: 295-305.
[60] Siddall M, Rohling E J, Thompson W G, et al.MIS 3 Sea-level fluctuations: Data synthesis and new outlook[J]. Reviews of Geophysics, 2008, 46:1-29.
[61] Chappell J, Shackleton N J.Oxygen isotopes and sea level[J].Nature,1986, 324: 137-140.
[62] Bloom A L, Broecker W S, Chappell J M A,et al. Quaternary Sea Level Fluctuations on a Tectonic coast: New 230Th/234U Dates from the Huon Peninsula, New Guinea[J]. Quaternary Research, 1974, 4(2): 185-205.
[63] Stein M, Wasserburg G J, Aharon P,et al.TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea[J]. Geochimica et Cosmochimica Acta, 1993, 57(11): 2 541-2 554.
[64] Omura A, Maeda Y, Kawana T, et al. U-series dates of Pleistocene corals and their implications to the paleo-sea levels and the vertical displacement in the Central Philippines[J]. Quaternary International, 2004, s115/116(3): 3-13.
[65] Piper P J, Ochoa J, Robles E C, et al.Palaeozoology of Palawan Island, Philippines[J]. Quaternary International, 2011, 233: 142-158.
[66] Heaney L R.Biogeography of mammals in SE Asia: Estimates of rates of colonization, extinction and speciation[J]. Biological Journal of the Linnaean Society, 1986, 28:127-165.
[67] Rohling E J, Fenton M, Jorissen F J, et al.Magnitudes of sea-level lowstands of the past 500,000 years[J]. Nature, 1998, 394: 162-165.
[68] Krause D C.Tectonics, marine geology, and bathymetry of the Celebes Sea-Sulu Sea region[J]. Geological Society of America Bulletinv, 1966, 77: 813-832.
[69] Labeyrie L D, Duplessy J C, Blanc P L.Variations in mode of formation and temperature of oceanic deep waters over the past 125 000 years[J]. Nature, 1987, 327: 477-482.
[70] Ravelo A C, Andreasen D H, Lyle M, et al.Regional climate shifts caused by gradual global cooling in the Pliocene epoch[J]. Nature, 2004, 429: 263-267.
[71] Zhong G, Geng J, Wong H K, et al.A semi-quantitative method for the reconstruction of eustatic sea level history from seismic profiles and its application to the southern South China Sea[J]. Earth and Planetary Science Letters, 2004, 223(3): 443-459.
[72] Yang Y, Li J, Yang S,et al. Effects of Pleistocene sea-level fluctuations on mangrove population dynamics: A lesson from Sonneratia alba[J]. BMC Evolutionary Biology, 2017, 17(1): 22, https:∥doi.org/10.1186/s12862-016-0849-z.
[1] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[2] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[3] 贺娟. 氢氧同位素记录揭示的巽他陆架末次冰期以来古降水量变化[J]. 地球科学进展, 2017, 32(11): 1137-1146.
[4] . 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[5] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[6] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[7] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[8] 孔祥辉, 周卫健, 鲜 锋, 武振坤. 布容—松山极性倒转事件的海陆地质记录及其不同步性探讨[J]. 地球科学进展, 2012, 27(9): 937-946.
[9] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[10] 刘伟男,王汝建,陈建芳,程振波,陈志华,孙烨忱. 西北冰洋阿尔法脊晚第四纪的陆源沉积物记录及其古环境意义[J]. 地球科学进展, 2012, 27(2): 209-216.
[11] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[12] 姚玉鹏,刘羽. 第四纪作为地质年代和地层单位的国际争议与最终确立[J]. 地球科学进展, 2010, 25(7): 775-781.
[13] 蒲阳,张虎才,雷国良,常凤琴,杨明生,庞有智. 西北地区晚第四纪沉积地层一元正脂肪酸酰胺分布特征及古气候意义[J]. 地球科学进展, 2010, 25(5): 533-542.
[14] 戴静,孙柏年,解三平,吴靖宇,李娜. 云南腾冲上新统 Carpinus miofangiana的发现及古气候意义[J]. 地球科学进展, 2009, 24(9): 1024-1032.
[15] 王汝建,肖文申,成鑫荣,陈建芳,高爱国,韩贻兵,李秀珠. 北冰洋西部晚第四纪浮游有孔虫氧碳同位素记录的海冰形成速率[J]. 地球科学进展, 2009, 24(6): 643-651.
阅读次数
全文


摘要